

CA-IF43232E 3V to 5.5V Two-Channel RS-232 Transceiver With ±15kV ESD Protection

1 Key Features

- Meets or Exceeds the Requirements of the TIA/ EIA-232-F and ITU V.28 Standards
 - Bus Pins (RINx and DOUTx) ESD Protection
 - ±15kV HBM ESD
 - ±8kV IEC 61000-4-2 Contact Discharge
 - ±15kV IEC 61000-4-2 Air-gap Discharge
- Operates With 3-V to 5.5-V VCC Supply
- Two Drivers and Two Receivers
- Maximum Data Rate: 250kbps
- Low Supply Current: 1mA (typical)
- Two Charge Pumps With External Capacitors: 4 × 0.1μF (VCC = 3.3V)
- Accepts 5-V Logic Input With 3.3-V Supply
- Extended Industrial Temperature Range: -40°C to 125°C

2 Applications

- Wired Networking
- Data center and Enterprise Computing
- Battery-Powered Systems
- Computer
- Printer

3 Description

The CA-IF43232E device consists of two line drivers, two line receivers, and a dual charge-pump circuit, which meets the requirements of the TIA/EIA-232-F and ITU V.28 standards and provides the electrical interface between an asynchronous communication controller and the serial-port connector. These devices have internal charge pumps with external capacitors could operate with 3-V to 5.5-V VCC supply. The CA-IF43232E devices operate at data signaling

rates up to 250kbps and a maximum of $30-V/\mu s$ driver output (DOUT1/DOUT2) slew rate.

These devices could provide standard narrow-body SOIC16 and small-footprint TSSOP16 packages, and are specified over extended industrial temperature range of -40° C to 125°C.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CA-IF43232EN	SOIC16-NB (N)	10.0mm × 3.9mm
CA-IF43232ETB	TSSOP16 (TB)	5mm × 4.4mm

Simplified Schematic

CA-IF43232E

Version 1.01

Shanghai Chipanalog Microelectronics Co., Ltd.

4 Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Part Number	Number of Channels	Date Rate (kbps)	Package
CA-IF43232EN	2	250	SOIC16-NB (N)
CA-IF43232ETB	2	250	TSSOP16 (TB)

Table of Contents

1	Key F	eatures	1
2	Appli	cations	1
3	Desc	ription	1
4	Orde	ring Guide	2
5	Revis	ion History	3
6	Pin D	escriptions and Functions	4
7	Speci	fications	5
	7.1	Absolute Maximum Ratings ¹	5
	7.2	ESD Ratings	5
	7.3	Recommended Operating Conditions	5
	7.3 7.4	Recommended Operating Conditions Thermal Information	5 5
	7.3 7.4 7.5	Recommended Operating Conditions Thermal Information Electrical Characteristics	5 5 6

	7.6	Timing Characteristics	7
8	Para	ameter Measurement Information	8
9	Det	ailed Description	9
	9.1	Device Feature Description	9
	9.2	Device Function Mode	9
10		Application and Implementation	10
11		Package Information	11
	11.1	SOIC16-NB Package	11
	11.2	TSSOP16 Package	12
12		Soldering Information	13
13		Tape and Reel Information	14
14		Important Notice	15

5 Revision History

Revision	Description	Date	Page
Version 1.01	First English edition.	2024/12/06	All

6 Pin Descriptions and Functions

Figure 6-1 Pin Configuration

NAME	PIN NUMBER	ТҮРЕ	DESCRIPTION
C1+	1	Input/Output	Positive lead of C1 capacitor
V+	2	Output	Positive charge pump output for storage capacitor only
C1-	3	Input/Output	Negative lead of C1 capacitor
C2+	4	Input/Output	Positive lead of C2 capacitor
C2-	5	Input/Output	Negative lead of C2 capacitor
V-	6	Output	Negative charge pump output for storage capacitor only
DOUT2	7	Output	Second RS-232 line data output, cable side
RIN2	8	Input	Second RS-232 line data input, cable side
ROUT2	9	Output	Second logic data output, logical side
DIN2	10	Input	Second logic data input, logical side
DIN1	11	Input	First logic data input, logical side
ROUT1	12	Output	First logic data output, logical side
RIN1	13	Input	First RS-232 line data input, cable side
DOUT1	14	Output	First RS-232 line data output, cable side
GND	15	Ground	Ground
VCC	16	Supply	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings¹

	PARAMETER	MIN	MAX	UNIT	
VCC	Supply voltage ²		-0.3	6	V
V+	Positive charge pump output supply volt	age ²	-0.3	7	V
V+	Negative charge pump output supply vol	tage ²	0.3	-7	V
(V+) –(V–)	Supply voltage difference ²	Supply voltage difference ²		13	V
N	Input voltage	DIN1, DIN2	-0.3	6	V
VI		RIN1, RIN2	-25	25	V
M	Outrast valtage	DOUT1, DOUT2	-13.2	13.2	V
Vo	ROUT1, ROUT2		-0.3	V _{CC} + 0.3	
Tj	Junction Temperature			150	°C
T _{STG}	Storage Temperature		-65	150	°C

NOTE:

1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. All voltage values are with respect to the ground terminal (GND).

7.2 ESD Ratings

		VALUE	UNIT
Human body model (HBM), per ANSI/ESDA/JEDEC JS-	Bus pins (RINx, DOUTx)	±15	
001	All other pins	±2 kV	
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins		±1.5	
Contact discharge, per IEC 61000-4-2	Buc pipe (PINy, DOUTy1 2)	±8	kV
Air-gap discharge, per IEC 61000-4-2	$Bus pills (Kinx, DOUTX^{-1})$	±15	
	Human body model (HBM), per ANSI/ESDA/JEDEC JS- 001 Charged device model (CDM), per JEDEC specification J Contact discharge, per IEC 61000-4-2 Air-gap discharge, per IEC 61000-4-2	Human body model (HBM), per ANSI/ESDA/JEDEC JS- 001Bus pins (RINx, DOUTx) All other pinsCharged device model (CDM), per JEDEC specification JESD22-C101, all pinsContact discharge, per IEC 61000-4-2Air-gap discharge, per IEC 61000-4-2	VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS- 001 Bus pins (RINx, DOUTx) ±15 All other pins ±2 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ±1.5 Contact discharge, per IEC 61000-4-2 Bus pins (RINx, DOUTx ^{1, 2}) ±8 Air-gap discharge, per IEC 61000-4-2 ±15

1. Minimum of 1-μF capacitor between VCC and GND is required to meet the specified IEC 61000-4-2 rating.

2. Place 150-pF capacitor between DOUTx and GND to meet the specified IEC 61000-4-2 rating.

7.3 Recommended Operating Conditions

	PARAMETER		MIN	NOM	MAX	UNIT
VCC	Supply voltage with respect to CND	VCC = 3.3V	3.0	3.3	3.6	V
	Supply voltage, with respect to GND	VCC = 5V	4.5	5.0	5.5	
VI	Input voltage of RINx		-25		25	V
1/t _{UI}	I/t _{UI} Data Rate				250	kbps
T _A	A Ambient Temperature		-40		125	°C
Tj	Junction Temperature		-40		150	°C

7.4 Thermal Information

	PACKA		
	SOIC16-NB (N)	TSSOP16 (TB)	UNIT
R _{0JA} Junction-to-ambient thermal resistance	96.2	115	°C/W

7.5 Electrical Characteristics

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25$ °C and $V_{CC} = 5V$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply						
I _{CC}	Supply current ¹	No load, VCC = 3.3V or 5V		1	2	mA
Driver						
V _{IH}	High-level input voltage on DINx	VCC - 2 2V	2		5.5	V
VIL	Low-level input voltage on DINx	VCC = 3.3V	0		0.8	V
V _{IH}	High-level input voltage on DINx		2.4		5.5	V
VIL	Low-level input voltage on DINx	- VCC = 5V	0		0.8	V
I _{IH}	High-level input current on DINx	DINx = VCC		±0.01	±1	μA
IIL	Low-level input current on DINx	DINx = GND		±0.01	±1	μA
V _{OH}	High-level output voltage on DOUTx	DOUT at R_L = 3k Ω to GND, DINx = GND	5	5.4		V
V _{OL}	Low-level output voltage on DOUTx	DOUT at $R_L = 3k\Omega$ to GND, DINx = VCC	-5	-5.4		V
	Short-circuit output current on	VCC = 3.6V, DOUTx connects to GND		+25	±60	
IOS	DOUTx	VCC = 5.5V, DOUTx connects to GND		135		mA
Ro	Output resistance on DOUTx	$VCC = V + = V - = 0V, V_0 = \pm 2V$	300	3M		Ω
Receiver	•					
V _{OH}	High-level output voltage on ROUTx	I _{OH} = -1mA	VCC - 0.6	VCC-0.1		V
V _{OL}	Low-level output voltage on ROUTx	I _{OL} = 1.6mA		0.15	0.4	v
V	Input threshold high voltage on	VCC = 3.3V		1.6	2.2	V
VIH	RINx	VCC = 5V		1.9 2.4		v
V	Input threshold low voltage on	VCC = 3.3V	0.6	1.1		V
VIL	RINx	VCC = 5V	0.8	1.4		v
V _{hys}	Input hysteresis ($V_{IH} - V_{IL}$) on RINx			0.5		V
R	Intput resistance on RINx	$V_1 = \pm 3V$ to $\pm 25V$	3	5	7	kΩ
NOTE:						

1. Test conditions refer to the recommended configuration of charge pump capacitors in Application and Implementation.

7.6

Over recommended operating temperature range (unless otherwise noted). All typical specifications are at $T_A = 25$ °C and $V_{CC} = 5V$ (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN TYP		MAX	UNIT	
Driver							
t _{dplh}	Driver propagation delay time, low- to high-level output	$R_L = 7k\Omega$, $C_L = 150pF$, VCC = 3.3V, see Figure 8-1	380			nc	
		$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		680		115	
t _{dphl}	Driver propagation delay time, high- to low-level output	$R_L = 7k\Omega$, $C_L = 150pF$, VCC = 3.3V, see Figure 8-1		ns			
		$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		1080		113	
t _{sk(p)}	Driver pulse skew, $ t_{DPLH} - t_{DPLH} ^1$	$R_L = 3k\Omega$, $C_L = 1000pF$, VCC = 3.3V, see Figure 8-1		ns			
SR(t _f /t _r)	Driver output slew rate	$R_L = 3k\Omega$ to $7k\Omega$, $C_L = 150pF$ to 1000pF, VCC = 3.3V, see Figure 8-2	6	12	30	V/us	
		$R_L = 3k\Omega$ to $7k\Omega$, $C_L = 150pF$ to 2500pF, VCC = 3.3V, see Figure 8-2	4	7	30	VμS	
Receiver						_	
t _{dplh}	Receiver propagation delay time, low- to high-level output			150		ns	
t _{dphl}	Receiver propagation delay time, high- to low-level output	C _L = 150pF, see Figure 8-3		150		ns	
t _{sk(p)}	Receiver pulse skew, $ t_{RPLH} - t_{RPLH} ^1$			5		ns	
NOTE: 1. For e	ach channel of the same device.						

CA-IF43232E

Version 1.01

8 Parameter Measurement Information

Figure 8-1 Measurement of Driver Propagation Delay

Figure 8-2 Measurement of Driver Output Rise/Fall Time

NOTE:

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 250kbps, 50% duty cycle, tr \leq 10ns, tf \leq 10ns. Since the output impedance of the signal generator (Zout) is 50 Ω , the 50- Ω resistor in the figures is used to match and is not needed in practical applications.
- 2. C_L includes probe and fixture capacitance. Since the load capacitance affects the output rise/fall time, it is a key factor in the measurement of timing characteristics.

9 Detailed Description

9.1 Device Feature Description

The CA-IF43232E device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The device consists of two line drivers, two line receivers, and a dual charge-pump circuit.

The driver of CA-IF43232E converts TTL logic levels to the electrical levels compatible with the EIA/TIA-232 standard. The driver's input DINx does not have pull-up or pull-down resistor. Please connect DINx to GND or VCC when the driver is unused. It is forbidden to leave DINx floating.

The CA-IF43232E device have two independent receivers which convert RS-232 levels to standard logic levels. The typical value of receiver's input internal pull-down resistor is $5k\Omega$, thus ROUTx is logical high when the corresponding input of RINx is floating.

9.2 Device Function Mode

The truth table of driver is shown in Table 9-1. The truth table of receiver is shown in Table 9-2.

Table 9-1 Truth Table of Driver¹

INPUT	OUTPUT						
DINx ²	DOUTx						
L	Н						
Н	L						
NOTE:							
1. H = high level, L = low level.							
2. It is forbidden to leave DINx floating.							

Table 9-2 Truth Table of Receiver¹

INPUT	OUTPUT
RINx ²	ROUTx
L	Н
Н	L
Open	Н
NOTE	

NOTE:

1. H = high level, L = low level, Open = input disconnected or connected driver off.

2. RINx is internally pulled down to GND.

Figure 9-1 Logic Diagram of Driver and Receiver

CA-IF43232E

Version 1.01

10 Application and Implementation

ROUTx and DINx connect to logic lines from a UART or microcontroller. RINx and DOUTx connect to RS-232 connectors or cable. The typical application circuit is shown in Figure 10-1.

The CA-IF43232E has two internal charge pumps to support the level translation. The two charge pumps generate output voltages of+5.4V and -5.4V respectively when VCC ranges from 3.0V to 5.5V. Each charge pump requires a flying capacitor (C1/C2) and an energy storage capacitor (C3/C4) to generate stable V+ and V– with small ripples.

When VCC is 3.3V, the value of C1^{\sim}C4 ranges from 0.1µF to 1µF and the recommended value is 0.1µF. When VCC is 5V, the value of C1 ranges from 0.047µF to 1µF and the recommended value is 0.1µF, while the value of C2^{\sim}C4 ranges from 0.1µF to 2.2µF and the recommended value is 1µF.

Place the external capacitors as close to the corresponding pins as possible and keep the external capacitor traces short, specifically for C1 and C2.

The internal circuit and input threshold on DINx pin supports 5-V logic input with 3.3-V supply.

Figure 10-1 Typical Application Circuit

Table 10-1 Recommend	ed Value for Char	rge Pump Capacitors
----------------------	-------------------	---------------------

VCC	C1	C2~C4
3~3.6V	0.1µF	0.1µF
4.5~5.5V	0.1µF	1μF

11 Package Information

11.1 SOIC16-NB Package

The values for the dimensions are shown in millimeters.

TOP VIEW

RECOMMENDED LAND PATTERN

CA-IF43232E Version 1.01

11.2 TSSOP16 Package

The values for the dimensions are shown in millimeters.

BOTTOM VIEW

RECOMMENDED LAND PATTERN

LEFT VIEW

12 Soldering Information

Figure 12-1 Soldering Temperature Curve

Profile Feature	Pb-Free Soldering
Ramp-up rate (T_L = 217°C to peak T_P)	3°C/s max
Time t_s of preheat temp (T_{smin} = 150°C to T_{smax} = 200°C)	60~120 seconds
Time t_L to be maintained above 217°C	60~150 seconds
Peak temperature T _P	260°C
Time t _P within 5°C of actual peak temp	30 seconds max
Ramp-down rate (peak T_P to T_L = 217°C)	6°C/s max
Time from 25°C to peak temperature T _P	8 minutes max

Table 12-1 Soldering Temperature Parameters

Shanghai Chipanalog Microelectronics Co., Ltd.

13 Tape and Reel Information

CA-IF43232E Version 1.01

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Pocket Quadrants

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IF43232EN	SOIC	Ν	16	2500	330	16.4	6.4	10.3	2.1	8.0	16.0	Q1
CA-IF43232ETB	TSSOP	ТВ	16	4000	330	12.4	6.8	5.4	1.5	8.0	12.0	Q1

14 Important Notice

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. [®], Chipanalog[®] are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com