

8-Bit Programmable Multiply/Divide Unit

Features:

- Cascadable up to 4 units for 32-bit by 32-bit multiply or 64 ÷ 32 bit divide
- 8-bit by 8-bit multiply or 16 ÷ 18 bit divide in 5.6 μs at 5 V or 2.8 μs at 10 V
 - Direct interface to CDP1800 series microprocessors
 - Easy interface to other 8-bit microprocessors
 - Significantly increases throughput of microprocessor used for arithmetic calculations

TERMINAL ASSIGNMENT

The RCA-CDP1855 and CDP1855C are CMOS 8-bit multiply/divide units which can be used to greatly increase the capabilities of 8-bit microprocessors. They perform multiply and divide operations on unsigned, binary operators. In general, microprocessors do not contain multiple or divide instructions and even efficiently coded multiply or divide subroutines require considerable memory and execution time. These multiply/divide units directly interface to the CDP1800 series microprocessors via the N-lines and can easily be configured to fit in either the memory or I/O space of other 8-bit microprocessors. The multiple/divide unit is based on a method of multiplying by add and shift right operations and dividing by subtract and shift left operations. The device is structured to permit cascading identical units to handle operands up to 32 bits.

The CDP1855 and CDP1855C are functionally identical. They differ in that the CDP1855 has a recommended operating voltage range of 4 - 10.5 volts, and the CDP1855C, a recommended operating voltage range of 4 - 6.5 volts.

The CDP1855 and CDP1855C types are supplied in a 28lead hermetic dual-in-line ceramic package (D suffix) and in a 28-lead dual-in-line plastic package (E suffix). The CDP1855C is also available in chip form (H suffix).

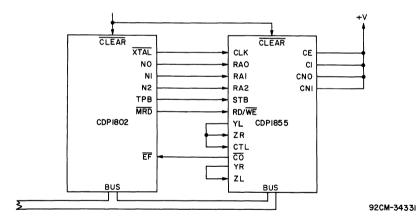


Fig. 1 - Circuit configuration for MDU addressed as an I/O device.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V _{DD}) (Voltage referenced to V _{SS} Terminal)	
CDP1855	, -0.5 to +11 V
CDP1855C	0.5 to +7 V
INPUT VOLTAGE RANGE, ALL INPUTS	+0.5 V مرم+0.5 v د0.5 to
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60° C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Lineary at 12 mW/° C to 200 mW
For T _A = -55 to 100°C (PACKAGE TYPE D)	
For T _A = +100 to +125°C (PACKAGE TYPE D)	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	· · · · · · · · · · · · · · · · · · ·
For T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE D.	-55 to +125°C
PACKAGE TYPE E	
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch (1.59 \pm 0.79 mm) from case for 10 s max	

STATIC ELECTRICAL CHARACTERISTICS at T_A = -40 to +85° C, V_DD \pm 10%, Except as noted

		со	CONDITIONS			LIMITS					
CHARACTERISTIC	>	٧o	Vin	VDD		CDP185	5	(CDP1855	С	UNITS
		(V)	(V)	(V)	Min.	Typ.•	Max.	Min.	Typ.•	Max.	
Quiescent Device			0, 5	5	—	0.01	50	_	0.02	200	
Current	IDD	—	0, 10	10	—	1	200		—	—	μA
Output Low Drive		0.4	0, 5	5	1.6	3.2	-	1.6	3.2	-	
(Sink) Current	IOL	0.5	0, 10	10	2.6	5.2			—	—	mA
Output High Drive		4.6	0, 5	5	-1.15	-2.3	-	-1.15	-2.3	_	mA
(Source) Current	юн	9.5	0, 10	10	-2.6	-5.2	_	_	—		
Output Voltage		-	0, 5	5	- 1	0	0.1	_	0	0.1	
Low-Level	VOLt	_	0, 10	10	-	0	0.1	-	-	-	
Output Voltage		-	0, 5	5	4.9	5	_	4.9	5	-	
High Level	Vон±	-	0, 10	10	9.9	10		-	_	_	v
Input Low		0.5, 4.5	_	5	-	-	1.5		-	1.5	v
Voltage	VIL	0.5, 9.5	—	10	-	-	3	—	-	_	
Input High		0.5, 4.5	-	5	3.5	_		3.5		-	
Voltage	⊻н	0.5, 9.5	-	10	7	_	_	-	-		
Input Leakage		_	0, 5	5	—	—	±1	-	_	±1	
Current	ΙN		0, 10	10	_	—	±1	_	_	_	
3-State Output Leakage		0, 5	0, 5	5	—	-	±1	-	-	±1	μA
Current	Ιουτ	0, 10	0, 10	10	_	—	±10	_	—	—	
Operating Current	IDD1#	-	0, 5	5	-	1.5	_		1.5	3	mA
		_	0, 10	10	—	6	12	-	—	—	
Input Capacitance	CIN	-		-	-	5	7.5	-	5	7.5	pF
Output Capacitance	COUT	-	—	—	-	10	15	-	10	15	Pr.

•Typical values are for $T_A = 25^{\circ}C$ and nominal V_{DD}.

#Operating current is measured at 3.2 MHz with open outputs.

 $\pm I_{OL} = I_{OH} = 1 \, \mu A.$

4

OPERATING CONDITIONS at T_A = Full Package-Temperature Range. For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS					
CHARACTERISTIC	VDD	CDP1855		CDP1855C		UNITS
	(V)	Min.	Max.	Min.	Max.	
DC Operating Voltage Range		4	10.5	4	6.5	V
Input Voltage Range	-	VSS	VDD	VSS	VDD	v
Maximum Input Clock	5	3.2	_	3.2		Mille
Frequency	10	6.4	_		_	MHz
Minimum 8 x 8 Multiply	5		5.6	-	5.6	
(16 ÷ 8 Divide) Time	10	-	2.8	-	—	μs

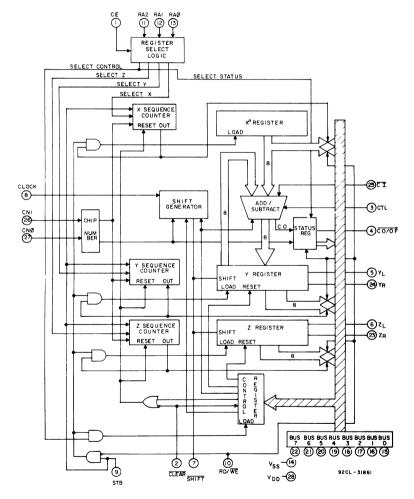


Fig. 2 - Block diagram of CDP1855 and CDP1855C.

. CMOS Peripherals

CDP1855, CDP1855C

FUNCTIONAL DESCRIPTION

The CDP1855 is a multiply-divide unit (MDU) designed to be compatible with CDP1800 series microprocessor systems. It can, in fact, be interfaced to most 8-bit microprocessors (see Fig. 5). The CDP1855 performs binary multiply or divide operations as directed by the microprocessor. It can do a 16N-bit by 8N-bit divide yielding an-8N-bit result plus and 8N-bit remainder. The multiply is an 8N-bit by 8N-bit operation with a 16N-bit result. The "N" represent the number of cascaded CDP1855's and can be 1, 2, 3 or 4. All operations require 8N + 1 shift pulses (See "DELAY NEEDED WITH AND WITHOUT PRESCALER" Pg. 7).

The CDP1855 contains three registers, X, Y, and Z, which are loaded with the operands prior to an operation and contain the results at the completion. In addition, the control register must be loaded to initiate a multiply or divide There is also a status register which contains an overflow flag as shown in the "CONTROL REGISTER BIT ASSIGNMENT TABLE" The register address lines (RAO-RA1) are used to select the appropriate register for loading or reading. The RD/WE and STB lines are used in conjunction with the RA lines to determine the exact MDU response (See "CONTROL TRUTH TABLE")

1. Initialization and Controls

The CDP1855 must be cleared by a low on pin 2 during power-on which prevents bus contention problems at the Y_L , Y_R and Z_L , Z_R terminals and also resets the sequence counters and the shift pulse generator.

Prior to loading any other registers the control register must be loaded to specify the number of MDU's being used (See "CONTROL REGISTER BIT ASSIGNMENT TABLE").

Once the number of devices has been specified and the sequence counters cleared with a clear pulse or bit 6 of the control word, the X, Y, and Z registers can be loaded as defined in the "CONTROL TRUTH TABLE". All bytes of the X register can be loaded, then all bytes of the Y, and then all bytes of the Z, or they can be loaded randomly. Successive loads to a given register will always proceed sequentially from the most significant byte to the least significant byte, as previously described Resetting the sequence counters select the most significant MDU. In a four MDU system, loading all MDU's results in the sequence counter pointing to the first MDU again In all other configurations (1, 2, or 3 MDU's), the sequence counter must be reset prior to each series of register reads or writes.

2. Divide Operation

For the divide operation, the divisor is loaded in the X register. The dividend is loaded in the Y and Z registers with the more significant half in the Y register and the less significant half in the Z register. These registers may be loaded in any order, and after loading is completed, a control word is loaded to specify a divide operation and the number of MDU's and also to reset the sequence counters and Y or Z register and select the clock option if desired. Clearing the sequence counters with bit 6 will set the MDU's up for reading the results.

The X register will be unaltered by the operation. The quotient will be in the Z register while the remainder will be in the Y register. An overflow will be indicated by the $\overline{CO/OF}$ of the most significant MDU and can also be determined by reading the status byte

While the CDP1855 is specified to perform 16 by 8-bit divides, if the quotient of a divide operation exceeds the size of the Z register(s) (8N-bits - where N is the number of

When multiple MDU's are cascaded, the loading of each register is done sequentially. For example, the first selection of register X for loading loads the most significant CDP1855, the second loads the next significant, and so on. Registers are also read out sequentially. This is accomplished by internal counters on each MDU which are decremented by STB during each register selection. When the counter matches the chip number (CN1, CN0 lines), the device is selected. These counters must be cleared with a clear on pin 2 or with bit 6 in the control word (See "CONTROL REGISTER BIT ASSIGNMENT TABLE") in order to start each sequence of accesses with the most significant device.

The CDP1855 has a built in clock prescaler which can be selected via bit 7 in the control register. The prescaler may be necessary in cascaded systems operating at high frequencies or in systems where a suitable clock frequency is not readily available. Without the prescaler select, the shift frequency is equal to the clock input frequency. With-the prescaler selected, the rate depends on the number of MDU's as defined by bits 4 and 5 of the control word (See "CONTROL REGISTER BIT ASSIGNMENT TABLE").

- 1 For one MDU, the clock frequency is divided by 2.
- 2. For two MDU's the clock frequency is divided by 4.
- 3. For 3 or 4 MDU's, the clock frequency is divided by 8.

OPERATION

cascaded CDP1855's) the overflow bit in the Status Register will be set. Neither the quotient in Z nor the remainder in Y will represent a valid answer This will always be the result of a division performed when the divisor (X) is equal to or less than the most significant 8N-bits of the dividend (Y)

The MDU can still be used for such computations if the divide is done in two steps. The dividend is split into two parts—the more significant 8N-bits and the less significant 8N-bits—and a divide done on each part. Each step yields an 8N-bit result for a total quotient of 16N-bits.

The first step consists of dividing the more significant 8Nbits by the divisor This is done by clearing the Y register(s), loading the Z register(s) with the more significant 8N-bits of the dividend, and loading the X register(s) with the divisor A division is performed and the resultant value in Z represents the more significant 8N-bits of the final quotient The Z register(s) value must be unloaded and saved by the processor

A second division is performed using the remainder from the first division (in Y) as the more significant 8N-bits of the dividend and the less significant half of the original dividend loaded into the Z register. The divisor in X remains unaltered and is, by definition, larger than the remainder from the first division which is in Y. The resulting value in Z becomes the less significant 8N-bits of the final quotient and the value in Y is, as usual, the remainder

Extending this technique to more steps allows division of any size number by an 8N-bit divisor

Note that division by zero is never permitted and must be tested for and handled in software

The following example illustrates the use of this algorithm **Example:**

problem is to divide 00E273 491006H by 0003B4H

Assume three MDU's capable of a by 24-bit division The

problem	13 10 011100	001210,4	5	000110;		0000417	
Step 1	, 000000 Y	00F273 Z(MS)	/	0003B4 X	=	000041 Z1	R=0001BF Y1
Step 2 [.]	0001BF, Y1	491C06 Z(LS)	/	0003B4 X	=	78C936 Z2	R=00000E Y2
Result:	000041, Z1	78C936 Z2		R=000001 Y2	E		

OPERATION (Cont'd)

The Z register can simply be reset using bit 2 of the control word and another divide can be done in order to further divide the remainder.

3. Multiply Operation

For a multiply operation the two numbers to be multiplied are loaded in the X and Z registers The result is in the Y and

FUNCTIONAL DESCRIPTION OF CDP1855 TERMINALS

CE - CHIP ENABLE (Input):

A high on this pin enables the CDP1855 MDU to respond to the select lines. All cascaded MDU's must be enabled together. CE also controls the tristate C.O./O.F., output of the most significant MDU.

CLEAR (Input):

The CDP1855 MDU(s) must be cleared upon power-on with a low-on this pin. The clear signal resets the sequence counters, the shift pulse generator, and bits 0 and 1 of the control register.

CTL -- CONTROL (Input):

This is an input pin. All CTL pins must be wired together and to the Y1 of the most significant CDP1855 MDU and to the ZR of the least significant CDP1855 MDU. This signal is used to indicate whether the registers are to be operated on or only shifted.

C.O./O.F. - CARRY OUT/OVER FLOW (Output):

This is a tristate output pin. It is the CDP1855 Carry Out signal and is connected to CI (CARRY-IN) of the next more significant CDP1855 MDU, except for on the most significant MDU. On that MDU it is an overflow indicator and is enabled when chip enables is true. A low on this pin indicates that an overflow has occured. The overflow signal is latched each time the control register is loaded, but is only meaningful after a divide command.

YL, YR - Y-LEFT, Y-RIGHT:

These are tristate bi-directional pins for data transfer between the Y registers of cascaded CDP1855 MDU's. The YR pin is an output and YL is an input during a multiply and the reverse is true at all other times. The YL pin must be connected to the YR pin of the next more significant MDU. An exception is that the YL pin of the most significant CDP1855 MDU must be connected to the ZR pin of the least significant MDU and to the CTL pins of all MDU's. Also the Ye pin of the least significant MDU is tiexd to the ZL pin of the most significant MDU.

ZL, ZR - Z-LEFT, Z-RIGHT:

These are tristate bi-directional pins for data transfers between the "Z" registers of cascaded MDU's. The Zp pin is an output and Zi is an input during a multiply and the reverse is true at all other times. The ZL pin must be tied to the YR pin of the next more significant MDU. An exception is that the ZL pin of the most significant MDU must be connected to the YR pin of the least significant MDU. Also, the ZR pin of the least significant MDU is tied to the YL of the most significant MDU.

SHIFT - SHIFT CLOCK:

This is a tristate bi-directional pin. It is an output on the most significant MDU. And an input on all other MDU's. It provides the MDU system timing pulses. All SHIFT pins must be connected together for cascaded operation. A maximum of the 8N +1 shifts are required for an operation where "N" equals the number of MDU devices that are cascaded.

Z register with Y being the more significant half and Z the less significant half. The X register will be unchanged after the operation is completed

The original contents of the Y register are added to the product of X and Z Bit 3 of the control word will reset register Y to 0 if desired.

CLK - CLOCK (Input):

This pin should be grounded on all but the most significant MDU. There is an optional reduction of clock frequency available on this pin if so desired, controlled by bit 7 of the control byte.

STB — STROBE (Input):

When RD/WE is low data is latched from bus lines on the falling edge of this signal. It may be asynchronous to the clock. Strobe also increments the selected register's sequence counter during reads and writes. TPB would be used in CDP1800 systems.

RD/WE - READ/WRITE ENABLE (Input):

This signal defines whether the selected register is to be read from or written to. In 1800 systems use MRD if MDU's are addressed as I/O devices, MWR is used if MDU's are addressed as memory devices.

RA2, RA1, RA0 - REGISTER ADDRESS (Input);

These input signals define which register is to be read from or written to. It can be seen in the "CONTROL TRUTH TABLE" that RA2 can be used as a chip enable. It is identifical to the CE pin, except only CE controls the tristate CO./O.F on the most significant MDU. In 1800 systems use N lines if MDU's are used as I/O devices, use address lines or function of address lines if MDU's are used as memory devices

BUS 0 - BUS 7 - BUS LINES:

Tristate bi-directional bus for direct interface with CDP1800 series and other 8-bit microprocessors.

Z_R - Z-RIGHT:

See Pin 6.

Y_R - Y-RIGHT:

See Pin 5.

CI - CARRY IN (Input):

This is an input for the carry from the next less significant MDU. On the least significant MDU it must be high (VDD) on all others it must be connected to the CO pin of the next less significant MDU

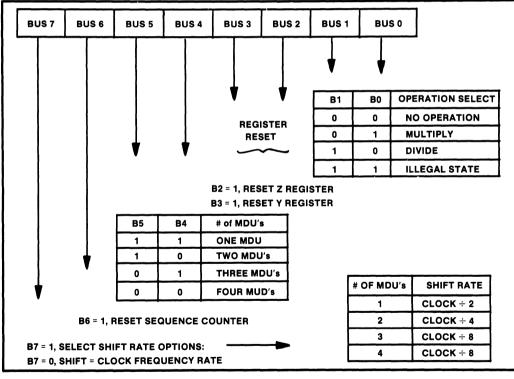
CN1, CN0 - CHIP NUMBER (Input):

These two input pins are wired high or low to indicate the MDU position in the cascaded chain. Both are high for the most significant MDU regardless of how many CDP1855 MDU's are used. Then CN1 = high and CN0 = low for the next MDU and so forth.

Vss - GROUND:

Power supply line.

Vpp - V+


Power supply line.

CONTROL	. TRUTH	TABLE
---------	---------	-------

		INPU	JTS*			
CE	RA2 (N2)	RA1 (N1)	RA0 (N0)	RD/WE (MRD)	STB (TPB)	RESPONSE
0	Х	Х	Х	х	Х	NO ACTION (BUS FLOATS)
X	0	х	Х	х	х	NO ACTION (BUS FLOATS)
1	1	0	0	1	х	X TO BUS INCREMENT SEQUENCE
1	1	0	1	1	х	Z TO BUS COUNTER WHEN
1	1	1	0	1	х	Y TO BUS STB AND RD = 1
1	1	1	1	1	х	STATUS TO BUS
1	1	0	0	0	1	LOAD X FROM BUS INCREMENT
1 1	1	0	1	0	1	LOAD Z FROM BUS SEQUENCE
1	1	1	0	0	1	LOAD Y FROM BUS COUNTER
1	1	1	1	0	1	LOAD CONTROL REGISTER
1	1	х	х	0	0	NO ACTION (BUS FLOATS)

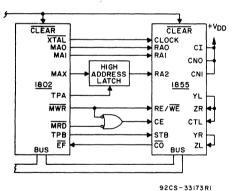
* () = 1800 system signals. 1 = High Level, 0 = Low Level, X = High or Low Level.

CONTROL REGISTER BIT ASSIGNMENT TABLE

STATUS REGISTER

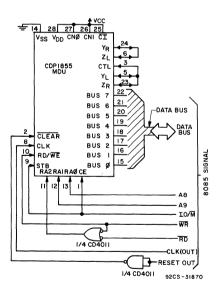
	Status Byte				
Bit	7 6 5 4 3 2 1 0				
Output	0 0 0 0 0 0 0 0.F.				
	O.F. = 1 if overflow (only valid after a divide has been done)				

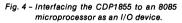
NOTE: Bits 1 - 7 are read as 0 always


DELAY NEEDED WITH AND WITHOUT PRESCALER

8N+1 Shifts/Operation at 1 Clock Cycle/Shift N = Number of MDU's S = Shift Rate

	No Pre	scaler	With Prescaler			
Number of MDU's	Shifts = 8N+1 Needed	Machine Cycles Needed*	Shifts ₌ S (8N+1) Needed	Machine Cycles Needed*	Shift Rate	
1	9	2 (1 NOP)	18	3 (1 NOP)	2	
2	17	2 (1 NOP)	68	9 (3 NOPs)	4	
3	25	3 (1 NOP)	200	25 (9 NOPs)	8	
4	33	4 (2 NOPs)	264	33 (11 NOPs)	8	


*NOP instruction is shown for machine cycles needed (3/NOP). Other instructions may be used.


CDP1855 INTERFACING SCHEMES

9205-33173RI

Fig. 3 - Required connection for memory mapped addressing of the MDU.

PROGRAMMING EXAMPLE FOR MULTIPLICATION

For a 24-bit x 24-bit multiply using the system shown in Figure 5, the following is an assembly listing of a program to multiply 201F7C16 by 723C0916:

MEMORY LOCATION	OP CODE	LINE NO.	ASSEMBLY LANGUAGE	
0000	F870:	0001	LDI 030H	
0002	A2:	0002	PLO R2	LOAD 30 INTO R2.0
0003	FB00:	0003	LD1 OOH	
0005	B2;	0004	PH1 B2	LOAD OO INTO R2.1 (R2=0030)
0006	6758:	0005	OUT 7: DC 058H	LOAD CONTROL REGISTERS
0008	•	0006	•	SPECIFYING THREE MDU'S,
0008	;	0007		RESET THE Y REGISTER AND
0008	1	0008		SEQUENCE COUNTER
0008	6420;	0009	OUT 4; DC 020H	LUAD MSB OF X REGISTER
000A	:	0010		WITH 20
000A	641F;	0011	OUT 4; DC 01FH	LOAD NEXT MSB OF X REG
000C		0012		WITH 1F
OUOC	647C:	0013	OUT 4; DC 07CH	LOAD LSB OF X REGISTER
OOOE	:	0014		W1TH 7C
OUOE	6572:	0015	OUT 5; DC 072H	LOAD MSB OF Z REGISTER
0010	;	0016		WITH 72
0010	653C;	0017	DUT 5; DC OBCH	LUAD NEXT MSB OF Z REG
0012		0018		WITH 3C
0012	6509;	0019	UUT 5; DC 09H	LOAD LSK OF Z REGISTER
0014	:	0020		WITH 09
0014	6759:	0021	0UT /; DC 059H	LOAD CONTROL REGISTERS
0016	;	0022		RESETTING Y REGISTERS
0016		0023		AND SEQUENCE COUNTERS
0016	:	0024		AND STARTING MULTIPLY
0016	:	0025		OPERATION
		DELAY FOR I	MULTIPLY TO FINISH	
0016	E2;	0026	SEX RD	
0017	6E60;	0027	INP 6; IRX	MSB OF RESULTS IS STORED
0019	:	0028		AT LOCATION 0030
0019	6E60;	0029	[NP 6; 1RX	
001B	6E60;	0030	INF 6: IRX	
001D	6D60;	0031	INP 5: IRX	
001F	6D60;	0032	INP 5. IRX	
0021	6D;	0033	INP 5	COMPLETE LOADING RESULT
0022	;	0034		INTO MEMORY LOCATIONS
0022	:	0035		0030 TO 0035
0022	:	0036		RESULTS=0E558DB42B5C
0022	3022;	0037 STOP	BR STOP	
0024	:	0038	END	
0000				

The result of $201F7C_{16} \times 723C09_{16}$ is $0E558DBA2B5C = 15760612797276_{10}$. It will be stored in memory as follows:

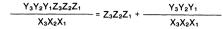
BEFORE	MULTIPLY

	MDU1	MDU2	MDU3
Register X	20	1F	7C
Register Y	00	00	00
Register Z	72	3C	09

AFTER MULTIPLY

	MDU1	MDU2	MDU3
Register X	20	1F	7C
Register Y	0E	55	8D
Register Z	BA	2B	5C

LOC	BYTE
0030	0E
31	55
32	8D
33	BA
34	2B
35	5C


PROGRAMMING EXAMPLE FOR DIVISION

MEMORY LOCATION	OP CODE	LINE NO.	ASSEMBLY LANGUAGE	
0000	:	0001	Program example for a 16 b	bit by 8 bit divide using 1 CDP1855 MDU
0000		0002 .	. Gives a 16 bit answer with 8	
0000		0003		
0000	68C22000;	0004	RLDI R2,2000H	. Answer is stored at 2000 hex
0004	:	0005	,	. Register 2 points to it
0004	68C33000;	0006	RLDI R3,3000H	Dividend is stored at 3000 hex
0008		0007		Register 3 points to it
0008	68C44000,	0008	RLDI R4,4000H	Divisor is stored at 4000 hex
000C	:	0009	· · · · · · · · · · · · · · · · · · ·	Register 4 points to it
000C	:	0010		0
000C	, E067F0;	0011	SEX R0, OUT 7; DC OF0H	Write to the control register to use
000F		0012	,	clock / 2; 1 MDU; reset sequence
000F		0013		. counter, and no operation
000F	-	0014		· ·
000F	E464:	0015	SEX R4, OUT 4	Load the divisor into the X register
0011	:	0016		
0011	, E06600;	0017	SEX R0: OUT 6: DC 0	Load 0 into the Y register
0014	E365;	0018	SEX R3, OUT 5	Load the most significant 8 bits of
0016	;	0019		. the dividend into the Z register
0016		0020		
0016	, E067F2:	0021	SEX R0; OUT 7, DC 0F2H	. Do the first divide, also resets the
0019	:	0022		sequence counter
0019		0023		
0019	E26D60;	0024	SEX R2, INP 5; IRX	. Read and store the most significant
001C	,	0025		. 8 bits of the answer at 2000 hex
001C		0026		
001C	E067F0;	0027	SEX R0; OUT 7, DC 0F0H	Reset the sequence counter
001F	;	0028		
001F	E365,	0029	SEX R3, OUT 5	Load the 8 least significant 8 bits
0021		0030		of the original dividend into the Z
0021		0031		. register
0021		0032		
0021	E067F2;	0033	SEX R0, OUT 7; DC 0F2H	Do the second division
0024	;	0034		
0024	E26D60,	0035	SEX R2, INP 5, IRX	Read and store the least significant
0027	,	0036		. 8 bits of the answer at 2001 hex
0027	6E,	0037	INP 6	Read and store the remainder at 2002
0028	,	0038		hex
0000				

- CMOS Peripherals

CDP1855, CDP1855C

For the divide operation (Fig. 5), the formula is:

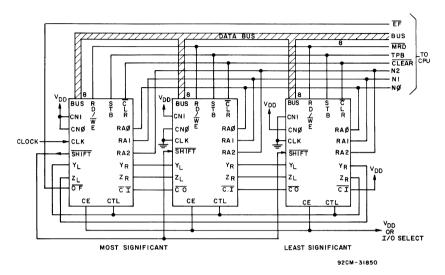


Fig. 5 - Cascading three MDU's (CDP1855) in an 1800 system with MDU's being accessed as I/O ports in programming example.

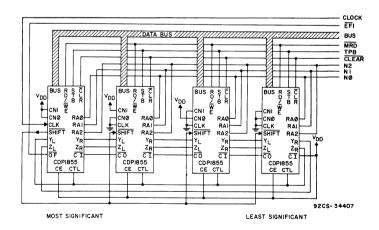


Fig. 6 - Cascading four MDU's (CDP1855).

413

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to +85° C, V_{DD} \pm 5% t_f, t_f = 20 ns, V_{IH} = 0.7 V_{DD}, V_{IL} = 0.3 V_{DD}, C_L = 100 pF (See Fig. 7)

CHARACTERISTIC•		VDD		CDP185	5	CDP1855C			UNITS
		(V)	Min.	Тур.*	Max.	Min.	Тур.*	Max.	
Operation Timing			L				I	I	
Maximum Clask Fragueraul		5	3.2	4	_	3.2	4	_	
Maximum Clock Frequency+		10	6.4	8	-	-	-	—	MHz
Maximum Shift Frequency (1 Device)∆		5 10	1.6 3.2	2 4		1.6	2	-	{
	tCLK0	5	-	100	150	—	100	150	
Minimum Clock Width	tCLK1		-	50	75	_	-	- 1	1
Minimum Clock Period	tCLK	5	—	250	312		250	312	1
	·OLK	10	—	125	156	—	—	—	
Clock to Shift Prop. Delay	tCSH	5	-	200	300	_	200	300	
		10		100	150				
Minimum C.I. to Shift Setup	tsu	5		50	67		50	67	-
		10	_	25	33				-
C.O. from Shift Prop. Delay	^t PLH	5		450	600 300		450	600	-
	^t PHL	10		225		-	<u> </u>		-
Minimum C.I. from Shift Hold	tн	5 10	-	50 25	75 40		50	75	ns
		5		-20	10		-20	10	
Minimum Register Input Setup	tsu	10		-20	10		-20		4
	tPLH	5	-	400	600	_	400	600	1
Register after Shift Delay	tPHL	10	-	200	300	—		_	1
		5	-	50	100	—	50	100	1
Minimum Register after Shift Hold	tн	10	-	25	50		—	_	1
C.O. from C.I. Prop. Delay	^t PLH	5	-	100	150	—	100	150]
U.U. HOIT U.I. FIOP. Delay	^t PHL	10	—	50	75	—	-	—	
Register from C.I. Prop. Delay	^t PLH	5	—	80	120		80	120]
Register from C.I. Prop. Delay	^t PHL	10	-	40	60	-	-	-	

•Maximum limits of minimum characteristics are the values above which all devices function.

*Typical values are for $T_A = 25^{\circ}$ C and nominal voltages.

+Clock frequency and pulse width are given for systems using the internal clock option of the CDP1855. Clock frequency equals shift frequency for systems not using the internal clock option.

△Shift period for cascading of devices is increased by an amount equal to the C.I. to C.O. Prop. Delay for each device added.

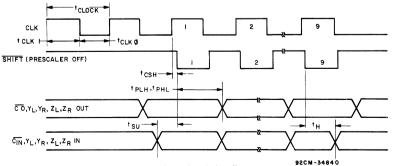


Fig. 7 – Operation timing diagram.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to +85° C, V_{DD} \pm 5% t_f, t_f = 20 ns, V_{IH} = 0.7 V_{DD}, V_{IL} = 0.3 V_{DD}, C_L = 100 pF (See Fig. 8)

					UNITS				
CHARACTERISTIC•		V _{DD} (V)	CDP1855			CDP1855C			
			Min.	Тур.*	Max.	Min.	Typ.*	Max.	
Write Cycle									
Minimum Clear Pulse Width		5		50	75	_	50	75	
Winnindin Clear Pulse Width	ICLH	10	-	25	40	-	1	-]
Minimum Write Pulse Width	tww	5	-	150	225	_	150	225	
		10	-	75	115	-	-	-	
Minimum Data-In Setup	tDSU	5	—	-75	0	-	-75	0	
	·DSU	10	_	-40	0	—	-	-	ns
Minimum Data-In-Hold	tDH	5		50	75	-	50	75	113
Minimum Data-III-11010	чUП	10	—	25	40	-	—	—	
Minimum Address to Write Setup	taeu	5		50	75	-	50	75]
within Address to write Setup	tASU	10	-	25	40	_	—	_	
Minimum Address after Write Hold	tAH	5	—	50	75	-	50	75	
Minimum Address after write Hold	чан	10	_	25	40	-	_	_	

4

•Maximum limits of minimum characteristics are the values above which all devices function.

*Typical values are for $T_A = 25^{\circ}C$ and nominal voltages.

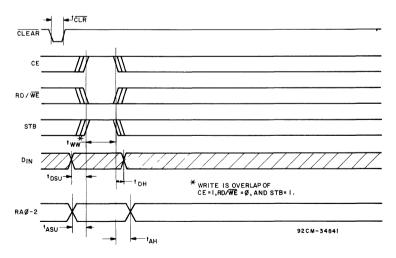


Fig. 8 – Write timing diagram.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to +85° C, V_{DD} \pm 5% t_r, t_f = 20 ns, V_{IH} = 0.7 V_{DD}, V_{IL} = 0.3 V_{DD}, C_L = 100 pF (See Fig. 9)

				LIN	IITS			
CHARACTERISTIC•	VDD	CDP1855 CDP1855C		C	UNITS			
	(V)	Min.	Typ.*	Max.	Min.	Typ.*	Max.	

Read Cycle

				r			1	r	
CE to Data Out Active	tCDO	5	_	200	300		200	300	
	÷CDO	10	-	100	150	-	_	—	•
CE to Data Access	tCA	5		300	450	_	300	450	
	-04	10	-	150	225	—	_	—	
Address to Data Access	tAA	5	-	300	450	-	300	450	
Address to Data Access	чА	10	-	150	225	-	_	_	
Data Out Hold after CE	tDOH	5	50	150	225	50	150	225	
Data Out Hold alter CE	-UOH	10	25	75	115	-	-	_	
Data Out Hold after Read	tDOH	5	50	150	225	50	150	225	
Data Out Hold alter head		10	25	75	115	_	-	-	ns
Read to Data Out Active	t _{RDO}	5	-	200	300	_	200	300	
Head to Data Out Active	, NDO	10	_	100	150	_	—	—	
Read to Data Access	^t RA	5		200	300	-	200	300	
Head to Data Access		10	—	100	150		-	-	
Strobe to Data Access	^t SA	5	50	200	300	50	200	300	
		10	25	100	150		-	—	
Minimum Strobe Width	tsw	5	_	150	225		150	225	
		10		75	115	—		-	

•Maximum limits of minimum characteristics are the values above which all devices function.

*Typical values are for $T_A = 25^{\circ}$ C and nominal voltages.

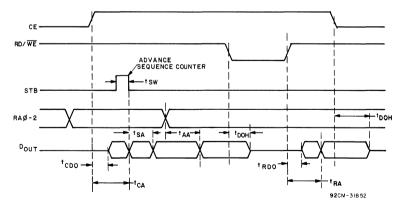


Fig. 9 - Read timing diagram.