
 $\begin{array}{cc} V_{DS} & 900 \ V \\ R_{DS(on)} & 2.5 \ m\Omega \end{array}$

900 V, 2.5 m Ω , Silicon Carbide, Half-Bridge Module

Technical Features

- Ultra-Low Loss and Lightweight AlSiC Baseplate
- High Frequency Operation
- High Power Density Footprint
- High Junction Temperature (175 °C) Operation
- Implements Wolfspeed's Third Generation SiC MOSFET Technology
- Silicon Nitride Insulator

Typical Applications

- E-Mobility Inverters
- EV Chargers
- High-Efficiency Converters / Inverters
- Renewable Energy

System Benefits

- Enables Compact, Lightweight Systems
- Increased System Efficiency, due to Low Switching & Conduction Losses of SiC
- Reduced Thermal Requirements and System Cost

Key Parameters

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Notes	
Drain-Source Voltage	V _{DS}			900		T _c =25 °C		
Maximum Gate-Source Voltage	V _{GS (max)}	-8		+19	V Transient		Fig. 32	
Operational Gate-Source Voltage	V _{GS(op)}		-4/+15			Static	Note 1	
DC Continuous Drain Current (T _{VJ} < 175 °C)	I _D		518			$V_{GS} = 15V$, $T_C = 25$ °C, $T_{VJ} \le 175$ °C	Notes 2, 3 Fig. 20	
			391		A	$V_{GS} = 15 \text{ V}, T_C = 90 \text{ °C}, T_{VJ} \le 175 \text{ °C}$		
Pulsed Drain Current	I _{DM}		1036			t_{Pmax} limited by $T_{VJ max}$ $V_{GS} = 15 \text{ V}, T_C = 25 \text{ °C}$		
Power Dissipation	P _D		1163		W	T _C = 25 °C, T _{VJ} ≤ 175 °C	Fig. 20 Note 4	
Operational Virtual Junction Temperature	T _{VJ(op)}	-40		175	°C			

Note (1): Recommended turn-on gate voltage is 15 V with ±5% regulation tolerance

Note (2): Current limit calculated by $I_{D(max)} = \sqrt{(P_D / R_{DS(typ)}(T_{VJ(max)}, I_{D(max)}))}$. Please refer to Application Note, PRD-07635, for guidance on PCB ampacity.

Note (3): Verified by design Note (4): $P_D = (T_{VJ} - T_C) / R_{TH(JC,typ)}$

MOSFET Characteristics (Per Position) (T_{VJ} = 25 °C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Drain-Source Breakdown Voltage	V _{(BR)DSS}	900				V _{GS} = 0 V, T _{VJ} = -40 °C	
0 . 7	V _{GS(th)}	1.8	2.1	3.5	V	$V_{DS} = V_{GS}, I_{D} = 130 \text{ mA}$	
Gate Threshold Voltage			1.6			V _{DS} = V _{GS} , I _D = 130 mA, T _{VJ} = 175 °C	
Zero Gate Voltage Drain Current	I _{DSS}		4	400		V _{GS} = 0 V, V _{DS} = 900 V	
Gate-Source Leakage Current	I _{GSS}		0.04	1.0	μΑ	V _{GS} = 15 V, V _{DS} = 0 V	
Drain-Source On-State Resistance	D		2.5	3.25	- mΩ	V _{GS} = 15 V, I _D = 400 A	Fig. 2 Fig. 3
(Devices Only)	R _{DS(on)}		4.3			$V_{GS} = 15 \text{ V}, I_D = 400 \text{ A}, T_{VJ} = 175 \text{ °C}$	
			316		S	V _{DS} = 20 V, I _D = 400 A	Fig. 4
Transconductance	g _{fs}		284			V _{DS} = 20 V, I _D = 400 A, T _{VJ} = 175 °C	
Turn-On Switching Energy, T_{VJ} = 25 °C T_{VJ} = 125 °C T_{VJ} = 175 °C	E _{on}		6.5 6.2 6.5			$\begin{split} V_{DS} &= 400 \text{ V} \\ I_D &= 400 \text{ A} \\ V_{GS} &= -4 \text{ V} / 15 \text{ V} \\ R_{G(ON)} &= 6.8 \Omega \\ R_{G(OFF)} &= 4.0 \Omega \\ L &= 13.6 \mu\text{H} \end{split}$	Fig. 11 Fig. 13
Turn-Off Switching Energy, T_{VJ} = 25 °C T_{VJ} = 125 °C T_{VJ} = 175 °C	E _{off}		7.2 6.9 7.1		mJ		
Internal Gate Resistance	R _{G(int)}		0.5		Ω	f = 100 kHz	
Input Capacitance	C _{iss}		20.4				Fig. 9
Output Capacitance	C _{oss}		1.49		nF	$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$ $V_{AC} = 25 \text{ mV}, f = 100 \text{ kHz}$	
Reverse Transfer Capacitance	C _{rss}		78		pF	, , , , , , , , , , , , , , , , , , , ,	
Gate to Source Charge	Q _{GS}		208			V _{DS} = 600 V, V _{GS} = -4 V / 15 V	
Gate to Drain Charge	Q_{GD}		280		nC	I _D = 400 A	
Total Gate Charge	Q _G		840			Per IEC60747-8-4 pg 21	
FET Thermal Resistance, Junction to Case	R _{th JC}		0.129		°C/W		Fig. 17

Diode Characteristics (Per Position) (T_{VJ} = 25 °C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Diode Forward Voltage	V_{SD}		4.5		V	$V_{GS} = -4 \text{ V}, I_{SD} = 400 \text{ A}$	- Fig. 7
			3.9			V _{GS} = -4 V, I _{SD} = 400 A, T _{VJ} = 175 °C	1 1 lg. /
DC Source-Drain Current			282		A	$V_{GS} = -4 \text{ V}, T_{C} = 25 \text{ °C}, T_{VJ} \le 175 \text{ °C}$	
	I _{BD}		178	178		$V_{GS} = -4 \text{ V}, T_{C} = 90 \text{ °C}, T_{VJ} \le 175 \text{ °C}$	
Reverse Recovery Time	t _{RR}		43.8		ns		Fig. 31
Reverse Recovery Charge	Q _{RR}		6.2		μC	$V_{GS} = -4 \text{ V}, I_{SD} = 400 \text{ A}, V_{R} = 400 \text{ V}$ $di_{F}/dt = 8.5 \text{ A/ns}, T_{VI} = 175 ^{\circ}\text{C}$	
Peak Reverse Recovery Current	I _{RRM}		233		А		
Reverse Recovery Energy, $T_{VJ} = 25 ^{\circ}\text{C}$ $T_{VJ} = 125 ^{\circ}\text{C}$ $T_{VJ} = 150 ^{\circ}\text{C}$	E _{RR}		0.5 1.0 1.3		mJ	$V_{DS} = 400 \text{ V}, \ I_D = 400 \text{A}$ $V_{GS} = -4 \text{ V} / 15 \text{ V}, \ R_{G(ON)} = 6.8 \ \Omega$ L= 13.6 μH	Fig. 14

Module Physical Characteristics

Parameter	symbol	Min.	Тур.	Max.	Unit	Test Conditions
High-Side Package Resistance, M1	R ₃₋₁		0.41		mΩ	T _c = 125 °C, Note 5
Low-Side Package Resistance, M2	R ₁₋₂		0.56		11177	T _c = 125 °C, Note 5
Stray Inductance	L _{stray}		11.5		nH	Between DC- and DC+, f = 10 MHz
Case Temperature	T _c	-40		125	°C	
Weight	W		41		g	
Mounting Torque	Ms		1.1	2.3	N-m	Baseplate, M4 bolts
Case Isolation Voltage	V _{isol}	4			kV	AC, 50 Hz, 1 min
Comparative Tracking Index	CTI	600				
Clearance Distance			4.2			Terminal to Terminal
			13.4			Terminal to Baseplate
Creepage Distance			8.8		mm	Terminal to Terminal
			15.5			Terminal to Baseplate

Note (5): Total Effective Resistance (Per Switch Position) = MOSFET $R_{DS(on)}$ + Switch Position Package Resistance.

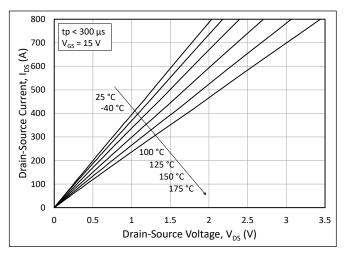


Figure 1. Output Characteristics for Various Junction Temperatures

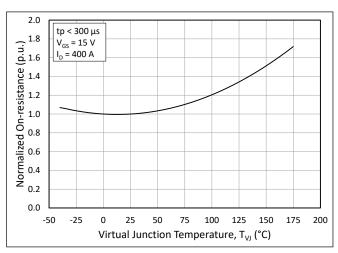


Figure 3. Normalized On-State Resistance vs. Junction Temperature

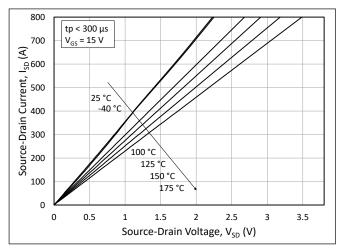


Figure 5. 3^{rd} Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = 15 \text{ V}$

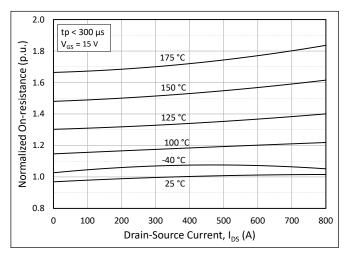


Figure 2. Normalized On-State Resistance vs. Drain Current for Various Junction Temperatures

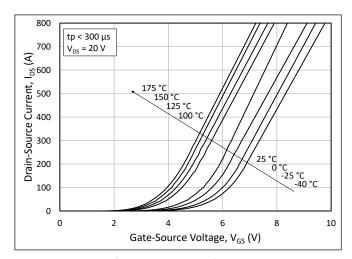


Figure 4. Transfer Characteristic for Various Junction Temperatures

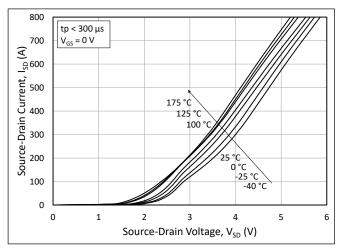


Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures at V_{GS} = 0V (Diode)

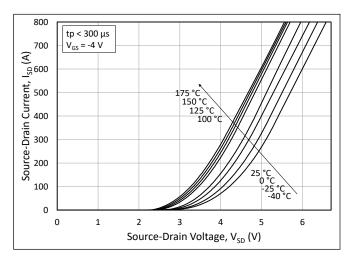


Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures at $V_{GS} = -4 \text{ V (Diode)}$

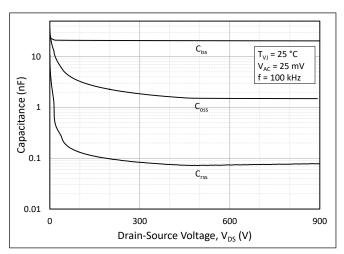


Figure 9. Typical Capacitances vs. Drain to Source Voltage (0 - 900V)

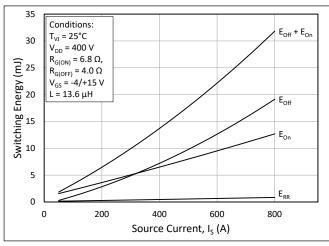


Figure 11. Switching Energy vs. Drain Current $(V_{DS} = 400 \text{ V})$

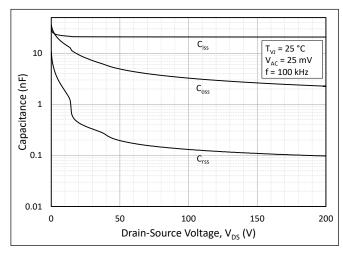


Figure 8. Typical Capacitances vs. Drain to Source Voltage (0 - 200V)

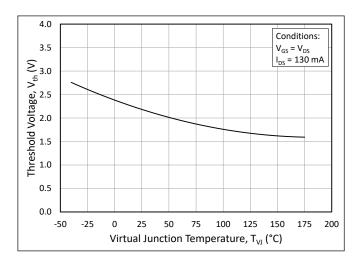


Figure 10. Threshold Voltage vs. Junction Temperature

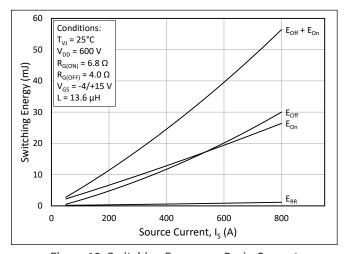


Figure 12. Switching Energy vs. Drain Current $(V_{DS} = 600 \text{ V})$

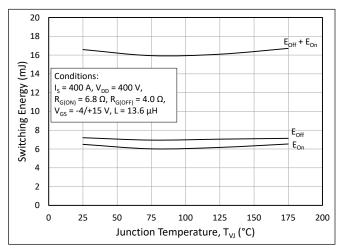


Figure 13. MOSFET Switching Energy vs. Junction Temperature

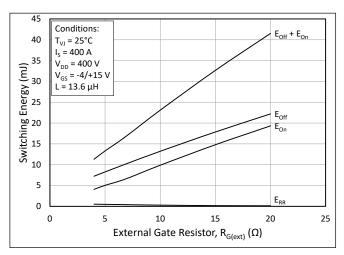


Figure 15. MOSFET Switching Energy vs. External Gate Resistance

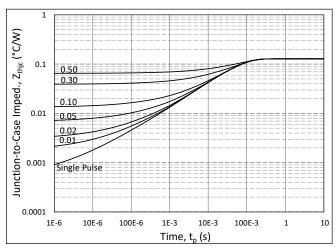


Figure 17. MOSFET Junction to Case Transient Thermal Impedance, Z_{th JC} (°C/W)

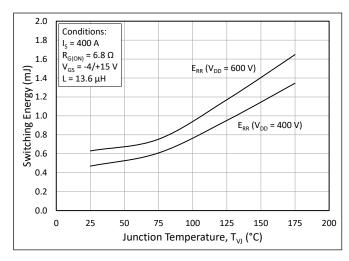


Figure 14. Reverse Recovery Energy vs. Junction Temperature

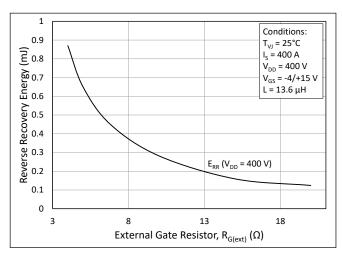


Figure 16. Reverse Recovery Energy vs. External Gate Resistance

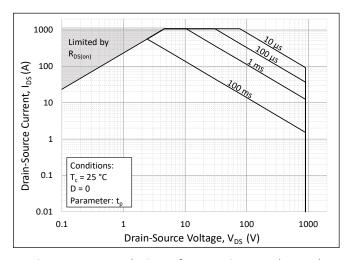


Figure 18. Forward-Bias Safe Operating Area (FBSOA)

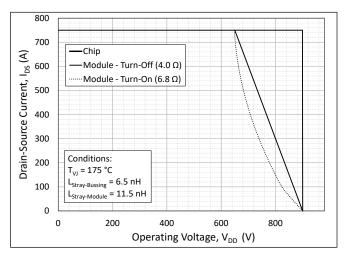


Figure 19. Reverse-Bias Safe Operating Area (RBSOA)

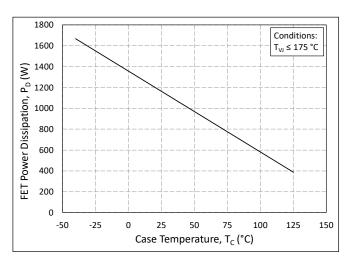


Figure 21. Maximum Power Dissipation Derating vs.

Case Temperature

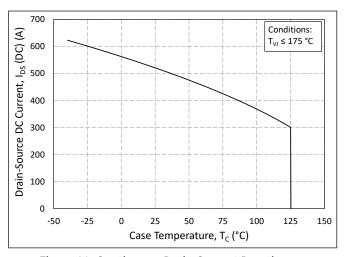


Figure 20. Continuous Drain Current Derating vs.

Case Temperature

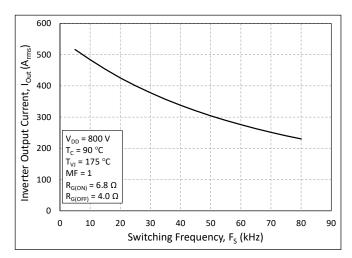


Figure 22. Typical Output Current Capability vs. Switching Frequency (Inverter Application)

8

Timing Characteristics

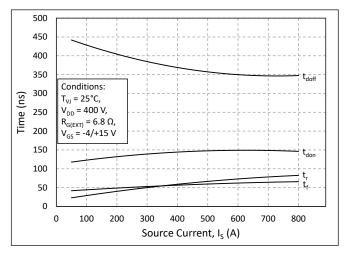


Figure 23. Timing vs. Source Current

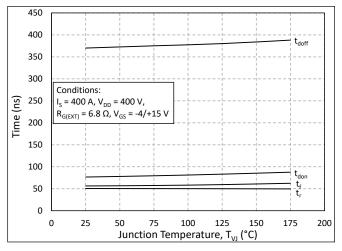


Figure 25. Timing vs. Junction Temperature

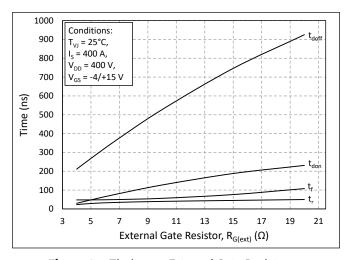


Figure 27. Timing vs. External Gate Resistance

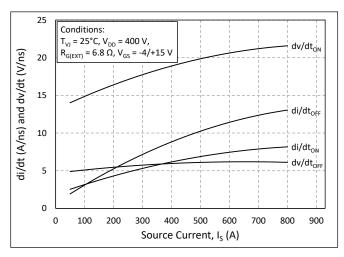


Figure 24. dv/dt and di/dt vs. Source Current

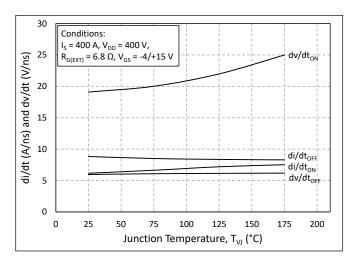


Figure 26. dv/dt and di/dt vs. Junction Temperature

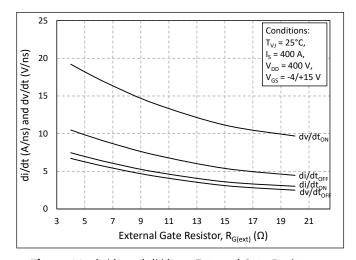


Figure 28. dv/dt and di/dt vs. External Gate Resistance

Definitions

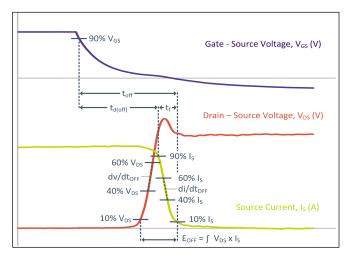


Figure 29. Turn-off Transient Definitions

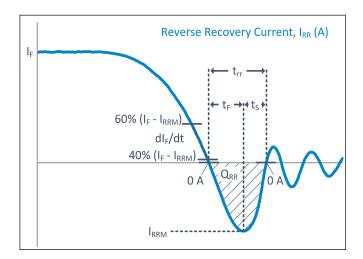


Figure 31. Reverse Recovery Definitions

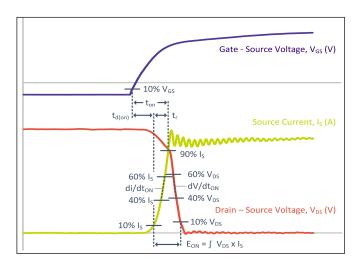
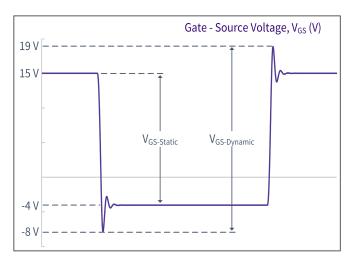
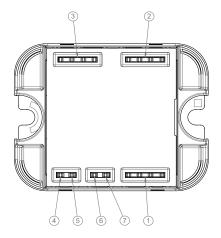
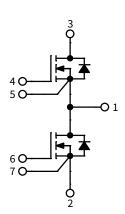
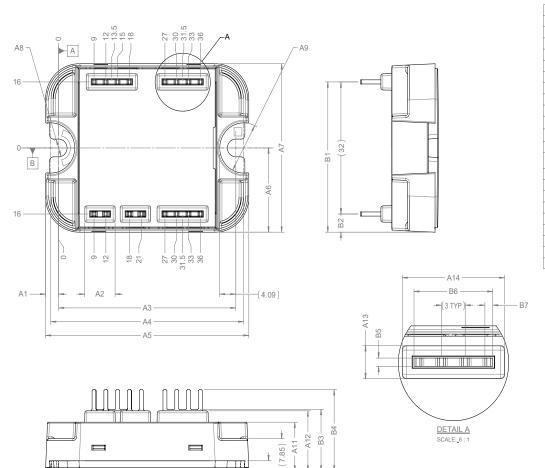


Figure 30. Turn-on Transient Definitions


Figure 32. V_{GS} Transient Definitions

Schematic and Pin Out

Package Dimensions (mm)

SYMBOL	DIMENSION	TOLERANCE		
A1	3.3	±0.65		
A2	7.75	±0.50		
А3	45	±0.30		
A4	49	±0.50		
A5	51.6	±0.50		
A6	20.4	±0.65		
A7	40.8	±0.20		
B1	36.4	±0.50		
B2	4.4	±0.50		
A8	Ø4.3	±0.20		
A9	Ø12.17	±0.50		
A10	2.5	±0.30		
A11	11.89	+1/-0.65		
A12	14.64	±0.55		
В3	14.99	±0.50		
B4	19.79	±0.50		
A13	5× 4	±0.50		
B5	5× 1	±0.25		
A14	3× 13	±0.50		
B6	3× 10	±0.50		
B7	16× 1	±0.25		
ALL C	±0.75			

Evaluation Tools & Support

- SpeedFit 2.0 Design Simulator™
- Technical Support Forum
- LTspice and PLECS Models

Dual-Channel Gate Driver Board

- CGD12HB00D: Differential Transceiver Daughter Board Companion Tool for Differential Gate Drivers
- CGD1700HB2M-UNA: Wolfspeed Gate Driver Board

Application Notes and User Guides

- PRD-07634: Wolfspeed DM Module Mounting User Guide
- PRD-07635: Impact of PCB Design on Wolfspeed DM Module Ampacity
- PRD-07933: Wolfspeed Power Module Thermal Interface Material Application User Guide
- PRD-08333: Wolfspeed Module CIL Evaluation Kits User Guide

Notes & Disclaimers

WOLFSPEED PROVIDES TECHNICAL AND RELIABILITY DATA, DESIGN RESOURCES, APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, WITH RESPECT THERETO, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

The information contained in this document (excluding examples, as well as figures or values that are labeled as "typical") constitutes Wolfspeed's sole published specifications for the subject product. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for informational purposes only. Any examples provided herein have not been produced under conditions intended to replicate any specific end use. Product performance can and does vary due to a number of factors.

This product has not been designed or tested for use in, and is not intended for use in, any application in which failure of the product would reasonably be expected to cause death, personal injury, or property damage. For purposes of (but without limiting) the foregoing, this product is not designed, intended, or authorized for use as a critical component in equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment; air traffic control systems; or equipment used in the planning, construction, maintenance, or operation of nuclear facilities. Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation (1) selecting the appropriate Wolfspeed products for the buyer's application, (2) designing, validating, and testing the buyer's application, and (3) ensuring the buyer's application meets applicable standards and any other legal, regulatory, and safety-related requirements.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power