CMOS 64-Word x 8-Bit Static **Random-Access Memory**

BUS O - V_{DD} BUS I 7 2 RUS 2 -20 - CS/A5 - AI BUS 3 -19 BUS 4 -- A2 BUS 5 -6 17 - A3 BUS 6 -16 - A4 - TPA BUS 7 -15 CSI - MRD 14 CS 2 10 - MWR 12 Vss CEO 9209-34034

TERMINAL ASSIGNMENT

Features:

- Ideal for small, low-power RAM Memory requirements in microprocessor and microcomputer applications
- Interfaces with CDP1800-series microprocessors without additional address decoding
- Daisy chain feature to further reduce external decoding needs
- Multiple chip-select inputs for versatility
- Single voltage supply
- No clock or precharge required

The RCA CDP1826C is a general-purpose, fully static, 64word x 8-bit random-access memory, for use in CDP1800 series or other microprocessor systems where minimum component count and/or price performance and simplicity in use are desirable.

The CDP1826C has 8 common data input and data-output terminals with 3-state capability for direct connection to a standard bi-directional data bus Two chip-select inputs — CS1 and $\overline{CS2}$ — are provided to simplify memory-system expansion. An additional select pin, CS/A5, is provided to enable the CDP1826C to be selected directly from the CDP1800 multiplexed address bus without additional latching or decoding. In an 1800 system, the CS/A5 pin can be tied to any MA address line from the CDP1800 processor, A TPA input is provided to latch the high-order bit of this address line as a chip-select for the CDP1826C. If this CS/A5 input is latched high, and if CS = 1 and $\overline{\text{CS2}}$ = 0 at the appropriate time in the memory cycle, the CDP1826C will be enabled for writing or reading. In a non-1800 system, the TPA pin can be tied high, and the CS/A5 pin can be used as a normal address input

The six input-address buffers are gated with the chip-select function to reduce standby current when the device is deselected, as well as to provide for a simplified power down mode by reducing address buffer sensitivity to long fall times from address drivers which are being powered down

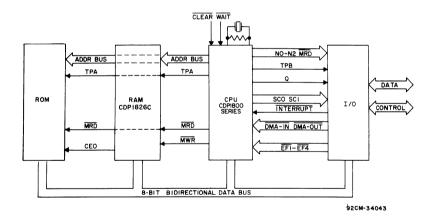


Fig. 1 - Typical CDP1802 microcprocessor system

Two memory control signals, \overline{MRD} and \overline{MWR} , are provided for reading from and writing to the CDP1826C. The logic is designed so that \overline{MWR} overrides \overline{MRD} , allowing the chip to be controlled from a single R/\overline{W} line

For such an interface, the \overline{MRD} line can be tied to V_{ss} , with the \overline{MWR} line connected to R/\overline{W} .

A CHIP ENABLE OUTPUT is provided for daisy-chaining to additional memories or I/O devices. This output is high whenever the chip-select function selects the CDP1826C, which deselects any other chip which has its $\overline{\text{CS}}$ input connected to the CDP1826C CEO output. The connected

chip is selected when the CDP1826C is de-selected and the MRD input is low. Thus, the CEO is only active for a read cycle and can be set up so that a CEO of another device can feed the MRD of the CDP1826C, which in turn selects a third chip in the daisy chain.

The CDP1826C has a recommended operating voltage of 4.5 to 5.5 V and is supplied in 22-lead hermetic dual-in-line side-brazed ceramic packages (D suffix), in 22-lead dual-in-line plastic packages (E suffix). The CDP1826C is also available in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (Vpp.) POWER DISSIPATION PER PACKAGE (PD) DEVICE DISSIPATION PER OUTPUT TRANSISTOR OPERATING-TEMPERATURE RANGE (T₄) LEAD TEMPERATURE (DURING SOLDERING)

RECOMMENDED OPERATING CONDITIONS at $T_A = Full$ Package Temperature Range.

For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIMITS CDP1826C		UNITS	
	MIN.	MAX.		
DC Operating Voltage Range	4.5	6.5		
Input Voltage Range	Vss	V _{DD}	V	
Input Signal Rise or Fall Time $ t_{r}, \ t_{f} $ $V_{DD} = 5 \ V$	_	10	μs	

STATIC ELECTRICAL CHARACTERISTICS at $T_{\rm A}=-40~to+85^{\circ}$ C, $V_{\rm DD}=5V\pm5\%$ except as noted

			CONDITIONS					
CHARACTERISTIC		Vo Vin			UNITS			
			(V)	(V)	MIN.	TYP.●	MAX.	
Quiescent Device		I _{DD}		0,V _{DD}	_	5	50	μΑ
Current			_	ס, עסס	_	3	3	μΛ
Output Low Drive		BUS	0.4	0.1/	1.6	3.2	_	
(Sink) Current	loL	CEO	0.4	0,V _{DD}	0.8	1.6	_	mA
Output High Drive		BUS	V 04	0.1/	-1.0	-1.5	_	1111/2
(Sink) Current	Іон	CEO	V _{DD} -0.4	0,V _{DD}	-0.6	-1.0		
Output Voltage		Vol		0,V _{DD}		0	0.1	
Low Level			_	U, V DD	_	U	0.1	
Output Voltage		VoH		0,V _{DD}	V _{DD} -0.1	Vpp		
High Level				U, V DD	V DD-0.1	V 00		V
Input Low Voltage		VIL				_	1.5	•
Input High Voltage		V _{IH}		_	3.5	_	_	
Input Leakage Current		IIN	Any Input	0,V _{DD}		±0.1	±1	
3-State Output		lout	0,V _{DD}	0,V _{DD}		± 0.1	±1	μΑ
Leakage Current			U, V DD	U, V DD	_	± 0.1	Τ.	μΑ
Operating Device		IOPER†		0.V _{DD}		5	10	mA
Current			-	U, V DD		3	10	IIIA
Input		Cin				5	7.5	pF
Capacitance			_		_	3	7.5) PF
Output		Соит		0,V _{DD}		10	15	
Capacitance				O, V DD		10	13	

[•]Typical values are for $T_A = 25^{\circ}$ C and nominal V_{DD} . †Outputs open circuited, cycle times = 1 μ s

Signal Descriptions

A0-A4, CS/A5 (Address Inputs):

These inputs must be stable prior to a write operation, but may change asynchronously during Read operations. In an 1800 system, the multiplexed high-order address bit at pin CS/A5 can be latched at the end of TPA A high level will provide a valid chip select for the CDP1826C. The low-order address bit which appears after TPA is used for data word selection. In non-1800 systems, TPA can be tied high to disable the latch and allow the CS/A5 pin to function as a normal address input.

BUS 0 — **BUS 7**: 8-bit 3-state common input/output data bus.

TPA: High-order address strobe input. The high-order address bit at input CS/A5 is latched on the high-to-low

transition of the TPA input. Tie TPA high to disable the CS/A5 latch feature.

CS1, CS2 (Chip Selector):

Either chip select (CS1 or $\overline{\text{CS2}}$), when not valid, powers down the chip, disables READ and WRITE functions, and gates off the address and output buffers.

MRD, MWR: Read and Write control signals. MWR overides MRD, allowing the CDP1826C to be controlled from a single R/W line.

CEO (Chip Enable Output):

Allows daisy chaining to additional memories. CEO is high whenever the CDP1826C is selected. CEO is only active (low) for a Read cycle with the CDP1826C deselected and the MRD input low.

V_{DD}, V_{SS}: Power supply connections.

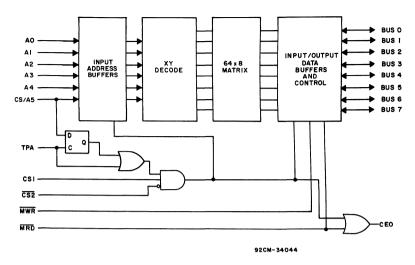
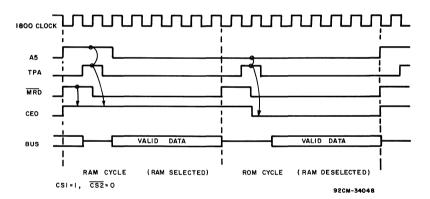



Fig. 2 - Functional diagram

	OPERATING MODES									
	FUNCTION	MRD	MWR	CSI∙CS2	TPA	CS/A5#	CEO			
	WRITE	х	0	ı	_T_	1	ı			
Ä	READ	0	- 1	1	_T•_	1	- 1			
MODE	DESELECT	1	- 1	- 1	J₹	1	ı			
0	DESELECT	1	×	0	X	x	- 1			
CDP1800	DESELECT	0	×	0	x	×	0			
9	DESELECT	- 1	×	×	_T•_	0	- 1			
	DESELECT	0	×	×	_T_Ł	0	0			
8	WRITE	х	0	1	1	×	- 1			
CDP1800	READ	0	- 1	ı	1	×	1			
-CDP!	DESELECT	1	1	1 1	1	×	- 1			
NON NON	DESELECT	1	×	0	- 1	×	1			
2	DESELECT	0	×	0		×	0			

FOR CDPI800 MODE, REFERS TO HIGH ORDER MEMORY ADDRESS BIT LEVEL AT TIME WHEN TPA → TRANSITION TAKES PLACE

Fig 3 - Chip Enable Output timing waveforms for CDP1800-based systems.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{\rm A}=-40~to~+85^{\circ}$ C, $V_{\rm DD}=5~V~\pm5\%$,

Input $t_r, t_t = 10 \text{ ns}$; $C_L = 50 \text{ pF}$ and 1 TTL Load

		LIMITS					
CHARACTERISTIC				UNITS			
		MIN.†	TYP.●	MAX.			
Read — Cycle Times (Figs. 4 and	1 5)						
Address to TPA Setup		100	_	_	1		
	tash						
Address to TPA Hold		100	_	_			
	t _{AH}	1					
Access from			500	1000			
Address Change	T_{AA}	-	500	1000			
TPA Pulse Width		200	_	_			
	tpaw	1			ns		
Output Valid from			500	1000	115		
MRD	t _{AM}		500	1000			
Access from			500	1000			
Chip Select	tac	_	500	1000			
CEO Delay from			150	300			
TPA Edge	t _{CA}	_	150	300			
MRD to CEO Delay	t _{MC}	75	_	_			
Output High Z from		T -	T -	125			
Invalid MRD	t _{RHZ}		1				
Output High Z from		T -	_	225			
Chip Deselect	t _{s+z}						

[†]Time required by a limit device to allow for the indicated function

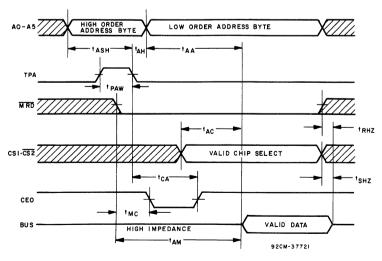


Fig. 4 - Timing waveforms for Read-cycle 1.

[•]Typical values are for T_A = 25°C and nominal V_{DD}.

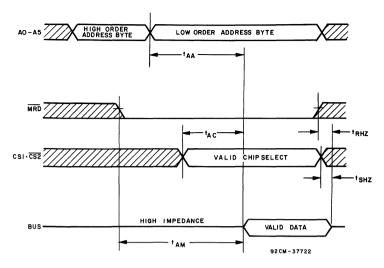


Fig. 5 - Timing waveforms for Read-cycle 2 [TPA-High].

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = -40 \text{ to } +85^{\circ}\text{ C}$, $V_{DD} = 5 \text{ V} \pm 5\%$,

Input t_r , $t_f = 10$ ns; $C_L = 50$ pF and 1 TTL Load

				UNITS	
CHARACTERISTIC					
		MIN.†	TYP.●	MAX.	
Write-Cycle Times (Figs. 6 and 7)				
Address to TPA Setup,		100			
High Byte	tash	100	_	_	
Address to TPA Hold	t _{AH}	100	_	_	
Address Setup		500	250		
Low Byte	tasl	300	250	_	
TPA Pulse Width		200	_	_	
	tpaw				
Chip Select Setup		700	350	_	ns
	tcs				
Write Pulse Width		300	200	_	
	tww				
Write Recovery		100	_		
	twe				
Data Setup		400	200	_	
•	tos				
Data Hold from		100	50	_	
End of MWR	t _{DH1}		ł		
Data Hold from		125	50	_	
End of Chip Select	t _{DH2}	1		1	

[†]Time required by a limit device to allow for the indicated function.

[•]Typical values are for $T_A=25^{\circ}\,\text{C}$ and nominal V_{DD} .

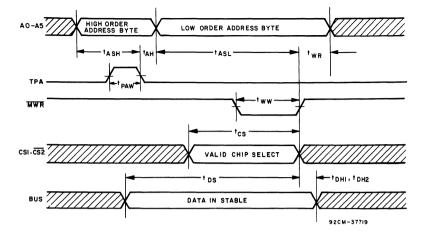


Fig. 6 - Timing waveforms for Write-cycle 1

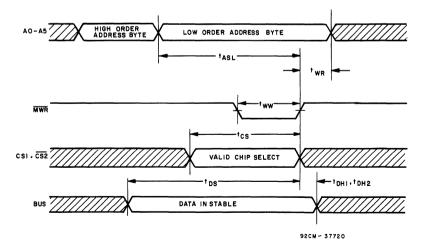


Fig. 7 - Timing waveforms for Write-cycle 2 [TPA=High].

DATA RETENTION CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C; see Fig. 8

CHARACTERISTIC		TEST CONDI- TIONS		LIMITS CDP1826C			UNITS
		V _{DR} (V)	V _{DD} (V)	MIN.	TYP.•	MAX.	
Min. Data Retention				_	2	2.5	V
Voltage	V _{DR}				-	2.0	
Data Retention Quiescent		2.5			5	25	μΑ
Current	I _{DD}	2.0			"	25	μπ
Chip Deselect to Data			5	600			
Retention Time	t _{CDR}		3	000	_	_	
Recovery to Normal			5	600			ns
Operation Time	t _{RC}		5	500		_	
V _{DD} to V _{DR} Rise and		2.5	5	1			
Fall Time	t _r ,t _f	2.5		'	_	_	μs

 $[\]bullet$ Typical values are for $T_A=25^{\circ}\,C$ and nominal V_{DD}

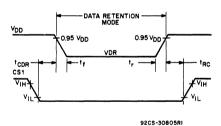


Fig. 8 - Low V_{DD} data retention timing waveforms.