CMOS Keyboard Encoder #### Features: - Directly interfaces with CDP1800-series microprocessors - Low power dissipation - 3-state outputs - Scans and generates code for 53 key ASCII keyboard plus 32 HEX keys (SPST mechanical contact switches) - Shift, control, and alpha lock inputs - RC-controlled debounce circuitry - Single 4 to 10.5 V supply (CDP1871A); 4 to 6.5 V (CDP1871AC) - N-key lockout The RCA-CDP1871A is a keyboard encoder designed to directly interface between a CDP1800-series micro-processor and a mechanical keyboard array, providing up to 53 ASCII coded keys and 32 HEX coded keys, as shown in the system diagram (Fig. 1). The keyboard may consist of simple single-pole single-throw (SPST) mechanical switches. Inputs are provided for alpha-lock, control, and shift functions, allowing 160 unique codes. An external R-C input is available for user-selectable debounce times. The N-key lock-out feature prevents unwanted key codes if two or more keys are pressed simultaneously. The CDP1871A and CDP1871AC are functionally identical. They differ in that the CDP1871A has a recommended operating voltage range of 4 to 10.5 volts, and the CDP1871AC has a recommended operating voltage range of 4 to 6.5 volts. These types are supplied in 40-lead dual-in-line ceramic packages (D suffix), and 40-lead dual-in-line plastic packages (E suffix), and 44-lead plastic chip-carrier packages (Q suffix). Fig. 1 - Typical CDP1800-series microprocessor system using the CDP1871A. #### MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD) (Voltage referenced to Vss terminal) CDP1871A-0.5 to +11 V INPUT VOLTAGE RANGE, ALL INPUTS -0.5 to V_{DD} +0.5 V DC INPUT CURRENT, ANY ONE INPUT ±10 mA POWER DISSIPATION PER PACKAGE (Pp): **DEVICE DISSIPATION PER OUTPUT TRANSISTOR** OPERATING-TEMPERATURE RANGE (TA): PACKAGE TYPE E and Q -40 to +85°C LEAD TEMPERATURE (DURING SOLDERING): #### **RECOMMENDED OPERATING CONDITIONS** at $T_A = -40$ to $+85^{\circ}$ C For maximum reliability, operating conditions should be selected so that operation is always within the following ranges: | V _{DD} | 1 | | | | UNITS | |------------------------|----------|--|---|---|--| | (v) | MIN. | MAX. | MIN. | MAX. | | | | 4 | 10.5 | 4 | 6.5 | ٧ | | | Vss | V _{DD} | Vss | V _{DD} | V | | 5 | DC | 0.4 | DC | 0.4 | MHz | | 10 | DC | 0.8 | _ | _ | IVITIZ | | | (V)
5 | V _{DD} CDP1 (V) MIN. 4 Vss 5 DC | V _{DD} CDP1871AD CDP1871AE (V) MIN. MAX. 4 10.5 V _{SS} V _{DD} 5 DC 0.4 | V _{DD} CDP1871AE CDP18 (V) MIN. MAX. MIN. 4 10.5 4 Vss V _{DD} V _{SS} 5 DC 0.4 DC | VDD CDP1871AD
CDP1871AE CDP1871ACD
CDP1871ACE (V) MIN. MAX. MIN. MAX. 4 10.5 4 6.5 Vss VDD Vss VDD 5 DC 0.4 DC 0.4 | 418 ^{*} Printed-circuit board mount: 57 mm x 57 mm minimum area x 1.6 mm thick G10 epoxy glass, or equivalent. STATIC ELECTRICAL CHARACTERISTIC at $T_A = -40$ to $+85^{\circ}$ C, except as noted | | CO | NDITIO | NS | LIMITS | | | | | | | | |---|----------|----------------|-------|--------|-----------|-------|------|------------|-------|-------|--------| | CHARACTERISTIC | | | | C | DP1871 | ND. | CD | P1871A | CD | UNITS | | | | | v _o | VIN | VDD | CDP1871AE | | | CDP1871ACE | | | | | | | (V) | (V) | (V) | MIN. | TYP.* | MAX. | MIN. | TYP.* | MAX. | | | Quiescent Device | | _ | 0,5 | 5 | _ | 0.1 | 50 | _ | 1 | 200 | Ι | | Current | IDD | _ | 0,10 | 10 | _ | 1 | 200 | _ | _ | _ | μΑ | | Output Low Drive (sink) Current | | 0.4 | 0,5 | 5 | 0.5 | 1 | _ | 0.5 | 1 | _ | | | (except debounce and D1-D11) | loL | 0.5 | 0,10 | 10 | 1 | 2 | _ | | | _ | | | | | 0.4 | 0,5 | 5 | 0.75 | 15 | _ | 0 75 | 1.5 | |] | | Debounce | loL | 0.5 | 0,10 | 10 | 1 | 2 | | | | _ | mA | | | | 0.4 | 0,5 | 5 | .05 | 0.1 | | .05 | 0.1 | |] '''' | | D1-D11 | loL | 0.5 | 0,10 | 10 | 0.1 | 0.2 | _ | _ | | | | | Output High Drive (Source) Current | | 4.6 | 0,5 | 5 | -0.3 | -0.6 | _ | -0.3 | -0.6 | _ | | | | Іон | 9.5 | 0,10 | 10 | -0.75 | -1.5 | _ | | | | | | Input Low Voltage | | 0.5,4.5 | | 5 | _ | _ | 1.5 | | | 1.5 | | | (except Debounce) | V_{IL} | 1,9 | _ | 10 | _ | _ | 3 | I – | _ | _ | | | Input High Voltage | | 0.5,4.5 | _ | 5 | 3.5 | _ | I - | 3.5 | _ | _ |] | | (except Debounce) | V_{IH} | 1,9 | _ | 10 | 7 | _ | | _ | _ | | | | Debounce Schmitt Trigger | | | | | | | | | | | 1 | | Input Voltage | | 0.4 | | 5 | 2.0 | 3.3 | 4.0 | 2.0 | 3.3 | 4.0 | | | Positive Trigger Voltage | VD | 0.5 | | 10 | 4.0 | 6.3 | 8.0 | | | | _ | | | | 0.4 | _ | 5 | 0.8 | 1.8 | 3.0 | 0.8 | 1.8 | 3.0 | V | | Negative Trigger Voltage | V_N | 0.5 | _ | 10 | 1.9 | 4.0 | 6.0 | _ | _ | - | | | | | 0.4 | 0,5 | 5 | 0.3 | 1.6 | 2.6 | 0.3 | 1.6 | 2.6 | | | Hysteresis | Vн | 0.5 | 0,10_ | 10 | 0.7 | 2.3 | 4.7 | _ | _ | _ | | | Output Voltage Low Level | | | 0,5 | 5 | _ | 0 | .05 | | 0 | .05 |] | | | Vol | _ | 0,10 | 10 | _ | 0 | .05 | | _ | |] | | Output Voltage High Level | | | 0,5 | 5 | 4.95 | 5 | - | 4.95 | 5 | _ | | | | Vон | | 0,10 | 10 | 9.95 | 10 | _ | _ | _ | | 1 | | Input Leakage Current | | | 0,5 | 5 | | .01 | 1 | | .01 | 1 | | | (except S1-S8, Shift, Control) | IIN | | 0,10 | 10 | - | .01 | 1 | - | - | - | | | 3-State Output Leakage Current | | 0.5 | 0,5 | 5 | | .01 | 1 | _ | .02 | 2 | μΑ | | | lout | 0,10 | 0,10 | 10 | | .02 | 2 | | | _ | | | Pull-Down Resistor Value | _ | | | 7 | 14 | 24 | 7 | 14 | 24 | kΩ | | | (S1-S8, Shift, Control) | R_{PD} | | | | ′ | '- | | ' | '- | | 7.22 | | Operating Current | loper | | | | | | | | | | | | (All-outputs $f_{CL} = 0.4 \text{ MHz}$ | | 0.5,4.5 | 0,5 | 5 | | 0.6 | | <u> </u> | 0.6 | _ | mΑ | | unloaded) f _{CL} = 0.8 MHz | | 1,9 | 0,10 | 10 | - | 2.7 | - | - | - | - | | ^{*}Typical values are for $T_A = +25^{\circ}\,\text{C}$. and nominal V_{DD} ### **TERMINAL ASSIGNMENT** 44-Lead Piastic Chip-Carrier Package (Q suffix) #### **FUNCTIONAL DESCRIPTION OF CDP1871A TERMINALS** #### D1 - D11 (Outputs): Drive lines for the 11 x 8 keyboard switch matrix. These outputs are connected through the external switch matrix to the sense lines (S1 — S8). #### S1 - S8 (Inputs): Sense lines for the 11 x 8 keyboard maxtrix. These inputs have internal pull-down resistors and are driven high by appropriate drive line when a keyboard switch is closed. #### CS1, CS2, CS3, CS4 (Inputs): Chip select inputs, which are used to enable the tri-state data bus outputs (BUS 0 — BUS 7) and to enable the resetting of the status flag (DA), which occurs on the low-to-high transition of TPB. These four inputs are normally connected to the N-lines (N0-N2) and MRD output of the CDP1800-series microprocessor. (Table 2) #### BUS 0 — BUS 7 (Outputs): Tri-state data bus outputs which provide the ASII and HEX codes of the detected keys. The outputs are normally connected to the BUS 0 — BUS 7 terminals of the CDP1800-series microprocessor. #### DA (Output): The data available output flag which is set low when a valid key closure is detected. It is reset high by the low-to-high transition of TPB when data is read from the CDP1871A. This output is normally connected to a flag input (EF1-EF4) of the CDP1800-series microprocessor. #### TPB (Input): The input clock used to drive the scan generator and reset the status flag (DA). This input is normally connected to the TPB output of the CDP1800-series microprocessor. #### RPT (Output): The repeat output flag which is used to indicate that a key is still closed after data has been read from the CDP1871A (DA = high). It remains low as long as the key is closed and is used for an autorepeat function, under CPU control. This output is normally connected to a flag input (EF1-EF4) of the CDP1800-series microprocessor. #### **DEBOUNCE(Input):** This input is connected to the junction of an external resistor to V_{DD} and capacitor to V_{SS} . It provides a debounce time delay ($t \cong RC$) after the release of a key. If a debounce is not desired, the external pull-up resistor is still required. #### ALPHA, SHIFT, CONTROL (Inputs): A high on the SHIFT or CONTROL inputs will be internally latched (after the debounce time) and the drive and sense line decoding will be modified as shown in Table 3. They are normally connected to the keyboard, but produce no code by themselves. The SHIFT and CONTROL inputs have internal pull-down resistors to simplify use with momentary contact switches. The ALPHA input is not latched and is designed for a standard SPDT switch to provide an alphalock function. When ALPHA = 1 the drive and sense line decoding will be modified as shown in Table 3. #### V_{DD}, V_{SS}: V_{DD} is the positive supply voltage input. V_{SS} is the most negative supply voltage terminal and is normal connected to ground. All outputs swing from V_{SS} to $V_{\text{DD}}.$ The recommended input voltage swing is from V_{SS} to $V_{\text{DD}}.$ TABLE 1 — SWITCH INPUT FUNCTIONS | CONTROL | SHIFT | ALPHA | KEY FUNCTION | |---------|-------|-------|--------------| | 0 | 0 | 0 | NORMAL | | 1 | X | X | CONTROL | | 0 | 1 | Х | SHIFT | | 0 | 0 | 1 | ALPHA | X = DON'T CARE TABLE 2 - VALID N-LINE CONNECTIONS | CPU | | CDP1871 | A SIGNAL | | CPU INPUT | |----------|-----|---------|----------|-----|-------------| | | CS4 | CS3 | CS2 | CS1 | INSTRUCTION | | CDP1800- | MRD | N2 | N0 | N1 | INP5 | | SERIES | MRD | N0 | N1 | N2 | INP3 | | SIGNAL | MRD | N2 | N1 | N0 | INP6 | TABLE 3 — DRIVE AND SENSE LINE KEYBOARD CONNECTIONS‡ | SENSE | | | | | | | | D | RIVE | LINES | | | | | | | | | | |----------------|-----|----------|----------------|---|----------------|-----|----|-----|----------------|-------|----------------|-----|-----------------------|------------------|------------------|-------------------|-------------------|------------------|------| | LINES | |)1 | D ₂ | | D ₃ | | D₄ | | D ₅ | | D ₆ | | D ₇ | D ₈ † | D ₉ † | D ₁₀ † | D ₁₁ † | | | | Sı | SP | 0 | (| 8 | | @ | Н | Н | Р | Р | Х | Х | SDACE | SPACE | SDACE | 8016 | 8816 | 9016 | 9816 | | - 51 | 0 | | 8 | | @ | NUL | h | BS | р | DLE | X | CAN | SIAGE | 0016 | 0016 | 0018 | 0018 | | | | S ₂ | ! | 1 |) | 9 | Α | Α | ŀ | - 1 | Q | Q | Υ | Υ | | 8116 | 8916 | 9116 | 9916 | | | | 32 | 1 | * | 9 | | а | SOH | i | Ŧ | q | DC1 | у | EM | | 0116 | 0016 | 3116 | 0018 | | | | S ₃ | " | 2 | * | : | В | В | J | J | R | R | Ζ | Z | LINE
FEED | 1 18: | 8216 | 8A ₁₆ | 9216 | 9A ₁₆ | | | J3 | 2 | | : | | b | STX | j | LF | r | DC2 | Z | SUB | | | U£16 | 0/16 | J£16 | 37116 | | | S ₄ | # | 3 | + | ; | С | С | K | K | S | S | { | [| ESCAPE | 8316 | 8B ₁₆ | 9316 | 9B ₁₆ | | | | - 54 | 3 | | ; | | C | ETX | k | VT | s | DC3 | [| ESC | LOOALL | 0016 | 0016 | 5518 | 3-18 | | | | S ₅ | \$ | 4 | < | , | D | D | L | L | Т | Т | - 1 | \ | | 8416 | 8C16 | 9416 | 9C16 | | | | 35 | 4 | | , | | d | EOT | 1 | FF | t | DC4 | \ | FS | | 0-116 | | 3416 | 3016 | | | | S ₆ | % | 5 | = | - | E | E | М | М | U | U | } |] | CARRAIGE | 8516 | 8D ₁₆ | 9516 | 9D ₁₆ | | | | 36 | 5 | | - | | е | ENQ | m | CR | u | NAK |] | GS | RETURN | 0016 | 0016 | 3016 | 3D16 | | | | S ₇ | & | 6 | ^ | | F | F | N | Ν | ٧ | ٧ | ~ | Ť | | 8616 | 8E ₁₆ | 9616 | 9E16 | | | | 37 | 6 | | | | f | ACK | n | so | ٧ | SYN | 1 | RS | | 0016 | O ⊑16 | 3016 | 3L16 | | | | S ₈ | _ ′ | 7 | ? | / | G | G | 0 | 0 | W | W | DEL | _ | DELETE | 8716 | 8F ₁₆ | 9716 | 9F ₁₆ | | | | 38 | 7 | | / | | g | BEL | 0 | SI | w | ETB | _ | US | DELETE | 0716 | OI-16 | 3/16 | 31 16 | | | KEY. SHIFT* ALPHA* NORMAL CONTROL* *CONTROL overrides SHIFT and ALPHA = NO RESPONSE ‡Showing ASCII outputs for all combinations with and without SHIFT, ALPHA LOCK and CONTROL †Drive lines 8, 9, 10, and 11 generate non-ASCII hex values which can be used for special codes TABLE 4 — HEXIDECIMAL VALUES OF ASCII CHARACTERS | | | | | | | MSD | | | | | | | | | | |-----|------|----|----|----|----------------|-----|-----|----|---|---|---|---|-----|--|--| | | | | | 1 | b7 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | | | 1 | | | | | b6 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | | | | | D. | Te | | b5 → | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | | | | вітѕ | | | | | | | | | | | | | | | | | b4 | b3 | b2 | b1 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | 0 | 0 | 0 | 0 | 0 | NUL | DLE | SP | 0 | @ | Р | \ | р | | | | | 0 | 0 | 0 | 1 | 1 | SOH | DC1 | 1 | 1 | Α | Q | а | q | | | | 1 | 0 | 0 | 1 | 0 | 2 | STX | DC2 | " | 2 | В | R | b | r | | | | | 0 | 0 | 1 | 1 | 3 | ETX | DC3 | # | 3 | С | S | С | s | | | | | 0 | 1 | 0 | 0 | 4 | EOT | DC4 | \$ | 4 | D | Т | d | t | | | | | 0 | 1 | 0 | 1 | 5 | ENQ | NAK | % | 5 | E | U | е | u | | | | | 0 | 1 | 1 | 0 | 6 | ACK | SYN | & | 6 | F | V | f | V | | | | LSD | 0 | 1 | 1 | 1 | 7 | BEL | ETB | / | 7 | G | W | g | w | | | | | 1 | 0 | 0 | 0 | 8 | BS | CAN | (| 8 | Н | Х | h | x | | | | | 1 | 0 | 0 | 1 | 9 | HT | EM |) | 9 | 1 | Y | i | У | | | | | 1 | 0 | 1 | 0 | Α | LF | SUB | * | | J | Z | j | z | | | | | 1 | 0 | 1 | 1 | В | VT | ESC | + | ; | K | [| k | { | | | | | 1 | 1 | 0 | 0 | С | FF | FS | , | < | L | \ | | - | | | | | 1 | 1 | 0 | 1 | D | CR | GS | - | = | М |] | m | } | | | | | 1 | 1 | 1 | 0 | E | SO | RS | | > | N | 1 | n | ~ | | | | | 1 | 1 | 1 | 1 | F | SI | US | / | ? | 0 | | 0 | DEL | | | ### **OPERATION** The CDP1871A is made up of two major sections: the counter/scan-selection logic and the control logic (Fig. 2). The counter and scan-selection logic scans the keyboard array using the drive lines (D1-D11) and the sense lines (S1-S8). The outputs of the internal 5-stage scancounter are conditionally encoded by the ALPHA, SHIFT, and CONTROL inputs (Table 1, Table 3) and are used to drive the D1-D11 output lines high one at a time. Each D1-D11 output may drive up to eight keys, which are sampled by the sense line inputs (S1-S8). The S1-S8 inputs are enabled by the internal 3-stage scancounter. The control logic interfaces with the CDP1800-series I/O and timing signals to establish timing and status conditions for the CDP1871A. The TPB input clocks the scancounters and is also used to reset the Data Available output (DA). When a valid keydown condition is detected on a sense line, the control logic inhibits the clock to the scancounters on the next low-tohigh transition of TPB and the DA output is set low. The scancounter outputs (C1-C8) represent the ASCII and HEX key codes and are used to drive the BUS 0 - BUS 7 outputs. which interface directly to the CDP1800-Series data bus. The BUS 0 — BUS 7 outputs, which are normally tri-stated. are enabled by decoding the CS inputs during a CPU input instruction (Table 2). The low-to-high transition of TPB during the input instruction resets the DA output high. Once the DA output has been reset, it cannot go low again until the present key is released and a new keydown condition is detected. (This prevents unwanted repeated keycode outputs which may be caused by fast software routines). After the depressed key is released and the debounce delay (determined by RX, CX) has occurred, the scan clock inhibit is removed, allowing the scancounters to advance on the following high-to-low transitions of TPB. This provides an N-key lockout feature, which prevents the entry of erroneous codes when two or more keys are pressed simultaneously. The first key pressed in the scanning order is recognized, while all other keys pressed are ignored until the first key is released and read by the CPU, at which time the next key pressed in the scanning order is detected. If the first key remains closed after the CPU reads the data and resets the $\overline{\rm DA}$ output, on the low-to-high transition of TPB, an auxiliary signal $(\overline{\rm RPT})$ is generated and is available to the CPU to indicate an auto-repeat condition. The $\overline{\rm RPT}$ output is reset high at the end of the debounce delay after the depressed key is released. The DEBOUNCE input provides a terminal connection for an external user-selected RC circuit to eliminate false detection of a keydown condition caused by keyboard noise. The operation of the DEBOUNCE circuit is shown in Fig. 2 (Pin 36). When a valid keydown is detected, the on-chip active-resistor device (RN) is enabled and the external capacitor (Cx) is discharged, providing a key closure debounce time $\cong R_N C_X$. This discharge is sensed by the Schmitt-tigger inverter, which clocks the DA flip-flop (latching the DA output low and inhibiting the scan clock). (The DA F/F is reset by the low-to-high transition of TPB when the CS inputs are enabled). When a valid key-release is detected R_N is disabled and C_x begins to charge through the external resistor (Rx), providing a key-release debounce time $\cong R_xC_x$. This charge time is again sensed by the Schmitt-trigger inverter, enabling the scan clock to continue on the next high-to-low transitions of TPB, after the current keycode data is read by the CPU. DYNAMIC ELECTRICAL CHARACTERISTICS at TA -40 to +85° C, VDD ±5% | | | | | | LIN | IITS | | | | | |------------------------|------------------|-----------------|------------|----------|------|------|----------|-------|------|--| | | | | (| CDP1871A | D | С | DP1871AC | D |] | | | CHARACTERISTIC | | V _{DD} | (| CDP1871A | E | C | E | UNITS | | | | | | (V) | MIN. | TYP.* | MAX. | MIN. | TYP.* | MAX. | | | | Clock Cycle Time | | 5 | _ | _ | _ | _ | _ | | NOTE | | | | tcc | 10 | _ | | _ | _ | _ | _ |] 1 | | | Clock Pulse Width High | | 5 | 100 | 40 | _ | 100 | 40 | _ | ns | | | | tсwн | 10 | 50 | 20 | | | _ | | lis | | | Data Available Valid | | 5 | _ | 260 | 500 | _ | 260 | 500 | ns | | | Delay | tDAL | 10 | _ | 130 | 250 | _ | | _ | | | | Data Available Invalid | | 5 | | 70 | 150 | _ | 70 | 150 | I | | | Delay | t _{DAH} | 10 | _ | 35 | 75 | | _ | _ | ns | | | Scan Count Delay | | 5 | _ | 850 | 1900 | | 850 | 1900 | | | | (Non-Repeat) | t _{CD1} | 10 | _ | 425 | 950 | _ | _ | _ | ns | | | Data Out Valid Delay | | 5 | | 120 | 250 | | 120 | 250 | | | | | tcov | 10 | | 60 | 125 | _ | _ | _ | ns | | | Data Out Hold Time | | 5 | | 100 | 200 | _ | 100 | 200 | | | | | tcon | 10 | _ | 50 | 100 | _ | | | ns | | | Repeat Valid Delay | | 5 | — . | 150 | 400 | | 150 | 400 | | | | | t _{RPL} | 10 | _ | 75 | 200 | | _ | _ | ns | | | Repeat Invalid Delay | | 5 | _ | 350 | 700 | - | 350 | 700 | | | | | t _{RPH} | 10 | _ | 170 | 350 | _ | 1 - | | ns | | ^{*}Typical Values are for $T_A = +25^{\circ}$ C and nominal V_{DD} Note 1: tcc = tcwH + tcwL $t_{\text{CWL}} = t_{\text{CD1}} + \text{KC}$ k = 0.9 ns per pF c = keyboard capacitance (pF) Fig 3 — CDP1871A dynamic timing diagram (non-repeat) Fig 4 — CDP1871A dynamic timing diagram (repeat). Fig. 5 — Typical system software flowchart for CDP1871A, CDP1871AC