C451 L

- Power Thyristor

2000 V_{DRM};

HIGH POWER THYRISTOR FOR PHASE CONTROL APPLICATIONS

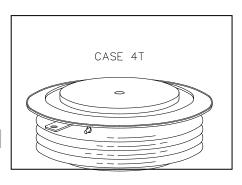
Features:

- . All Diffused Structure
- . Center Amplifying Gate Configuration
- . Blocking capabilty up to 2000 volts
- . Guaranteed Maximum Turn-Off Time
- . High dV/dt Capability
- . Pressure Assembled Device

ELECTRICAL CHARACTERISTICS AND RATINGS

Blocking - Off State

Device Type	V _{RRM} (1)	V _{DRM} (1)	V _{RSM} (1)
C451L	2000	2000	2100


 V_{RRM} = Repetitive peak reverse voltage

 V_{DRM} = Repetitive peak off state voltage

 V_{RSM} = Non repetitive peak reverse voltage (2)

Repetitive peak reverse leakage and off state leakage	I_{RRM}/I_{DRM}	65 mA (3)
Critical rate of voltage rise	dV/dt (4)	400 V/μsec

Conducting - on state

Notes

All ratings are specified for Tj=25 °C unless otherwise stated.

- (1) All voltage ratings are specified for an applied 50Hz/60zHz sinusoidal waveform over the temperature range -40 to +125 °C.
- (2) 10 msec. max. pulse width
- (3) Maximum value for $T_i = 125$ °C.
- (4) Minimum value for linear and exponential waveshape to 80% rated V_{DRM}. Gate open. Tj = 125 °C.
- (5) Non-repetitive value.
- (6) The value of di/dt is established in accordance with EIA/NIMA Standard RS-397, Section 5-2-2-6. The value defined would be in addition to that obtained from a snubber circuit, comprising a 0.2 μF capacitor and 20 ohms resistance in parallel with the thristor under test.

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Average value of on-state current	I _{T(AV)}		1500		A	Sinewave,180° conduction,T _c =65°C
RMS value of on-state current	I _{TRMS}		2400		A	Nominal value
Peak one cPSTCle surge (non repetitive) current	I _{TSM}		23000 21000		A A	8.3 msec (60Hz), sinusoidal wave- shape, 180° conduction, $T_j = 125$ °C 10.0 msec (50Hz), sinusoidal wave- shape, 180° conduction, $T_j = 125$ °C
I square t	I ² t		2.2x10 ⁶		A ² s	10.0 msec
Latching current	$I_{\rm L}$		800		mA	$V_D = 24 \text{ V}; R_L = 12 \text{ ohms}$
Holding current	I _H		400		mA	V _D = 24 V; I = 2.5 A
Peak on-state voltage	V _{TM}		1.65		V	$I_{TM} = 3000 \text{ A}$; Duty cPSTCle $\leq 0.01\%$
Critical rate of rise of on-state current (5, 6)	di/dt		400		A/µs	Switching from $V_{DRM} \le 1000 \text{ V}$, non-repetitive
Critical rate of rise of on-state current (6)	di/dt		100		A/µs	Switching from V _{DRM} ≤ 1000 V

ELECTRICAL CHARACTERISTICS AND RATINGS

C451L - Power Thyristor

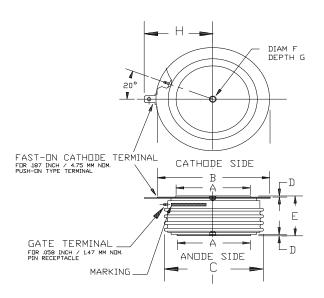
Gating

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Peak gate power dissipation	P _{GM}		200		W	$t_p = 40 \text{ us}$
Average gate power dissipation	P _{G(AV)}		5		W	
Peak gate current	I _{GM}		10		A	
Gate current required to trigger all units	I_{GT}		300 150 125		mA mA mA	$V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = -40 \text{ °C}$ $V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = +25 \text{ °C}$ $V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = +125 \text{ °C}$
Gate voltage required to trigger all units	$V_{ m GT}$	0.30	5 3		V V V	$V_D = 6 \text{ V;} R_L = 3 \text{ ohms;} T_j = -40 \text{ °C}$ $V_D = 6 \text{ V;} R_L = 3 \text{ ohms;} T_j = 0-125 \text{ °C}$ $V_D = \text{Rated V}_{DRM}; R_L = 1000 \text{ ohms;}$ $T_j = +125 \text{ °C}$
Peak negative voltage	V_{GRM}		5		V	

Dynamic

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Delay time	t _d		1.5	0.7	μs	$I_{TM} = 50 \text{ A}; V_D = \text{Rated } V_{DRM}$ Gate pulse: $V_G = 20 \text{ V}; R_G = 20 \text{ ohms};$
Turn-off time (with $V_R = -50 \text{ V}$)	t _a			150	us	$t_r = 0.1 \mu \text{s}; t_p = 20 \mu \text{s}$ $I_{TM} = 1000 \text{ A}; di/dt = 25 \text{ A/}\mu \text{s};$
Turn on time (with VK 30 V)	ч		250	130	μ	$V_R \ge -50 \text{ V}$; Re-applied dV/dt = 20 V/μ s linear to 80% V_{DRM} ; $V_G = 0$; $T_i = 125$ °C; Duty cPSTCle ≥ 0.01 %
Reverse recovery charge	Qrr		*		μС	$I_{TM} = 1000 \text{ A}; \text{ di/dt} = 25 \text{ A/}\mu\text{s};$ $V_R \ge -50 \text{ V}$

^{*} For guaranteed max. value, contact factory.


THERMAL AND MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Operating temperature	Tj	-40	+125		°C	
Storage temperature	T _{stg}	-40	+150		°C	
Thermal resistance - junction to case	R _{\text{\tint}\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\teint{\tiliex{\text{\texi}}\\ \ti}\\\ \tintity}\\ \tinttitex{\text{\text{\text{\text{\ti}\text{\text{\texi}\text{\texi}\text{\text{\text{\texi}\text{\ti}\text{\text{\text{\text{\text{\texi}\tiint{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texitilex{\tiin}\}		0.025 0.050		°C/W	Double sided cooled Single sided cooled
Thermal resistance - case to sink	R _{\text{\tint{\text{\tint}\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tinit{\text{\tinit}}\\ \tint{\text{\tint{\tinit{\tinit}}\tint{\text{\tinit{\text{\text{\text{\tinit{\text{\tinit{\til\tinit{\tinit{\tinit{\tinit{\text{\tinit{\tinit{\text{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tiit}\}\tint{\tinit{\tiit}}}\tint{\tinit{\tinit{\tinit{\tinit{\tiin}\tinit{\tiit}\tint{\tiit}\tinit{\tiit{\tinit{\tiit{\tiit}\tiit{\tiit}\tiit{\tiit}\tiit{\tiit}\tiit{\tiit}\tiit{\tiit}\tiit}\tiit}\tiit}\tiit}\tiit}\tiit}\tiit}\tiit}\tiit}		0.010 0.020		°C/W	Double sided cooled * Single sided cooled *
Mounting force	P	5500 24.5	6000 26.7		lb. kN	
Weight	W			16 460	oz. g	

^{*} Mounting surfaces smooth, flat and greased

Note: for case outline and dimensions, see case outline drawing in page 4 of this Technical Data

Thyristor

STRIKE DISTANCE = .58 INCH $\!\!\!/$ 14.7 MM MIN. CREEPAGE DISTANCE = 1.00 INCH $\!\!\!/$ 25.4 MM MIN.

OUTLIINE DIMENSIONS - CASE 4T								
DIMENSIONS	Min. mm	Max. mm	Min. In.	Max. In.				
DIAM A	43.18	48.26	1.70	1.90				
DIAM B	63.50	75.18	2.50	2.96				
DIAM C		67.31		2.65				
D	0.76		0.03					
E	25.40	27.18	1.00	1.07				
F	3.30	3.81	0.13	0.15				
G	1.78	2.03	0.07	0.08				
Н		44.20		1.74				