

# **CMOS 8-Bit Microprocessor**

### **Hardware Features:**

- Typical full speed operating power of 35 mW @ 5 V
- Typical WAIT mode power of 5 mW
- Typical STOP mode power of 25 μW
- 112 bytes of on-chip RAM
- 16 bidirectional I/O lines
- Internal 8-bit timer with software programmable 7-bit prescaler
- External timer input

- Full external and timer interrupts
- Multiplexed address/data bus
- Master reset and power-on reset
- Capable of addressing up to 8K bytes of external memory
- Single 3- to 6-volt supply
- On-chip oscillator
- 40-pin dual-in-line package
- 44-lead plastic chip-carrier package

The CDP6805E2 Microprocessor Unit (MPU) belongs to the CDP6805 Family of CMOS Microcomputers. This 8-bit fully static and expandable microprocessor contains a CPU, onchip RAM, I/O, and Timer. It is a low-power, low-cost processor designed for mid-range applications in the consumer, automotive, industrial, and communications markets where very low power consumption constitutes an important factor. The following are the major features of the CDP6805E2 MPU.

### **Software Features:**

- Efficient use of program space
- Versatile interrupt handling
- True bit manipulation
- Addressing modes with indexed addressing for tables
- Efficient instruction set
- Memory mapped I/O
- Two power saving standby modes



Fig. 1 - Block diagram.

MAXIMUM RATINGS (voltages referenced to VSS)

| Ratings                                                | Symbol           | Value                                                     | Unit |
|--------------------------------------------------------|------------------|-----------------------------------------------------------|------|
| Supply Voltage                                         | V <sub>DD</sub>  | -03 to +80                                                | V    |
| All Input Voltages Except OSC1                         | V <sub>in</sub>  | $V_{SS} = 0.5$ to $V_{DD} + 0.5$                          | V    |
| Current Drain Per Pin Excluding VDD and VSS            | I                | 10                                                        | mA   |
| Operating Temperature Range<br>CDP6805E2<br>CDP6805E2C | ТА               | T <sub>L</sub> to T <sub>H</sub><br>0 to 70<br>- 40 to 85 | °C   |
| Storage Temperature Range                              | T <sub>stg</sub> | -55 to +150                                               | °C   |

### DC ELECTRICAL CHARACTERISTICS 3.0 V (V<sub>DD</sub>=3 Vdc, V<sub>SS</sub>=0, T<sub>A</sub>=T<sub>L</sub> to T<sub>H</sub>, unless otherwise noted)

| Characteristics                                                                 | Symbol | Min                   | Max  | Unit |
|---------------------------------------------------------------------------------|--------|-----------------------|------|------|
|                                                                                 | VOL    | -                     | 01   | v    |
|                                                                                 | VOH    | V <sub>DD</sub> - 0.1 | -    | v    |
| Total Supply Current (C <sub>L</sub> = 50 pF - no DC loads) $t_{CYC} = 5 \mu s$ |        |                       |      |      |
| Run ( $V_{IL} = 0.2 V$ , $V_{IH} = V_{DD} - 0.2 V$ )                            | IDD    | -                     | 13   | mA   |
| Wait (Test Conditions - See Note Below)                                         | IDD    | -                     | 200  | μΑ   |
| Stop (Test Conditions - See Note Below)                                         | IDD    | -                     | 100  | μA   |
| Output High Voltage                                                             |        |                       |      |      |
| (I <sub>LOAD</sub> =0 25 mA) A8-A12,B0-B7                                       | VOH    | 27                    | -    | v    |
| (I <sub>LOAD</sub> =0 1 mA) PA0-PA7, PB0-PB7                                    | Vон    | 2.7                   | -    | V    |
| $(I_{LOAD} = 0.25 \text{ mA}) \text{ DS, AS, R/W}$                              | Voн    | 27                    | 1    | V    |
| Output Low Voltage                                                              |        |                       |      |      |
| (I <sub>LOAD</sub> =0.25 mA) A8-A12, B0-B7                                      | VOL    | -                     | 03   | v    |
| (I <sub>LOAD</sub> =0.25 mA) PA0-PA7, PB0-PB7                                   | VOL    |                       | 03   | V    |
| $(I_{LOAD} = 0.25 \text{ mA}) \text{ DS, AS, R/W}$                              | VOL    | -                     | 03   | V    |
| Input High Voltage                                                              |        |                       |      |      |
| PA0-PA7, PB0-PB7, B0-B7                                                         | VIH    | 21                    | -    | V    |
| TIMER, TRO, RESET                                                               | VIH    | 25                    | -    | V    |
| OSC1                                                                            | VIH    | 2.1                   | -    | v    |
| Input Low Voltage (All inputs)                                                  | VIL    | -                     | 05   | V    |
| Frequency of Operation                                                          |        |                       |      |      |
| Crystal                                                                         | fosc   | 0.032                 | 10   | MHz  |
| External Clock                                                                  | fosc   | DC                    | 10   | MHz  |
| Input Current                                                                   |        |                       |      |      |
| RESET, IRO, Timer, OSC1                                                         | lin    | -                     | ±1   | μA   |
| Three-State Output Leakage                                                      |        |                       |      |      |
| PA0-OA7, PB0-PB7, B0-B7                                                         | TSL    | -                     | ± 10 | μΑ   |
| Capacitance                                                                     |        |                       |      |      |
| RESET, IRQ, Timer                                                               | Cin    |                       | 80   | p⊦   |
| Capacitance                                                                     |        |                       |      | _    |
| DS AS $B/W$ A8-A12 PA0-PA7 PB0-PB7 B0-B7                                        | Cout   | -                     | 120  | pF   |

NOTE Test conditions for Quiescent Current Values are

Port A and B programmed as inputs.

VIL = 0 2 V for PA0-PA7, PB0-PB7, and B0-B7

VIH = VDD - 0 2 V for RESET, IRQ, and Timer.

OSC1 input is a squarewave from  $V_{SS} + 0.2$  V to  $V_{DD} - 0.2$  V.

OSC2 output load (including tester) is 35 pF maximum.

Wait mode  $\ensuremath{\mathsf{IDD}}$  is affected linearly by this capacitance

DC ELECTRICAL CHARACTERISTICS 5.0 V (VDD=5 Vdc ± 10%, VSS=0, TA=TI to TH, unless otherwise noted)

| Characteristics                                                    | Symbol          | Min                 | Max  | Unit |
|--------------------------------------------------------------------|-----------------|---------------------|------|------|
|                                                                    | VOL             | -                   | 01   | V    |
|                                                                    | V <sub>OH</sub> | V <sub>DD</sub> -01 | -    | v    |
| Total Supply Current (CL = 130 pF - On Bus, CL = 50 pF - On Ports, |                 |                     |      |      |
| No DC Loads, t <sub>CyC</sub> = 1 0 μs                             | loo             | -                   | 10   | mA   |
| Run ( $V_{1L} = 0.2 V$ , $V_{1H} = V_{DD} - 0.2 V$ )               |                 |                     |      |      |
| Wait (Test Conditions - See Note Below)                            | loo             | -                   | 15   | mA   |
| Stop (Test Conditions - See Note Below)                            | loo             | -                   | 200  | μA   |
| Output High Voltage                                                |                 |                     |      |      |
| (I <sub>LOAD</sub> = 1.6 mA) A8-A12, B0-B7                         | • ОН            | 41                  | _    | V    |
| (I <sub>LOAD</sub> ≈ 0 36 mA) PA0-PA7, PB0-PB7                     | Voн             | 41                  | -    | v    |
| $(I_{LOAD} = 1.6 \text{ mA}) \text{ DS, AS, R/W}$                  | VOH             | 4 1                 |      | V    |
| Output Low Voltage                                                 |                 |                     |      |      |
| (I <sub>LOAD</sub> = 1.6 mA) A8-A12, B0-B7                         | Voi             | -                   | 04   | v    |
| (ILOAD = 1.6 mA) PA0-PA7, PB0-PB7                                  | Voi             | -                   | 04   | V    |
| $(I_{LOAD} = 1.6 \text{ mA}) \text{ DS, AS, R/W}$                  | Voi             | -                   | 04   | v    |
| Input High Voltage                                                 |                 |                     |      |      |
| PA0-PA7, PB0-PB7, B0-B7                                            | VIH             | Vpp-20              | _    | v    |
| TIMER, IRO, RESET                                                  | VIH             | V <sub>DD</sub> -08 | -    | V    |
| OSC1                                                               | VIH             | V <sub>DD</sub> -15 | -    | V    |
| Input Low Voltage (All Inputs)                                     | VIL             | _                   | 08   | V    |
| Frequency of Operation                                             | 1               |                     |      |      |
| Crystal                                                            | fosc            | 0 032               | 50   | MHz  |
| External Clock                                                     | fosc            | DC                  | 50   | MHz  |
| Input Current                                                      |                 |                     |      |      |
| RESET, IRQ, Timer, OSC1                                            | lın             | -                   | ± 1  | μΑ   |
| Three-State Output Leakage                                         |                 |                     |      |      |
| PA0-PA7, PB0-PB7, B0-B7                                            | ITSI            | -                   | ± 10 | μΑ   |
| Capacitance                                                        |                 |                     |      |      |
| RESET, IRQ, Timer                                                  | C <sub>in</sub> | -                   | 80   | pF   |
| Capacitance                                                        |                 |                     |      |      |
| DS, AS, R/W, A8-A12, PA0-PA7, PB0-PB7, B0-B7                       | Cout            | -                   | 12 0 | pF   |

NOTE Test conditions for Quiescent Current Values are Port A and B programmed as inputs

OSC1 input is a squarewave from VSS+02V to VDD - 02V OSC2 output load (including tester) is 35 pF maximum

VIL = 0 2 V for PA0-PA7, PB0-PB7, and P0-B7 VIH = VDD - 0 2 V for RESET, IRQ, and Timer

Wait mode (IDD) is affected linearly by this capacitance



### TERMINAL ASSIGNMENT

|                                                            | V <sub>I</sub><br>fos | DD=3 V<br>SC=1 MH | z   | V <sub>DD</sub> -<br>fos |      |     |     |      |
|------------------------------------------------------------|-----------------------|-------------------|-----|--------------------------|------|-----|-----|------|
| Characteristics                                            | Symbol                | Min               | Тур | Max                      | Min  | Тур | Max | Unit |
| I/O Port Timing - Input Setup Time (Figure 3)              | <sup>t</sup> PVASL    | 500               | 1   |                          | 250  | -   | -   | ns   |
| Input Hold Time (Figure 3)                                 | <sup>t</sup> ASLPX    | 100               |     | -                        | 100  | -   | -   | ns   |
| Output Delay Time (Figure 3)                               | <sup>t</sup> ASLPV    | -                 | -   | 0                        | -    | -   | 0   | ns   |
| Interrupt Setup Time (Figure 6)                            | <b>ULASL</b>          | 2                 | -   | -                        | 0.4  | -   | -   | μS   |
| Crystal Oscillator Startup Time (Figure 5)                 | toxov                 | -                 | 30  | 300                      | -    | 15  | 100 | ms   |
| Wait Recovery Startup Time (Figure 7)                      | <b>tIVASH</b>         | -                 | -   | 10                       | -    | -   | 2   | μS   |
| Stop Recovery Startup Time (Crystal Oscillator) (Figure 8) | <b>tILASH</b>         | -                 | 30  | 300                      | -    | 15  | 100 | ms   |
| Required Interrupt Release (Figure 6)                      | <sup>t</sup> DSLIH    | -                 | -   | 5                        | -    | -   | 10  | μs   |
| Timer Pulse Width (Figure 7)                               | tTH, tTL              | 0.5               | -   | -                        | 0.5  | -   | -   | tcyc |
| Reset Pulse Width (Figure 5)                               | tRL                   | 5.2               |     | -                        | 1 05 |     | -   | μs   |
| Timer Period (Figure 7)                                    | <b>TLTL</b>           | 1.0               | -   | -                        | 10   | -   | -   | tcyc |
| Interrupt Pulse Width Low (Figure 16)                      | ίLIΗ                  | 10                |     | -                        | 10   | -   | -   | tcyc |
| Interrupt Pulse Period (Figure 16)                         | <b>TILIL</b>          | *                 | -   | -                        | *    | -   | -   | tcyc |
| Oscillator Cycle Period (1/5 of t <sub>cyc</sub> )         | <sup>t</sup> OLOL     | 1000              | -   | -                        | 200  |     | -   | ms   |
| OSC1 Pulse Width High                                      | tOH                   | 350               | -   | -                        | 75   |     | _   | ns   |
| OSC1 Pulse Width Low                                       | tOL                   | 350               | -   |                          | 75   | -   | -   | ns   |

TABLE 1 -- CONTROL TIMING (VSS=0, TA=TL to TH)

\* The minimum period tiLIL should not be less than the number of t<sub>CYC</sub> cycles it takes to execute the interrupt service routine plus 20 t<sub>CYC</sub> cycles.





92CS-38016

### Fig. 2 - Equivalent test-load circuits.

 $(V_{LOW} = 0.8 \text{ V}, \text{ } V_{HIGH} = V_{DD} - 2 \text{ V}, \text{ } V_{DD} = 5 \pm 10\% \\ \text{Temp} = 0^{\circ} \text{ to } 70^{\circ}\text{C}, \text{ } C_{L} \text{ on Port} = 50 \text{ } \text{pF}, \text{ } f_{OSC} = 5 \text{ } \text{MHz} )$ 



\*The address strobe of the first cycle of the next instruction as shown in Table 11

Fig. 3 - I/O port timing waveforms.

| Num | Characteristics                      | Symbol                          | fosc=<br>V <sub>DD</sub> =<br>50 pF | 1 MHz,<br>=3 ∨<br><sup>:</sup> Load | fOSC=<br>VDD=5<br>1<br>and 130 | Unit |    |
|-----|--------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|--------------------------------|------|----|
|     |                                      |                                 | Min                                 | Max                                 | Min                            | Max  |    |
| 1   | Cycle Time                           | tcyc                            | 5000                                | DC                                  | 1000                           | DC   | ns |
| 2   | Pulse Width, DS Low                  | PWEL                            | 2800                                | -                                   | 560                            | -    | ns |
| 3   | Pulse Width, DS High or RD, WR, Low  | PWEH                            | 1800                                | -                                   | 375                            | -    | ns |
| 4   | Clock Transition                     | t <sub>r</sub> , t <sub>f</sub> | -                                   | 100                                 | -                              | 30   | ns |
| 8   | R/W Hold                             | tRWH                            | 10                                  | -                                   | 10                             | -    | ns |
| 9   | Non-Muxed Address Hold               | tAH.                            | 800                                 | -                                   | 100                            | -    | ns |
| 11  | R/W Delay from DS Fall               | tAD                             | -                                   | 500                                 | -                              | 300  | ns |
| 16  | Non-Muxed Address Delay from AS Rise | <sup>t</sup> ADH                | 0                                   | 200                                 | 0                              | 100  | ns |
| .17 | MPU Read Data Setup                  | <sup>t</sup> DSR                | 200                                 | -                                   | 115                            | _    | ns |
| 18  | Read Data Hold                       | <sup>t</sup> DHB                | 0                                   | 1000                                | 0                              | 160  | ns |
| 19  | MPU Data Delay, Write                | tDDW                            | -                                   | 0                                   | -                              | 120  | ns |
| 21  | Write Data Hold                      | <sup>t</sup> DHW                | 800                                 |                                     | 55                             | -    | ns |
| 23  | Muxed Address Delay from AS Rise     | <sup>t</sup> BHD                | 0                                   | 250                                 | 0                              | 120  | ns |
| 24  | Muxed Address Valid to AS Fall       | tASL                            | 600                                 | -                                   | 55                             | -    | ns |
| 25  | Muxed Address Hold                   | <sup>t</sup> AHL                | 250                                 | 750                                 | 60                             | 180  | ns |
| 26  | Delay DS Fall to AS Rise             | tASD                            | 800                                 | _                                   | 160                            | -    | ns |
| 27  | Pulse Width, AS High                 | PWASH                           | 850                                 | -                                   | 175                            | -    | ns |
| 28  | Delay, AS Fall to DS Rise            | <sup>t</sup> ASED               | 800                                 | -                                   | 160                            | -    | ns |

| TABLE 2 - BUS TIMING | (TA=TL to TH | , V <sub>SS</sub> =0 V) See Figure 4 |
|----------------------|--------------|--------------------------------------|
|----------------------|--------------|--------------------------------------|





# 6805-Series Microprocessors and Microcomputers

**CDP6805E2, CDP6805E2C** 

246



Oscillator Waveform







### Crystal Parameters Representative Frequencies

|                   | 5 MHz    | 4 MHz    | 1 MHz    |
|-------------------|----------|----------|----------|
| RS max            | 50Ω      | 75Ω      | 400Ω     |
| C0                | 8 pF     | 7 pF     | 5 pF     |
| C1                | 0 02 pF  | 0 012 pF | 0 008 pF |
| Q                 | 50 k     | 40 k     | 30 k     |
| C <sub>OSC1</sub> | 15-30 pF | 15-30 pF | 15-40 pF |
| COSC2             | 15-25 pF | 15-25 pF | 15-30 pF |



92CS-38019



Fig. 7 - Timer interrupt after WAIT instruction timing waveforms.



### FUNCTIONAL PIN DESCRIPTION

**VDD and VSS** – VDD and VSS provide power to the chip VDD provides power and VSS is ground

 $\overline{IRQ}$  (Maskable Interrupt Request) –  $\overline{IRQ}$  is a levelsensitive and edge sensitive input which can be used to request an interrupt sequence. The MPU completes the current instruction before it responds to the request. IF  $\overline{IRQ}$  is low and the interrupt mask bit (I-bit) in the Condition Code Register is clear, the MPU begins an interrupt sequence at the end of the current instruction. The interrupt circuit recognizes both a "Wire ORed" level as well as pulses on the  $\overline{IRQ}$  line (see Interrupt Section for more details).  $\overline{IRQ}$  requires an external resistor to VDD for "Wire OR" operation.

**RESET** — The RESET input is not required for start-up but can be used to reset the MPU's internal state and provide an orderly software start-up procedure Refer to the RESET section for a detailed description

TIMER – The TIMER input is used for clocking the onchip timer. Refer to TIMER section for a detailed description

AS (Address Strobe) – Address Strobe (AS) is an output strobe used to indicate the presence of an address on the 8-bit multiplexed bus. The AS line is used to demultiplex the eight least significant address bits from the data bus. A latch controlled by Address Strobe should capture addresses on the negative edge. This output is capable of driving one standard TL load and 130 pF and is available at  $f_{OSC} + 5$  when the MPU is not in the WAIT or STOP states.

DS (Data Strobe) — This output is used to transfer data to or from a peripheral or memory. DS occurs anytime the MPU does a data read or write. DS also occurs when the MPU does a data transfer to or from the MPU's internal memory Refer to Table 2 and Figure 4 for timing characteristics. This output is capable of driving one standard TTL load and 130 pF. DS is a continuous signal at  $f_{OSC} - 5$  when the MPU is not in WAIT or STOP state. Some bus cycles are redundant reads of op code bytes

 $R/\overline{W}$  (Read/Write) – The  $R/\overline{W}$  output is used to indicate the direction of data transfer for both internal memory and I/O registers, and external peripheral devices and memories. This output is used to indicate to a selected peripheral whether the MPU is going to read or write data on the next Data Strobe ( $R/\overline{W}$  low = processor write;  $R/\overline{W}$ high = processor read). The  $R/\overline{W}$  output is capable of driving one standard TTL load and 130 pF. The normal standby state is Read (high)

A8-A15 (High Order Address Lines) — The A8-A15 output lines constitute the higher order non-multiplexed addresses Each output line is capable of driving one standard TTL load and 130 pF

**B0-B7 (Address/Data Bus)** – The B0-B7 bidirectional lines constitute the lower order addresses and data. These lines are multiplexed, with address present at Address Strobe time and data present at Data Strobe time When in the data mode, these lines are bidirectional, transferring data to and from memory and peripheral devices as indicated by the  $R/\overline{W}$  pin As outputs in either the data or address modes, these lines are capable of driving one standard TTL load 130 pF

**OSC1, OSC2** — The CDP6805E3 provides for two types of oscillator inputs — crystal circuit or external clock. The two oscillator pins are used to interface to a crystal circuit, as shown in Figure 5. If an external clock is used, it must be connected to OSC1. The input at these pins is divided by five to form the cycle rate seen on the AS and DS pins. The frequency range is specified by f\_{OSC}. The OSC1 to bus transitions relationships are provided in Figure 9 for system designs using oscillators slower than 5 MHz.



Fig. 9 - OSC1 to bus transitions timing waveforms.

**Crystal** – The circuit shown in Figure 5 is recommended when using a crystal. The internal oscillator is designed to interface with an AT-cut parallel resonant quartz crystal resonator in the frequency range specified for fOSC in the electrical characteristics table. An external CMOS oscillator is recommended when crystals outside the specified ranges are to be used. The crystal and components should be mounted as close as possible to the input pins to minimize output distortion and start-up stabilization time.

External Clock – An external clock should be applied to the OSC1 input with the OSC2 input not connected, as shown in Figure 10



Fig. 10 - External clock connection.

# CDP6805E2, CDP6805E2C

LI (Load Instruction) – This output is used to indicate that a fetch of the next opcode is in progress. LI remains low dur ing an External or Timer interrupt. The LI output is only used for certain debugging and test systems. For normal operations this pin is not connected. The LI output is capable of driving one standard TTL load and 50 pF. This signal overlaps Data Strobe

PA0-PA7 - These eight pins constitute Input/Output Port A. Each line is individually programmed to be either an input or output under software control via its Data Direction Register as shown below. An I/O pin is programmed as an output when the corresponding DDR bit is set to a "1," and as an input when it is set to a "0" In the output mode the bits are latched and appear on the corresponding output pins. An MPU read of the port bits programmed as outputs reflect the last value written to that location. When programmed as an input, the input data bit(s) are not latched. An MPU read of the port bits programmed as inputs reflects the current status of the corresponding input pins. The Read/Write port timing is shown in Figure 3 See typical I/O Port Circuitry in Figure 11. During a Power-On Reset or external RESET all lines are configured as inputs (zero in Data Direction Register) The output port register is not initialized by reset. The TTL compatible three-state output buffers are capable of driving one standard TTL load and 50 pF The DDR is a read/write register

PB0-PB7 — These eight pins interface to Input/Output Port B Refer to PA0-PA7 description for details of operation





Fig. 11 - Typical I/O port circuitry.

92CS-38026

| R/W | DDR | I/O Pin Functions                                                            |
|-----|-----|------------------------------------------------------------------------------|
| 0   | 0   | The I/O pin is in input mode. Data is written<br>into the output data latch. |
| 0   | 1   | Data is written into the output data latch and output to the I/O pin         |
| 1   | 0   | The state of the I/O pin is read                                             |
| 1   | 1   | The I/O pin is in an output mode. The output<br>data latch is read.          |

TABLE 3 - I/O PIN FUNCTIONS

### MEMORY ADDRESSING

The CDP6805E2 is capable of addressing 8192 bytes of memory and I/O registers. The address space is divided into internal memory space and external memory space, as shown in Figure 12.

The internal memory space is located within the first 128 bytes of memory (first half of page zero) and is comprised of the I/O port locations, timer locations, and 112 bytes of RAM. The MPU can read from or write to any of these locations. A program write to on-chip locations is repeated on the external bus to permit off-chip memory to duplicate the content of on-chip memory. Program reads to on-chip locations also appear on the external bus, but the MPU accepts data only from the addressed on-chip location. Any read data appearing on the input bus is ignored.

The stack pointer is used to address data stored on the stack. Data is stored on the stack during interrupts and subroutine calls At power up, the stack pointer is set to \$7F and it is decremented as data is pushed onto the stack. When data is removed from the stack, the stack pointer is incremented A maximum of 64 bytes of RAM is available for stack usage. Since most programs use only a small part of the allotted stack locations for interrupts and/or subroutine stacking purposes, the unused bytes are usable for program data storage.

All memory locations above location \$007F are part of the external memory map. In addition, ten locations in the I/O portion of the lower 128 bytes of memory space, as shown In Figure 12, are part of the external memory map. All of the external memory space is user definable except the highest 10 locations. Locations \$1FF6 to \$1FFF of the external address space are reserved for interrupt and reset vectors (see Figure 12).

### REGISTERS

The CDP6805E2 contains five registers as shown in the programming model in Figure 13. The interrupt stacking order is shown in Figure 14.

ACCUMULATOR (A) – This Accumulator is an 8-bit general purpose register used for arithmetic calculations and data manipulations.

INDEX REGISTER (X) — The X register is an 8-bit register which is used during the indexed modes of addressing. It provides an 8-bit operand which is used to create an effective address. The index register is also used for data manipulations with the Read/Modify/Write type of instructions and as a temporary storage register when not performing addressing operations.

**PROGRAM COUNTER (PC)** – The program counter is a 13-bit register that contains the address of the next instruction to be executed by the processor



92CS-38027

Fig. 12 - Address map.



Fig. 13 - Programming model.





STACK POINTER (SP) — The stack pointer is a 13-bit register containing the address of the next free location on the stack. When accessing memory, the seven mostsignificant bits are permanently set to 000001. They are appended to the six least-significant register bits to produce an address within the range of \$007F to \$0040. The stack area of RAM is used to store the return address on subroutine calls and the machine state during interrupts. During external or power-on reset, and during a "reset stack pointer" instruction, the stack pointer is set to its upper limit (\$007F). Nested interrupts and/or subroutines may use up to 64 (decimal) locations, beyond which the stack pointer "wraps around" and points to its upper limit thereby losing the previously stored information. A subroutine call occupies two RAM bytes on the stack, while an interrupt uses five bytes

**CONDITION CODE REGISTER (CC)** — The condition code register is a 5-bit register in which each bit is used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action

taken as a result of their state  $% \left( {{{\rm{Each}}} \right)$  Each of the five bits is explained below

Half Carry Bit (H) — The H-bit is set to a one when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. The H-bit is useful in Binary Coded Decimal addition subroutines.

Interrupt Mask Bit (I) — When the I-bit is set, both the external interrupt and the timer interrupt are disabled. Clearing this bit enables the above interrupts. If an interrupt occurs while the I-bit is set, the interrupt is latched and will be processed when the I-bit is next cleared.

**Negative Bit (N)** — When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical one)

Zero Bit (Z) – When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero

254

**Carry Bit (C)** — The C-bit is set when a carry or a borrow out of the ALU occurs during an arithmetic instruction. The C-bit is also modified during bit test, shift, rotate, and branch types of instruction

### RESETS

The CDP6805E2 has two reset modes: an active low external reset pin (RESET) and a Power-On Reset function, refer to Figure 5

**RESET (Pin #1)** — The RESET input pin is used to reset the MPU and provide an orderly software start-up procedure. When using the external reset mode, the RESET pin must stay low for a minimum of one t<sub>CYC</sub>. The RESET pin is provided with a Schmitt Trigger to improve its noise immunity capability.

**Power-On Reset** — The Power-on Reset occurs when a positive transition is detected on V<sub>DD</sub>. The Power-on Reset is used strictly for power turn-on conditions and should not be used to detect any drops in the power supply voltage. There is no provision for a power-down reset. The power-on circuitry provides for a 1920 t<sub>CVC</sub> delay from the time of the first oscillator operation. If the external reset pin is low at the end of the 1920 t<sub>CVC</sub> time out, the processor remains in the reset condition.

Either of the two types of reset conditions causes the following to occur:

- Timer control register interrupt request bit (bit 7) is cleared to a "0".
- Timer control register interrupt mask bit (bit 6) is set to a "1".
- All data direction register bits are cleared to a "0" (inputs).
- Stack pointer is set to \$007F.
- The address bus is forced to the reset vector (\$1FFE, \$1FFF).
- Condition code register interrupt mask bit (I) is set to a "1".
- STOP and WAIT latches are reset.
- External interrupt latch is reset.

All other functions, such as other registers (including output ports) the timer, etc., are not cleared by the reset conditions.

### INTERRUPTS

The CDP6805E2 is capable of operation with three different interrupts, two hardware (timer interrupt and external interrupt) and one software (SWI). When any of these interrupts occur, normal processing is suspended at the end of the current instruction execution. All of the program registers (the machine state) are pushed onto the stack, refer to Figure 14 for stacking order. The appropriate vector pointing to the starting address of the interrupt service routine is then fetched, refer to Figure 15 for the interrupt sequence.

The priority of the various interrupts from highest to lowest is as follows:

RESET → ★→ External Interrupt → Timer Interrupt

TIMER INTERRUPT – If the timer mask bit (TCR6) is cleared, then each time the timer decrements to zero (transitions from \$01 to \$00) an interrupt request is generated. The actual processor interrupt is generated only if the interrupt

\*Any current instruction including SWI.

# CDP6805E2, CDP6805E2C

mask bit of the condition code register is also cleared. When the interrupt is recognized, the current state of the machine is pushed onto the stack and the I-bit in the condition code register is set. This masks further interrupts util the present one is serviced. The processor now vectors to the timer interrupt service routine. The address for this service routine is specified by the contents of \$1FF8 and \$1FF9. The contents of \$1FF6 and \$1FF7 specify the service routine. Also, software must be used to clear the timer interrupt request bit (TCR7). At the end of the timer interrupt service routine, the software normally executes an RTI instruction which restores the machine state and starts executing the interrupted program.

EXTERNAL INTERRUPT - If the interrupt mask bit of the condition code register is cleared and the external interrupt pin IRQ is "low," then the external interrupt occurs. The action of the external interrupt is identical to the timer interrupt with the exception that the service routine address is specified by the contents of \$1FFA and \$1FFB. The interrupt logic recognizes both a "wire ORed" level and pulses on the external interrupt line Figure 16 shows both a functional diagram and timing for the interrupt line. The timing diagram shows two different treatments of the interrupt line (IRQ) to the processor. The first configuration shows many interrupt lines "wire ORed" to form the interrupts at the processor Thus, if after servicing an interrupt the IRQ remains low, then the next interrupt is recognized. The second method is single pulses on the interrupt line spaced far enough apart to be service. The minimum time between pulses is a function of the length of the interrupt service routine. Once a pulse occurs, the next pulse should not occur until the MPU software has exited the routine (an RTI occurs) This time (till) is obtained by adding 20 instruction cycles (one cycle tcvc=5/fOSC) to the total number of cycles it takes to complete the service routine including the RTI instruction; refer to Figure 6.

**SOFTWARE INTERRUPT (SWI)** – The software interrupt is an executable instruction. The action of the SWI instruction is similar to the hardware interrupts. The SWI is executed regardless of the state of the interrupt mask in the condition code register. The service routine address is specified by the contents of memory locations \$1FFC and \$1FFD. See Figure 15 for Interrupt and Instruction Processing Flowchart.

The following three functions are not strictly interrupts, however, they are tied very closely to the interrupts. These functions are RESET, STOP, WAIT

**RESET** – The RESET input pin and the internal Power-on Reset function each cause the program to vector to an intrialization program. This vector is specified by the contents of memory locations \$1FFE and \$1FFF. The interrupt mask of the condition code register is also set. Refer to RESET section for details



Fig. 15 - Interrupt and instruction processing flowchart.

(a) Interrupt Functional Diagram



Fig. 16 - External interrupt.

 ${\rm STOP}$  — The STOP instruction places the CDP6805E2 in a low power consumption mode. In the STOP function the internal oscillator is turned off, causing all internal processing and the timer to be halted, refer to Figure 17. The DS and AS lines go to a low state and the R/W line goes to a high state. The multiplexed address/data bus goes to the data input state. The high order address lines remain at the address of the next instruction. The MPU remains in the STOP mode until an external interrupt or reset occurs; refer to Figure 8 and 17

During the STOP mode, timer control register (TCR) bits 6 and 7 are altered to remove any pending timer interrupt requests and to disable any further timer interrupts. External interrupts are enabled in the condition code register. All other registers and memory remain unaltered. All I/O lines remain unchanged.



Fig. 17 - Stop function flowchart.

WAIT – The WAIT instruction places the CDP6805E2 in a low power consumption mode, but the WAIT mode con-92CS-38032 sumes somewhat more power than the STOP mode; refer to Table 1 In the WAIT function, the internal clock is disabled from all internal circuitry except the Timer circuit, refer to Figure 18 Thus, all internal processing is halted except the Timer which is allowed to count in a normal sequence. The  $R/\overline{W}$  line goes to a high state, the multiplexed address/data bus goes to the data input state, and the DS and AS lines go to the low state. The high order address lines remain at the address of the next instruction. The MPU remains in this state until an external interrupt, timer interrupt, or a reset occurs, refer to Figures 7 and 18

During the WAIT mode, the I-bit in the condition code register is cleared to enable interrupts. All other registers, memory, and I/O lines remain in their last state. The timer may be enabled to allow a periodic exit from the WAIT mode. If an external and a timer interrupt occur at the same time, the external interrupt is serviced first, then, if the timer interrupt request is not cleared in the external interrupt routine, the normal timer interrupt (not the timer WAIT interrupt) is serviced since the MCU is no longer in the WAIT mode.

### TIMER

The MPU timer contains a single 8-bit software programmable counter with 7-bit software selectable prescaler. The counter may be preset under program control and decrements towards zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the Timer Control Register (TCR) is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the l-bit in the Condition Code Register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer vector address from locations \$1FF8 and \$1FF9 in order to begin servicing the interrupt, unless it was in locations \$1FF6 and \$1FF7 the WAIT mode.

The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter becomes stable prior to the read portion of a cycle and does not change during the read. The timer interrupt request bit remains set until cleared by the software If this happens before the timer interrupt is serviced, the interrupt is lost TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6=1)

The prescaler is a 7-bit divider which is used to extend the maximum length of the timer Bit 0, bit 1, and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler, however, its contents are cleared to all "0's" by the write operation into TCR when bit 3 of the written data equals 1, which allows for truncation-free counting.

The Timer input can be configured for three different operating modes, plus a disable mode depending on the value written to the TCR4, TCR5 control bits Refer to the TIMER CONTROL REGISTER section

Timer Input Mode 1 - If TCR4 and TCR5 are both programmed to a "0", the input to the Timer is from an internal clock and the Timer input is disabled. The internal clock mode can be used for periodic interrupt generation, as well



Fig. 18 - Wait function flowchart.

as a reference in frequency and event measurement. The internal clock is the instruction cycle clock and is coincident with Address Strobe (AS) except during a WAIT instruction. During a WAIT instruction the AS pin goes to a low state but the internal clock to the Timer continues to run at its normal rate.

Timer Input Mode 2 – With TCR4=1 and TCR5=0, the internal clock and the TIMER input pin are ANDed together to form the Timer input signal. This mode can be used to measure external pulse widths. The external pulse simply turns on the internal clock for the duration of the pulse. The resolution of the count in this mode is  $\pm 1$  clock and therefore accuracy improves with longer input pulse widths.

**Timer Input Mode 3** - If TCR4=0 and TCR5=1, then all inputs to the Timer are disabled.

Timer Input Mode 4 – If TCR4=1 and TCR5=1, the internal clock input to the Timer is disabled and the TIMER input pin becomes the input to the Timer. The external Timer pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

Figure 19 shows a block diagram of the Timer subsystem Power-on Reset and the STOP instruction cause the counter to be set to \$F0



NOTES:

 Prescaler and 8-bit counter are clocked falling edge of the internal clock (AS) or external input.

2. Counter is written to during Data Strobe (DS) and counts down continuously.

92CM- 38034R1

Fig. 19 – Timer block diagram.

**Timer Control Register (TCR)** 

|      | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|
| TCR7 | TCR6 | TCR5 | TCR4 | TCR3 | TCR2 | TCR1 | TCRO |

All bits in this register except bit 3 are Read/Write bits.

TCR7 - Timer interrupt request bit: bit used to indicate the timer interrupt when it is logic "1".

- Set whenever the counter decrements to zero, or under program control.
- 0 Cleared on external reset, power-on reset, STOP instruction, or program control.

 $\mbox{TCR6}$  - Timer interrupt mask bit: when this bit is a logic "1" it inhibits the timer interrupt to the processor.

- Set on external reset, power-on reset, STOP instruction, or program control.
- 0 Cleared under program control.

TCR5 – External or internal bit: selects the input clock source to be either the external timer pin or the internal clock. (Unaffected by RESET)

- 1 Select external clock source
- 0 Select internal clock source (AS).

TCR4 – External enable bit: control bit used to enable the external timer pin. (Unaffected by RESET.)

- 1 Enable external timer pin.
- 0 Disable external timer pin.

### TCR5 TCR4

| 0 | 0 | Internal clock (AS) to Timer         |
|---|---|--------------------------------------|
| 0 | 1 | AND of internal clock (AS) and TIMER |
| 1 | 0 | Inputs to Timer disabled             |
| 1 | 1 | TIMER pin to Timer                   |

Refer to Figure 19 for Logic Representation.

TCR3 – Timer Prescaler Reset bit: writing a "1" to this bit resets the prescaler to zero. A read of this location always indicates a "0" (Unaffected by RESET.)

TCR2, TCR1, TCR0 – Prescaler address bits: decoded to select one of eight taps on the prescaler. (Unaffected by RESET.)

| Prescaler |      |      |        |  |  |  |  |  |  |  |  |  |
|-----------|------|------|--------|--|--|--|--|--|--|--|--|--|
| TCR2      | TCR1 | TCR0 | Result |  |  |  |  |  |  |  |  |  |
| 0         | 0    | 0    | + 1    |  |  |  |  |  |  |  |  |  |
| 0         | 0    | 1    | + 2    |  |  |  |  |  |  |  |  |  |
| 0         | 1    | 0    | + 4    |  |  |  |  |  |  |  |  |  |
| 0         | 1    | 1    | +8     |  |  |  |  |  |  |  |  |  |
| 1         | 0    | 0    | + 16   |  |  |  |  |  |  |  |  |  |
| 1         | 0    | 1    | + 32   |  |  |  |  |  |  |  |  |  |
| 1         | 1    | 0    | + 64   |  |  |  |  |  |  |  |  |  |
| 1         | 1    | 1    | + 128  |  |  |  |  |  |  |  |  |  |

### INSTRUCTION SET

The MPU has a set of 61 basic instructions. They can be divided into five different types: register/memory, read/modify/write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

**REGISTER/MEMORY INSTRUCTIONS** — Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 4.

**READ/MODIFY/WRITE INSTRUCTIONS** – These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is an exception to the read/modify/write sequence since it does not modify the value. Refer to Table 5.

**BRANCH INSTRUCTIONS** – This set of instructions branches if a particular condition is met, otherwise no operation is performed. Branch instructions are two byte instructions. Refer to Table 6.

BIT MANIPULATION INSTRUCTIONS — The MPU is capable of setting or clearing any bit which resides in the first 256 bytes of the memory space, where all port registers, port DDRs, timer, timer control, and on-chip RAM reside. An additional feature allows the software to test and branch on the state of any bit within these 256 locations. The bit set, bit clear and bit test and branch functions are all implemented with a single instruction. For the test and branch instructions the value of the bit tested is also placed in the carry bit of the Condition Code Register. Refer to Table 7 for instruction cycle timing.

**CONTROL INSTRUCTIONS** – These instructions are register reference instructions and are used to control processor operation during program execution. Refer to Table 8 for instruction cycle timing.

ALPHABETICAL LISTING – The complete instruction set is given in alphabetical order in Table 9.

**OPCODE MAP SUMMARY** – Table 10 is an opcode map for the instructions used on the MCU.

### ADDRESSING MODES

The MPU uses ten different addressing modes to give the programmer an opportunity to optimize the code to all situations. The various indexed addressing modes make it possible to locate data tables, code conversion tables and scaling tables anywhere in the memory space. Short indexed accesses are single byte instructions, while the longest instructions (three bytes) permit tables throughout memory. Short and long absolute addressing is also included. Two byte

### direct addressing instructions access all data bytes in most applications Extended addressing permits jump instructions to reach all memory. Table 9 shows the addressing modes for each instruction, with the effects each instruction has on the Condition Code Register. An opcode map is shown in Table 10

CDP6805E2, CDP6805E2C

The term "Effective Address" or EA is used in describing the various addressing modes, which is defined as the address to or from which the argument for an instruction is fetched or stored. The ten addressing modes of the processor are described below. Parentheses are used to indicate "contents of," an arrow indicates "is replaced by" and a colon indicates concatenation of two bytes.

Inherent — In inherent instructions all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index register or accumulator, and no other arguments, are included in this mode.

Immediate — In immediate addressing, the operand is contained in the byte immediately following the opcode. Immediate addressing is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

$$EA = PC + 1$$
;  $PC - PC + 2$ 

**Direct** — In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single two byte instruction. This includes all on-chip RAM and I/O registers and up to 128 bytes of off-chip ROM. Direct addressing is efficient in both memory and speed.

 $EA = (PC + 1); PC \leftarrow PC + 2$ Address Bus High  $\leftarrow 0;$  Address Bus Low  $\leftarrow (PC + 1)$ 

**Extended** — In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode. Instructions with extended addressing modes are capable of referencing arguments anywhere in memory with a single three byte instruction.

EA = (PC + 1):(PC + 2); PC - PC + 3Address Bus High - (PC + 1); Address Bus Low - (PC + 2)

Indexed, No-Offset — In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8-bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is used to move a pointer through a table or to address a frequently referenced RAM or 1/O location.

 $EA = X, PC \leftarrow PC + 1$ Address Bus High  $\leftarrow 0$ ; Address Bus Low  $\leftarrow X$ 

|                                             |          |            | Addressing Modes |             |            |            |             |            |            |             |            |                     |             |            |                     |             |            |                     |             |
|---------------------------------------------|----------|------------|------------------|-------------|------------|------------|-------------|------------|------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------|
|                                             |          |            | mmediat          | e           |            | Direct     |             |            | Extended   |             | (1         | Indexed<br>No Offse | t)          | (8-        | Indexed<br>Bit Offs | et)         | (16        | Indexed<br>Bit Offs | et)         |
| Function                                    | Mnemonic | Op<br>Code | #<br>Bytes       | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes          | #<br>Cycles | Op<br>Code | #<br>Bytes          | #<br>Cycles | Op<br>Code | #<br>Bytes          | /<br>Cycles |
| Load A from Memory                          | LDA      | A6         | 2                | 2           | B6         | 2          | 3           | C6         | 3          | 4           | F6         | 1                   | 3           | E6         | 2                   | 4           | D6         | 3                   | 5           |
| Load X from Memory                          | LDX      | AE         | 2                | 2           | BE         | 2          | 3           | CE         | 3          | 4           | FE         | 1                   | 3           | EE         | 2                   | 4           | DE         | 3                   | 5           |
| Store A in Memory                           | STA      | -          | -                | -           | 87         | 2          | 4           | C7         | 3          | 5           | F7         | 1                   | 4           | E7         | 2                   | 5           | D7         | 3                   | 6           |
| Store X in Memory                           | STX      |            | -                | -           | BF         | 2          | 4           | CF         | 3          | 5           | FF         | 1                   | 4           | EF         | 2                   | 5           | DF         | 3                   | 6           |
| Add Memory to A                             | ADD      | AB         | 2                | 2           | BB         | 2          | 3           | СВ         | 3          | 4           | FB         | 1                   | 3           | EB         | 2                   | 4           | DB         | 3                   | 5           |
| Add Memory and<br>Carry to A                | ADC      | A9         | 2                | 2           | B9         | 2          | 3           | С9         | 3          | 4           | F9         | 1                   | 3           | E9         | 2                   | 4           | D9         | 3                   | 5           |
| Subtract Memory                             | SUB      | A0         | 2                | 2           | в0         | 2          | 3           | C0         | 3          | 4           | F0         | 1                   | 3           | EO         | 2                   | 4           | D0         | 3                   | 5           |
| Subtract Memory from<br>A with Borrow       | SBC      | A2         | 2                | 2           | B2         | 2          | 3           | C2         | 3          | 4           | F2         | 1                   | 3           | E2         | 2                   | 4           | D2         | 3                   | 5           |
| AND Memory to A                             | AND      | A4         | 2                | 2           | B4         | 2          | 3           | C4         | 3          | 4           | F4         | 1                   | 3           | E4         | 2                   | 4           | D4         | 3                   | 5           |
| OR Memory with A                            | ORA      | AA         | 2                | 2           | BA         | 2          | 3           | CA         | 3          | 4           | FA         | 1                   | 3           | EA         | 2                   | 4           | DA         | 3                   | 5           |
| Exclusive OR Memory<br>with A               | EOR      | A8         | 2                | 2           | B8         | 2          | 3           | C8         | 3          | 4           | F8         | 1                   | 3           | E8         | 2                   | 4           | D8         | 3                   | 5           |
| Arithmetic Compare A<br>with Memory         | СМР      | A1         | 2                | 2           | B1         | 2          | 3           | C1         | 3          | 4           | F1         | 1                   | 3           | E1         | 2                   | 4           | D1         | 3                   | 5           |
| Arithmetic Compare X<br>with Memory         | СРХ      | A3         | 2                | 2           | B3         | 2          | 3.          | C3         | 3          | 4           | F3         | 1                   | 3           | E3         | 2                   | 4           | D3         | 3                   | 5           |
| Bit Test Memory with<br>A (Logical Compare) | віт      | A5         | 2                | 2           | B5         | 2          | 3           | C5         | 3          | 4           | F5         | 1                   | 3           | E5         | 2                   | 4           | D5         | 3                   | 5           |
| Jump Unconditional                          | JMP      | -          | -                | -           | вс         | 2          | 2           | сс         | 3          | 3           | FC         | 1                   | 2           | EC         | 2                   | 3           | DC         | 3                   | 4           |
| Jump to Subroutine                          | JSR      | -          | -                | -           | BD         | 2          | 5           | CD         | 3          | 6           | FD         | 1                   | 5           | ED         | 2                   | 6           | DD         | 3                   | 7           |

### TABLE 4 - REGISTER/MEMORY INSTRUCTIONS

### TABLE 5 - READ/MODIFY/WRITE INSTRUCTIONS

|                              |          |              | Addressing Modes |             |            |              |             |            |            |             |            |                        |             |            |                           |             |  |
|------------------------------|----------|--------------|------------------|-------------|------------|--------------|-------------|------------|------------|-------------|------------|------------------------|-------------|------------|---------------------------|-------------|--|
|                              |          | Inherent (A) |                  |             | In         | Inherent (X) |             |            | Direct     |             |            | Indexed<br>(No Offset) |             |            | Indexed<br>(8-Bit Offset) |             |  |
| Function                     | Mnemonic | Op<br>Code   | #<br>Bytes       | #<br>Cycles | Op<br>Code | #<br>Bytes   | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes             | #<br>Cycles | Op<br>Code | #<br>Bytes                | #<br>Cycles |  |
| Increment                    | INC      | 4C           | 1                | 3           | 5C         | 1            | 3           | 3C         | 2          | 5           | 7C         | 1                      | 5           | 6C         | 2                         | 6           |  |
| Decrement                    | DEC      | 4A           | 1                | 3           | 5A         | 1            | 3           | 3A         | 2          | 5           | 7A         | 1                      | 5           | 6A         | 2                         | 6           |  |
| Clear                        | CLR      | 4F           | 1                | 3           | 5F         | 1            | 3           | 3F         | 2          | 5           | 7F         | 1                      | 5           | 6F         | 2                         | 6           |  |
| Complement                   | COM      | 43           | 1                | 3           | 53         | 1            | 3           | 33         | 2          | 5           | 73         | 1                      | 5           | 63         | 2                         | 6           |  |
| Negate<br>(2's Complement)   | NEG      | 40           | 1                | 3           | 50         | 1            | 3           | 30         | 2          | 5           | 70         | 1                      | 5           | 60         | 2,                        | 6           |  |
| Rotate Left Thru Carry       | ROL      | 49           | 1                | 3           | 59         | 1            | 3           | 39         | 2          | 5           | 79         | 1                      | 5           | 69         | 2                         | 6           |  |
| Rotate Right Thru<br>Carry   | ROR      | 46           | 1                | 3           | 56         | 1            | 3           | 36         | 2          | 5           | 76         | 1                      | 5           | 66         | 2                         | 6           |  |
| Logical Shift Left           | LSL      | 48           | 1                | 3           | 58         | 1            | 3           | 38         | 2          | 5           | 78         | 1                      | 5           | 68         | 2                         | 6           |  |
| Logical Shift Right          | LSR      | 44           | 1                | 3           | 54         | 1            | 3           | 34         | 2          | 5           | 74         | 1                      | 5           | 64         | 2                         | 6           |  |
| Arithmetic Shift Right       | ASR      | 47           | 1                | 3           | 57         | 1            | 3           | 37         | 2          | 5           | 17         | 1                      | 5           | 67         | 2                         | 6           |  |
| Test for Negative<br>or Zero | тят      | 4D           | 1                | 3           | 5D         | 1            | 3           | 3D         | 2          | 4           | 7D         | 1                      | 4           | 6D         | 2                         | 5           |  |

**CDP6805E2, CDP6805E2C** 

|                                        |          | Relative Addressing Mode |            |             |  |  |  |  |
|----------------------------------------|----------|--------------------------|------------|-------------|--|--|--|--|
| Function                               | Mnemonic | Op<br>Code               | #<br>Bytes | #<br>Cycles |  |  |  |  |
| Branch Always                          | BRA      | 20                       | 2          | 3           |  |  |  |  |
| Branch Never                           | BRN      | 21                       | 2          | 3           |  |  |  |  |
| Branch IFF Higher                      | вні      | 22                       | 2          | 3           |  |  |  |  |
| Branch IFF Lower or Same               | BLS      | 23                       | 2          | 3           |  |  |  |  |
| Branch IFF Carry Clear                 | BCC      | 24                       | 2          | 3           |  |  |  |  |
| (Branch IFF Higher or Same)            | (BHS)    | 24                       | 2          | 3           |  |  |  |  |
| Branch IFF Carry Set                   | BCS      | 25                       | 2          | 3           |  |  |  |  |
| (Branch IFF Lower)                     | (BLO)    | 25                       | 2          | 3           |  |  |  |  |
| Branch IFF Not Equal                   | BNE      | 26                       | 2          | 3           |  |  |  |  |
| Branch IFF Equal                       | BEQ      | 27                       | 2          | 3           |  |  |  |  |
| Branch IFF Half Carry Clear            | BHCC     | 28                       | 2          | 3           |  |  |  |  |
| Branch IFF Half Carry Set              | BHCS     | 29                       | 2          | 3           |  |  |  |  |
| Branch IFF Plus                        | BPL      | 2A                       | 2          | 3           |  |  |  |  |
| Branch IFF Minus                       | BMI      | 2B                       | 2          | 3           |  |  |  |  |
| Branch IFF Interrupt Mask Bit is Clear | BMC      | 2C                       | 2          | 3           |  |  |  |  |
| Branch IFF Interrupt Mask Bit is Set   | BMS      | 2D                       | 2          | 3           |  |  |  |  |
| Branch IFF Interrupt Line is Low       | BIL      | 2E                       | 2          | 3           |  |  |  |  |
| Branch IFF Interrupt Line is High      | BIH      | 2F                       | 2          | 3           |  |  |  |  |
| Branch to Subroutine                   | BSR      | AD                       | 2          | 6           |  |  |  |  |

### TABLE 6 - BRANCH INSTRUCTIONS

TABLE 7 - BIT MANIPULATION INSTRUCTIONS

|                           |                    | Addressing Modes                  |            |             |            |            |             |  |  |  |
|---------------------------|--------------------|-----------------------------------|------------|-------------|------------|------------|-------------|--|--|--|
|                           |                    | Bit Set/Clear Bit Test and Branch |            |             |            |            |             |  |  |  |
| Function                  | Mnemonic           | Op<br>Code                        | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles |  |  |  |
| Branch IFF Bit n is Set   | BRSET n (n = 0 .7) | -                                 | -          | -           | 2•n        | 3          | 5           |  |  |  |
| Branch IFF Bit n is Clear | BRCLR n (n = 0 7)  | -                                 | -          | -           | 01 + 2•n   | 3          | 5           |  |  |  |
| Set Bit n                 | BSET n (n=0 .7)    | 10+2•n                            | 2          | 5           | -          | -          | -           |  |  |  |
| Clear Bit n               | BCLR n (n = $0$ 7) | 11+2•n                            | 2          | 5           | -          | -          | -           |  |  |  |

### TABLE 8 - CONTROL INSTRUCTIONS

|                          |          | Inherent   |            |             |  |  |  |  |
|--------------------------|----------|------------|------------|-------------|--|--|--|--|
| Function                 | Mnemonic | Op<br>Code | #<br>Bytes | #<br>Cycles |  |  |  |  |
| Transfer A to X          | TAX      | 97         | 1          | 2           |  |  |  |  |
| Transfer X to A          | TXA      | 9F         | 1          | 2           |  |  |  |  |
| Set Carry Bit            | SEC      | 99         | 1          | 2           |  |  |  |  |
| Clear Carry Bit          | CLC      | 98         | 1          | 2           |  |  |  |  |
| Set Interrupt Mask Bit   | SEI      | 9B         | 1          | 2           |  |  |  |  |
| Clear Interrupt Mask Bit | CLI      | 9A         | 1          | 2           |  |  |  |  |
| Software Interrupt       | SWI      | 83         | 1          | 10          |  |  |  |  |
| Return from Subroutine   | RTS      | 81         | 1          | 6           |  |  |  |  |
| Return from Interrupt    | RTI      | 80         | 1          | 9           |  |  |  |  |
| Reset Stack Pointer      | RSP      | 9C         | 1          | 2           |  |  |  |  |
| No-Operation             | NOP      | 9D         | 1          | 2           |  |  |  |  |
| Stop                     | STOP     | 8E         | 1          | 2           |  |  |  |  |
| Wait                     | WAIT     | 8F         | 1          | 2           |  |  |  |  |

|          | Addressing Modes                        |           |          |           |          |                        |                     |                      |                      |                         |   | ndit | ion      | Co       | des      |
|----------|-----------------------------------------|-----------|----------|-----------|----------|------------------------|---------------------|----------------------|----------------------|-------------------------|---|------|----------|----------|----------|
| Mnemonic | Inherent                                | Immediate | Direct   | Extended  | Relative | Indexed<br>(No Offset) | Indexed<br>(8 Bits) | Indexed<br>(16 Bits) | Bit<br>Set/<br>Clear | Bit<br>Test &<br>Branch | н | 1    | N        | z        | с        |
| ADC      |                                         | ×         | Х        | x         |          | ×                      | X                   | X                    |                      |                         | ۸ | •    | ۸        | ۸        | ۸        |
| ADD      |                                         | X         | X        | X         |          | X                      | X                   | X                    |                      |                         | Λ | ٠    | X        | ٨        | λ        |
| AND      |                                         | ×         | <u> </u> | ×         |          | X                      | <u>×</u>            | X                    |                      |                         | • | •    | ٨        | ۸        | •        |
| ASL      | X                                       |           | X        |           |          |                        | ×                   |                      |                      |                         | • | •    | ۸        | ٨        | <u>^</u> |
| ASH      | X                                       |           | <u>^</u> |           | Y        | ^                      | <u> </u>            | ·····                |                      |                         | - |      | <u>^</u> | <u>^</u> | <u>^</u> |
| BCL      |                                         |           |          |           | ^        |                        |                     |                      |                      |                         |   |      |          | -        | -        |
| BULK     |                                         |           |          |           | ×        |                        |                     |                      | <u>^</u>             |                         |   | -    | -        | -        | -        |
| BEO      |                                         |           |          |           | X        |                        |                     |                      |                      |                         |   |      |          | -        | -        |
| BHCC     |                                         |           |          |           | X        |                        |                     |                      |                      |                         | • | •    | •        | Ť        | •        |
| BHCS     |                                         |           |          |           | X        |                        |                     |                      |                      |                         | • | •    | •        | •        | •        |
| BHI      |                                         |           |          |           | X        |                        |                     |                      |                      |                         | ٠ | •    | ٠        | •        | •        |
| BHS      |                                         |           |          |           | X        |                        |                     |                      |                      |                         | • | ٠    | •        | •        | •        |
| BIH      |                                         |           |          |           | X        |                        |                     |                      |                      |                         | ٠ | •    | ٠        | ٠        | •        |
| BIL      |                                         |           |          |           | X        |                        |                     |                      |                      |                         | • | •    | •        | •        | •        |
| BIT      |                                         | X         | <u> </u> | X         |          | X                      | <u>×</u>            | <u>×</u>             |                      |                         | • | ٠    | ۸        | ۸        | •        |
| BLO      |                                         |           |          |           | ×        |                        |                     |                      |                      |                         | • | •    | •        | •        | •        |
| BLS      |                                         |           |          |           |          |                        |                     |                      |                      |                         | - |      | -        | -        | •        |
| BMU      |                                         |           |          |           | x        |                        |                     |                      |                      |                         |   | -    | -        | -        | -        |
| BMS      |                                         |           |          |           | <u>^</u> |                        |                     |                      |                      |                         |   | -    |          | •        | -        |
| BNF      |                                         |           |          |           | X        |                        | ****                |                      |                      |                         | • | -    |          | •        | •        |
| BPL      |                                         |           |          |           | X        |                        |                     |                      |                      |                         |   | •    |          | •        | •        |
| BRA      |                                         |           |          |           | Х        |                        |                     |                      |                      |                         | • | •    | 0        | •        | •        |
| BRN      |                                         |           |          |           | x        |                        |                     |                      |                      |                         | ٠ | •    | •        | •        | ٠        |
| BRCLR    |                                         |           |          |           |          |                        |                     |                      |                      | Х                       | ٠ | ٠    | ۲        | •        | ٨        |
| BRSET    |                                         |           |          |           |          |                        |                     |                      |                      | X                       | ٠ | ٠    | ٠        | •        | ٨        |
| BSET     |                                         |           |          |           |          |                        |                     |                      | Х                    |                         | • | ۰    | ٠        | •        | •        |
| BSR      |                                         |           |          |           | X        |                        |                     |                      |                      |                         | • | •    | ٠        | •        | •        |
| CLC      | <u>×</u>                                |           |          |           |          |                        |                     |                      |                      |                         | • | •    | •        | •        | 0        |
| CLI      | X                                       |           | V        |           |          |                        |                     |                      |                      |                         | • | 0    | •        | •        | •        |
| CLH      | ×                                       | ~ ~ ~     | <u> </u> |           |          | ×                      | ×                   |                      |                      |                         | • |      | 0        | -        | •        |
| COM      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <u> </u>  |          | ^         |          |                        | - ÷                 | ^                    |                      |                         |   | -    | <u>^</u> | Λ<br>_   | <u>^</u> |
| CPX      | <u>^</u>                                |           | Ŷ        | ¥         |          |                        | Ŷ                   |                      |                      |                         |   | -    | <u>^</u> | Λ<br>Α   | -        |
| DEC      | x                                       | <u>^</u>  | x        | <u>``</u> |          | ×                      | X                   | ^`                   |                      |                         | • | ÷    | Ä        | Ä        | ÷        |
| EOR      |                                         | X         | X        | ×         |          | ×                      | X                   | X                    |                      |                         |   | •    | Ä        | Ä        | •        |
| INC      | X                                       |           | X        |           |          | X                      | X                   |                      |                      |                         | • | ٠    | ٨        | ۸        | •        |
| JMP      |                                         |           | X        | X         |          | X                      | X                   | X                    |                      |                         | • | ٠    | •        | •        | •        |
| JSR      |                                         |           | Х        | ` X       |          | х                      | Х                   | . x                  |                      |                         | • | •    | •        | •        | •        |
| LDA      |                                         | x         | Х        | X         |          | X                      | Х                   | ×                    |                      |                         | • | ٠    | ۸        | ۸        | •        |
| LDX      |                                         | X         | X        | X         |          | X                      | X                   | X                    |                      |                         | • | •    | ٨        | ٨        | •        |
| LSL      | X                                       |           | X        |           |          | X                      | <u>×</u>            |                      |                      |                         | • | •    | A        | A        | <u>^</u> |
| LSH      |                                         |           | ×        |           |          | ×                      | ×                   |                      |                      |                         |   | -    | 0        | 4        | <u>^</u> |
| NOP      |                                         |           | ^        |           |          |                        | ~                   |                      |                      |                         |   | -    | A        | <u>^</u> | -        |
| ORA      | ^                                       | ×         |          | x         |          | x                      | ×                   | x                    |                      |                         | - |      | Ā        | Ā        |          |
| ROL      | x                                       | <u>~</u>  |          |           |          | x                      | - x                 | ····· ^              |                      |                         |   |      | Ä        | Ä        | Ā        |
| ROR      | X                                       |           |          |           |          | Â                      | - Â                 |                      |                      |                         | • | •    | ٨        | Å        | ٨        |
| RSP      | X                                       |           |          |           |          |                        |                     |                      |                      |                         | • | •    | •        | •        | •        |
| RTI      | X                                       |           |          |           |          |                        |                     |                      |                      |                         | 7 | 7    | 7        | 7        | 7        |
| RTS      | X                                       |           |          |           |          |                        |                     |                      |                      |                         | ٠ | ۲    | ۰        | ٠        | •        |
| SBC      |                                         | X         | X        | X         |          | x                      | Х                   | X                    |                      |                         | ٠ | ٠    | ٨        | ۸        | ٨        |
| SEC      | X                                       |           |          |           |          |                        |                     |                      |                      |                         | ٠ | ٠    | ٠        | •        | 1        |
| SEI      | X                                       |           |          |           |          |                        |                     |                      |                      |                         | • | 1    | •        | •        | •        |
| STA      |                                         |           | X        | X         |          | X                      | X                   | X                    |                      |                         | • | •    | Δ        | 1        | •        |
| STOP     | X                                       |           |          |           |          |                        |                     |                      |                      |                         | - | 0    | •        | •        | -        |
| 517      |                                         |           | <u> </u> | <u> </u>  |          | <u>×</u>               | X                   | <u>×</u>             |                      |                         |   | -    | <u>^</u> | A        |          |
| SWI      |                                         | X         | <u>x</u> | X         |          | <u>x</u>               | ×                   | *                    |                      |                         |   |      | <u>^</u> | -        | -        |
| TAX      | Ŷ                                       |           |          |           |          |                        |                     |                      |                      |                         |   |      | -        | -        | -        |
| TST      | <del>x</del>                            |           | ×        |           |          | ×                      | X                   |                      |                      |                         | Ť | •    | Ā        | Ā        | -        |
| TXA      | x                                       |           |          |           |          | <u>^</u>               | <u>^</u>            |                      |                      |                         | • | •    | •        | •        | •        |
| WAIT     | X                                       |           |          |           |          |                        |                     |                      |                      |                         | • | 0    | •        | •        | •        |

TABLE 9 - INSTRUCTION SET

Condition Code Symbols

- H Half Carry (From Bit 3)
- I Interrupt Mask

- N Negative (Sign Bit) Z Zero C Carry/Borrow
- A Test and Set if True Cleared Otherwise
- Not Affected
- 2 Load CC Register From Stack
- 0 Cleared 1 Set

|           | Bit Manipulation Branch Dead/Medify/Write Control Beouter/Memory |                |                   |                |               |               |                |      |              |                |                   |                   |               |                |                |                |                  |
|-----------|------------------------------------------------------------------|----------------|-------------------|----------------|---------------|---------------|----------------|------|--------------|----------------|-------------------|-------------------|---------------|----------------|----------------|----------------|------------------|
|           | BIT Mai                                                          | BSC            | Dranch            | DIR            |               | INH(X)        | IX1            | IY.  |              |                | INANA             | DIR               | EVT           |                | 1111           | 17             |                  |
| HI        | Ó                                                                | 1 1            | 2                 | 3              | 4             | 5             | 6              | 9    | 8            | 9              | A                 | B                 | ĉ             | D              | Ē              | <del>- P</del> | H                |
| LOW       | 0000                                                             | 0001           | 0010              | 0011           | 0100          | 0101          | 0110           | 0111 | 1000         | 1001           | 1010              | 1011              | 1100          | 1101           | 1110           |                | LOW              |
|           | BRSETO<br>3 BTB                                                  | BSET0<br>2 BSC | BRA<br>2 REL      | NEG<br>2 DIR   | NEGA          | NEGX NEGX     | 2 NEG          |      | RTI<br>1 INH |                |                   |                   | SUB<br>3 EXT  | SUB<br>3 IX2   | SUB 2 IX1      |                |                  |
| 1<br>0001 | BRCLR0<br>3 BTB                                                  | BCLR0<br>2 BSC | BRN 2 REL         |                |               |               |                |      | RTS<br>1 INH |                | CMP<br>2 IMM      | CMP<br>2 DIR      | CMP<br>3 EXT  | CMP 3 1X2      | CMP 4<br>2 1X1 |                | 1<br>0001        |
| 2<br>0010 | BRSET1<br>3 BTB                                                  | BSET1<br>2 BSC | BHI<br>2 REL      |                |               |               |                |      |              |                | SBC 2<br>2 IMM    | SBC 2 DIR         | SBC<br>3 EXT  | SBC SBC        | SBC 4<br>2 IX1 | SBC 1          | 2<br>0010        |
| 3<br>0011 | BRCLR1<br>3 BTB                                                  | BCLR1<br>2 BSC | BLS<br>2 REL      | COM DIR        |               |               | 2 COM 6        |      | SWI 10       |                | CPX 2<br>2 IMM    | CPX 2 DIR         | СРХ<br>3 Ехт  | CPX 5          | CPX 4<br>2 IX1 |                | 3<br>0011        |
| 4<br>0100 | BRSET2<br>3 BTB                                                  | BSET2<br>2 BSC | BCC BCC REL       | LSR<br>2 DIR   |               |               | LSR 6<br>2 IX1 |      |              |                | AND 2<br>2 IMM    | AND 2 DIR         | AND<br>3 EXT  | AND 3 1X2      | AND 2 1X1      |                | <b>4</b><br>0100 |
| 5<br>0101 | BRCLR2<br>3 BTB                                                  | BCLR2<br>2 BSC | BCS<br>2 REL      |                |               |               |                |      |              |                | BIT 2<br>2 IMM    | BIT<br>2 DIR      | 81T<br>3 EXT  | BIT 5<br>3 1X2 | BIT 4<br>2 IX1 | BIT            | 5<br>0101        |
| 6<br>0110 | BRSET3<br>3 BTB                                                  | BSET3<br>2 BSC | BNE<br>2 REL      | ROR 2 DIR      |               |               | 808 80 8       |      |              |                | LDA<br>2 IMM      | 3<br>LDA<br>2 DIR | LDA<br>3 EXT  | LDA 3 1X2      | LDA 4<br>2 1X1 |                | 6<br>0110        |
| 7<br>0111 | BRCLR3<br>3 BTB                                                  | BCLR3<br>2 BSC | BEQ 3<br>2 REL    | ASR 5<br>2 DIR | ASRA<br>1 INH |               | ASR 2 1X1      |      |              | TAX 2<br>1 INH |                   | STA<br>2 DIR      | STA<br>3 EXT  | STA<br>3 IX2   | STA 5          | STA 4          | 7<br>0111        |
| 8<br>1000 | BRSET4<br>3 BTB                                                  | BSET4<br>2 BSC | BHCC BHCC BHCC    | LSL<br>2 DIR   | LSLA<br>1 INH | LSLX<br>1 INH |                |      |              |                | EOR 2<br>2 IMM    | EOR<br>2 DIR      | EOR<br>3 EXT  | EOR 3 1X2      | EOR 1<br>2 1×1 | EOR 3          | 8<br>0001        |
| 9<br>1001 | BRCLR4<br>3 BTB                                                  | BCLR4<br>2 BSC | BHCS<br>2 REL     | ROL 2 DIR      | ROLA<br>1 INH | ROLX<br>1 INH | ROL 6          |      |              | SEC 2          | ADC 2<br>2 IMM    | ADC 2 DIR         | ADC<br>3 EXT  | ADC 3 IX2      | ADC 2 IX1      |                | 9<br>1001        |
| A<br>1010 | BRSET5<br>3 BTB                                                  | BSET5<br>2 BSC | BPL<br>2 REL      | DEC DIR        | DECA<br>1 INH | DECX<br>1 INH | DEC 1X1        |      |              | CLI<br>1 INH   | 0RA 2<br>2 IMM    | 0RA<br>2 DIR      | ORA<br>3 EXT  | ORA 3 1X2      | ORA 2 1X1      |                | A<br>1010        |
| B<br>1011 | BRCLR5<br>3 BTB                                                  | BCLR5<br>2 BSC | 3<br>BMI<br>2 REL |                |               |               |                |      |              | SEI<br>1 INH   | ADD 2<br>100      | ADD<br>2 DIR      | ADD<br>3 EXT  | ADD 3 1X2      | ADD 2 1X1      |                | B<br>1011        |
| C<br>1100 | BRSET6<br>3 BTB                                                  | BSET6<br>2 BSC | BMC<br>2 REL      | INC 2 DIR      | INCA<br>1 INH | INCX 1 INH    | INC 2 1X1      |      |              | 85P            |                   | 2<br>JMP<br>2 DIR | JMP<br>3 EXT  | JMP<br>3 IX2   | JMP 2 1X1      | JMP 2          | ,C<br>           |
| D<br>1101 | BRCLR6<br>3 BTB                                                  | BCLR6<br>2 BSC | BMS<br>2 REL      | TST 4<br>2 DIR | TSTA 3        | TSTX 3        | TST 5          |      |              | NOP<br>1 INH   | BSR<br>2 REL      | JSR<br>2 DIR      | JSR<br>3 _EXT | JSR<br>3 IX2   | JSR<br>2 IX1   | JSR 5          | D                |
| E<br>1110 | BRSET7<br>3 BTB                                                  | BSET7<br>2 BSC | BIL<br>2 REL      |                |               |               |                |      | STOP 2       |                | 2<br>LDX<br>2 IMM | LDX<br>2 DIR      | LDX<br>3 EXT  | LDX 3 1X2      | LDX 4<br>2 IX1 |                | E                |
| F         | BRCLR7                                                           | BCLR7<br>BCLR7 | BIH               |                |               |               |                |      |              |                |                   | STX 4             | STX 5         | STX 6          | STX 5          | STX            | , F,             |

### TABLE 10 --- CDP6805E2 INSTRUCTION SET OPCODE MAP

### Abbreviations for Address Modes

- INH Inherent
- IMM Immediate
- DIR Direct
- EXT Extended
- REL Relative
- BSC Bit Set/Clear
- BTB Bit Test and Branch
- IX Indexed (No Offset)
- IX1 Indexed, 1 Byte (8-Bit) Offset
- IX2 Indexed, 2 Byte (16-Bit) Offset
- CMOS Versions Only

LEGEND





ω

Indexed, 8-bit Offset – Here the EA is obtained by adding the contents of the byte following the opcode to that of the index register. The operand is therefore located anywhere within the lowest 511 memory locations. For example, this mode of addressing is useful for selecting the m-th element in an n element table. All instructions are two bytes. The contents of the index register (X) is not changed. The contents of (PC + 1) is an unsigned 8-bit integer. One byte offset indexing permits look-up tables to be easily accessed in either RAM or ROM.

EA = X + (PC + 1), PC - PC + 2Address Bus High - K; Address Bus Low - X + (PC + 1) Where: K = The carry from the addition of X + (PC + 1)

Indexed, 16-Bit Offset – In the indexed, 16-bit offset addressing mode the effective address is the sum of the contents of the unsigned 8-bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed 8-bit offset, except that this three byte instruction allows tables to be anywhere in memory (e.g., jump tables in ROM) The content of the index register is not changed.

EA = X + [(PC + 1) (PC + 2)], PC - PC + 3Address Bus High - (PC + 1) + K, Address Bus Low - X + (PC + 2) Where K = The carry from the addition of X + (PC + 2)

**Relative** — Relative addressing is only used in branch instructions. In relative addressing the contents of the 8-bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is limited to the range of -126 to +129 bytes from the branch instruction opcode location. EA = PC + 2 + (PC + 1); PC - EA if branch taken; otherwise PC - PC + 2

Bit Set/Clear — Direct addressing and bit addressing are combined in instructions which set and clear individual memory and I/O bits. In the bit set and clear instructions, the byte is specified as a direct address in the location following the opcode. The first 256 addressable locations are thus accessed. The bit to be modified within that byte is specified with three bits of the opcode. The bit set and clear instructions occupy two bytes, one for the opcode (including the bit number) and the second to address the byte which contains the bit of interest.

 $EA = (PC + 1), PC \leftarrow PC + 2$ Address Bus High  $\leftarrow 0$ , Address Bus Low  $\leftarrow (PC + 1)$ 

Bit Test and Branch – Bit test and branch is a combination of direct addressing, bit addressing and relative addressing. The bit address and condition (set or clear) to be tested is part of the opcode. The address of the byte to be tested is in the single byte immediately following the opcode byte (EA1). The signed relative 8-bit offset is in the third byte (EA2) and is added to the PC if the specified bit is set or clear in the specified memory location. This single three byte instruction allows the program to branch based on the condition of any bit in the first 256 locations of memory.

EA1 = (PC + 1)Address Bus High-0; Address Bus Low-(PC + 1) EA2 = PC + 3 + (PC + 2); PC - EA2 if branch taken;otherwise PC-PC + 3

### SYSTEM CONFIGURATION

Figures 20 through 25 show in general terms how the CDP6805E2 bus structure may be utilized. Specified interface details vary with the various peripheral and memory devices employed.



Fig. 20 - Connection to CMOS peripherals.



92CS-38036

Fig. 21 - Connection to CMOS multiplexed memories.



Fig. 22 - Connection to peripherals.

267



Fig. 23 - Connection to latch non-multiplexed CMOS ROM or EPROM.



92CS-38039

Fig. 24 - Connection to static CMOS RAMs.



Fig. 25 - Connection to latched non-multiplexed CMOS RAM.

Table 11 provides a detailed description of the information present on the Bus, the Read/Write  $(R/\overline{W})$  pin and the Load Instruction (LI) pin during each cycle for each instruction. This information is useful in comparing actual with ex-

pected results during debug of both software and hardware as the control program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction.

| Address Mode<br>Instructions | Cycles | Cycle #  | Address Bus                                        | R/W<br>Pin | LI<br>Pin | Data Bus                         |
|------------------------------|--------|----------|----------------------------------------------------|------------|-----------|----------------------------------|
| Inherent                     |        |          |                                                    | A          |           |                                  |
| LSR LSL                      | F F    | l        |                                                    | 1          |           |                                  |
| ASR NEG                      |        | 1        | Op Code Address                                    | 1          | 1         | On Code                          |
| CLR ROL                      | 3      | 2        | On Code Address + 1                                | 1          | ò         | On Code Next Instruction         |
| COM BOB                      |        | 3        | On Code Address + 1                                | li         | ŏ         | On Code Next Instruction         |
| DEC INC TST                  |        |          |                                                    | · ·        | Ŭ         |                                  |
| TAX CLC SEC                  |        |          |                                                    |            |           |                                  |
| STOP CLI SEL                 |        | 1        | Op Code Address                                    | 1          | 1         | Op Code                          |
| PER WAIT NOR TYA             | 2      | 2        | Op Code Address +1                                 | 1          | 0         | Op Code Next Instruction         |
| NOF WAIL NOF TAA             |        |          |                                                    | <u> </u>   |           |                                  |
|                              |        |          | Op Code Address                                    |            | 1         | Op Code                          |
|                              |        | 2        | Op Code Address + 1                                | ] 1        | 0         | Op Code Next Instruction         |
| RTS                          | 6      | 3        | Stack Pointer                                      | 1          | 0         | Irrelevant Data                  |
|                              |        | 4        | Stack Pointer + 1                                  | 1          | 0         | Irrelevant Data                  |
|                              |        | 5        | Stack Pointer + 2                                  | 1          | 0         | Irrelevant Data                  |
|                              |        | 6        | New Op Code Address                                | 1          | 0         | New Op Code                      |
|                              |        | 1        | Op Code Address                                    | 1          | 1         | Op Code                          |
|                              |        | 2        | Op Code Address + 1                                | 1          | 0         | Op Code Next Instruction         |
|                              |        | 3        | Stack Pointer                                      | 0          | 0         | Return Address (LO Byte)         |
|                              |        | 4        | Stack Pointer - 1                                  | 0          | 0         | Return Address (HI Byte)         |
| 014/                         | 10     | 5        | Stack Pointer - 2                                  | 0          | 0         | Contents of Index Register       |
| SVVI                         | 10     | 6        | Stack Pointer - 3                                  | Ō          | ō         | Contents of Accumulator          |
|                              |        | 7        | Stack Pointer - 4                                  | Ó          | 0         | Contents of CC Register          |
|                              |        | 8        | Vector Address 1FFC (Hex)                          | 1          | Ō         | Address of Int Routine (HI Byte) |
|                              |        | 9        | Vector Address 1FED (Hex)                          | 1          | ō         | Address of Int Boutine (LO Byte) |
|                              |        | 10       | Interrupt Boutine Starting Address                 | 1          | õ         | Interrupt Boutine First Opcode   |
|                              |        | 1        | On Code Address                                    |            |           |                                  |
|                              |        |          | Op Code Address                                    |            |           | Op Code                          |
|                              |        | 2        | Op Code Address + I                                |            | 0         | Op Code Next Instruction         |
|                              |        | 3        | Stack Pointer                                      | 1          | 0         | Irrelevant Data                  |
|                              |        | 4        | Stack Pointer + 1                                  |            | 0         | Irrelevant Data                  |
| RTI                          | 9      | 5        | Stack Pointer +2                                   | 1          | 0         | Irrelevant Data                  |
|                              |        | 6        | Stack Pointer +3                                   | 1          | 0         | Irrelevant Data                  |
|                              |        | 7        | Stack Pointer +4                                   | 1          | 0         | Irrelevant Data                  |
|                              |        | 8        | Stack Pointer + 5                                  | 1          | 0         | Irrelevant Data                  |
|                              |        | 9        | New Op Code Address                                | 1          | 0         | New Op Code                      |
| Immediate                    |        |          |                                                    |            |           |                                  |
| ADC EOR CPX                  |        |          |                                                    |            |           |                                  |
| ADD LDA LDX                  |        | 1        | Op Code Address                                    | 1          | 1         | Op Code                          |
| AND ORA BIT                  | 2      | 2        | Op Code Address + 1                                | 1          | Ó         | Operand Data                     |
| SBC CMB SUB                  |        | _        |                                                    |            |           |                                  |
| Bit Set/Clear                |        |          |                                                    |            |           |                                  |
|                              |        | 1        | On Code Address                                    | 1          | 1         | On Code                          |
|                              |        | 2        | Op Code Address + 1                                |            |           | Address of Operand               |
| BSET n                       | Б      | 2        | Address of Operand                                 |            | ő         | Address of Operatio              |
| BCLR n                       | 5      | 3        | Address of Operand                                 |            | ů ů       | Operand Data                     |
|                              |        | 5        | Address of Operand                                 |            | õ         | Manpulated Data                  |
| Rin Test and Research        |        | <u> </u> |                                                    | 1          |           |                                  |
|                              | ·····  |          |                                                    | · · ·      |           |                                  |
|                              |        | 1        | Op Code Address                                    | 1          |           | Op Code                          |
| BBSET n                      |        | 2        | Op Code Address + 1                                | 1          | 0         | Address of Operand               |
| BBCI B n                     | 5      | 3        | Address of Operand                                 | 1          | 0         | Operand Data                     |
|                              |        | 4        | Op Code Address +2                                 | 1          | 0         | Branch Offset                    |
|                              |        | 5        | Op Code Address + 2                                | 1          | 0         | Branch Offset                    |
| Relative                     |        |          |                                                    |            |           |                                  |
| BCC BHI BNE BEQ              |        |          |                                                    |            |           |                                  |
| BCS BPL BHCC BLS             |        |          | Op Code Address                                    | 1          |           | Op Code                          |
| BIL BMC BRN BHCS             | 3      | 2        | Op Code Address + 1                                |            | 0         | Branch Offset                    |
| BIH BMI BMS BRA              |        | 3        | Op Code Address +1                                 | 1          | 0         | Branch Offset                    |
|                              |        | 1        | On Code Address                                    | 1          | 1         | On Code                          |
|                              |        | -        | On Code Address + 1                                |            |           | Branch Offent                    |
|                              |        | 4        | Op Code Address + 1                                |            |           | Branch Offeet                    |
| BSR                          | 6      | 3        | Op Code Address + I<br>Subrouting Starting Address |            |           | First Subroutine On Code         |
|                              |        | -        | Stock Pointer                                      |            |           | Return Address (LO Buts)         |
|                              |        | 0        |                                                    |            |           | Return Address (LU Dyte)         |
|                              |        | 0        | JUST POINTER - I                                   |            |           | netum Audress (ML Byte)          |

| TABLE 11 - | SUMMARY | OF CYCLE | BY CYCLE | OPERATION |
|------------|---------|----------|----------|-----------|

# CDP6805E2, CDP6805E2C TABLE 11 – SUMMARY OF CYCLE BY CYCLE OPERATION (CONTINUED)

| Address Mode       |        |          | · · · · ·                   |       | Ц   |                                         |
|--------------------|--------|----------|-----------------------------|-------|-----|-----------------------------------------|
| Instructions       | Cycles | Cycles # | Address Bus                 | Pin   | Pin | Data Bus                                |
| Direct             |        |          |                             |       |     |                                         |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| JMP                | 2      | 2        | Op Code Address + 1         | 1     | 0   | Jump Address                            |
| ADC EOR CPX        |        | 1        | On Code Address             | 1     | 1   | On Code                                 |
| ADD LDA LDX        | 3      | 2        | On Code Address + 1         |       | ò   | Address of Operand                      |
| AND ORA BIT        | Ŭ      | 3        | Address of Operand          | i     | ŏ   | Operand Data                            |
| SBC CMP SUB        |        |          |                             |       |     |                                         |
|                    |        |          | Op Code Address             |       |     | Op Code                                 |
| TST                | 4      | 2        | Address of Operand          |       | 0   | Operand Data                            |
|                    |        | 4        | Op Code Address + 2         | 1     | ŏ   | Op Code Next Instruction                |
|                    |        | 1        | On Code Address             | 1     | 1   | On Code                                 |
| STA                |        | 2        | Op Code Adrress + 1         | i     | o i | Address of Operand                      |
| STX                | 4      | 3        | Op Code Address + 1         | 1     | 0   | Address of Operand                      |
|                    |        | 4        | Address of Operand          | 0     | 0   | Operand Data                            |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| ASB NEG INC        |        | 2        | Op Code Address + 1         | 1     | 0   | Address of Operand                      |
| CLR ROL            | 5      | 3        | Operand Address             | 1     | 0   | Current Operand Data                    |
| COM ROR            |        | 4        | Operand Address             |       | 0   | Current Operand Data                    |
|                    |        | 5        |                             | 0     |     |                                         |
|                    |        |          | Op Code Address             |       |     | Up Lode<br>Subroutine Address (LO Byte) |
| ISB                | 5      | 3        | Subroutine Starting Address |       | ő   | 1st Subroutine On Code                  |
| 3311               | 5      | 4        | Stack Pointer               | l o l | ŏ   | Return Address (LO Byte)                |
|                    |        | 5        | Stack Pointer - 1           | Ō     | Ō   | Return Address (HI Byte)                |
| Extended           |        |          |                             |       |     |                                         |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| JMP                | 3      | 2        | Op Code Address + 1         | 1     | 0   | Jump Address (HI Byte)                  |
|                    |        | 3        | Op Code Address +2          | 1     | 0   | Jump Address (LO Byte)                  |
| ADC BIT ORA        |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| ADD CMP LDX        | Λ      | 2        | Op Code Address + 1         | 1     | 0   | Address Operand (HI Byte)               |
| AND EOR SBC        | 7      | 3        | Op Code Address + 2         | 1     | 0   | Address Operand (LO Byte)               |
| CPX LDA SUB        |        | 4        | Address of Operand          | 1     | 0   | Operand Data                            |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| STA                | e      | 2        | Op Code Address + 1         |       | 0   | Address of Operand (HI Byte)            |
| STX                | 5      | 3        | Op Code Address + 2         |       | 0   | Address of Operand (LO Byte)            |
|                    |        | 5        | Address of Operand          | ò     | ŏ   | Operand Data                            |
|                    |        | 1        | On Code Address             | 1     | 1   | On Code                                 |
|                    |        | 2        | Op Code Address + 1         | 1     | Ö   | Address of Subroutine (HI Byte)         |
| 1CD                | e      | 3        | Op Code Address + 2         | 1     | 0   | Address of Subroutine (LO Byte)         |
| JSR                | 0      | 4        | Subroutine Starting Address | 1     | 0   | 1st Subroutine Op Code                  |
|                    |        | 5        | Stack Pointer               | 0     | 0   | Return Address (LO Byte)                |
|                    |        | 6        | Stack Pointer – 1           | 0     | 0   | Return Address (HI Byte)                |
| Indexed, No-Offset |        |          |                             |       |     |                                         |
| JMP                | 2      | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
|                    |        | 2        | Op Code Address + 1         | 1     | 0   | Op Code Next Instruction                |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
|                    | 3      | 2        | Op Code Address + 1         | 1     | 0   | Op Code Next Instruction                |
| SBC CMP SUB        |        | 3        | Index Register              | 1     | 0   | Operand Data                            |
|                    |        | 1        | On Code Address             | 1     | 1   | On Code                                 |
|                    |        | 2        | Op Code Address + 1         | 1     | ő   | Op Code Next Instruction                |
| IST                | 4      | 3        | Index Register              | 1     | 0   | Operand Data                            |
|                    |        | 4        | Op Code Address + 1         | 1     | 0   | Op Code Next Instruction                |
|                    |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| STA                | 4      | 2        | Op Code Address + 1         | 1     | 0   | Op Code Next Instruction                |
| STX                | "      | 3        | Op Code Address + 1         | 1     | 0   | Op Code Next Instruction                |
|                    |        | 4        | Index Register              | 0     | 0   | Operand Data                            |
| LSL LSR DEC        |        | 1        | Op Code Address             | 1     | 1   | Op Code                                 |
| ASR NEG INC        | _      | 2        | Op Code Address + 1         |       | 0   | Op Code Next Instruction                |
| CLR ROL            | 5      | 3        | Index Register              |       | 0   | Current Operand Data                    |
| COM ROR            |        | 4        | Index Register              |       | 0   | New Operand Data                        |
|                    |        | 1        | On Code Address             | 1     |     | Op Code                                 |
|                    |        | 2        | On Code Address + 1         | 1     |     | Op Code Next Instruction                |
| JSR                | 5      | 3        | Index Register              | 1     | ŏ   | 1st Subroutine Op Code                  |
|                    |        | 4        | Stack Pointer               | 0     | 0   | Return Address (LO Byte)                |
|                    |        | 5        | Stack Pointer – 1           | 0     | 0   | Return Address (Hi Byte)                |

TABLE 11 - SUMMARY OF CYCLE BY CYCLE OPERATION (CONTINUED)

| Address Mode           | Cycles | Cycles # | Address Bus             | R/W | LI  | Data Bus                 |
|------------------------|--------|----------|-------------------------|-----|-----|--------------------------|
|                        |        | 1        | L                       | Pin | Pin |                          |
| Indexed 8-Bit Offset   |        |          |                         |     |     |                          |
|                        | _      |          | Op Code Address         |     | 1   | Op Code                  |
| JMP                    | 3      | 2        | Op Code Address + 1     |     | 0   | Offset                   |
| 100 500 000            |        |          | Op Code Address + 1     |     |     |                          |
| ADC EOR CPX            |        |          | Op Code Address         |     | 1   | Op Code                  |
|                        | 4      | 2        | Op Code Address + 1     |     | 0   | Offset                   |
|                        |        | 3        | Op Code Address + 1     |     | 0   | Onset<br>Operand Data    |
| SUB BIT SBC            |        |          |                         |     |     |                          |
|                        |        |          | Op Code Address         |     |     | Official                 |
| STA                    | -      |          | Op Code Address + 1     |     | 0   | Offset                   |
| STX                    | 5      | 3        | Op Code Address + 1     |     | 0   | Offset                   |
|                        |        | 5        | Index Register + Offset |     | 0   | Operand Data             |
|                        |        |          | On Code Address         | 1   | 1   | Op Code                  |
|                        |        |          | Op Code Address         |     |     | Offset                   |
| TST                    | 5      | 2        | Op Code Address + 1     |     | n n | Offset                   |
| 131                    | 5      | 4        | Index Begister + Offset |     | i õ | Operand Data             |
|                        |        | 5        | On Code Address + 2     | 1   | ő   | On Code Next Instruction |
|                        |        | 1 1      | Op Code Address 12      |     | 1   | Op Code                  |
| LSL LSR                |        |          | Op Code Address         |     | 0   | Offeet                   |
| ASR NEG                |        | 2        | Op Code Address + 1     | 1   | 0   | Offset                   |
| CLR ROL                | 6      | 4        | Index Begister + Offset |     | 0   | Current Operand Data     |
| COM ROR                |        | 5        | Index Register + Offset |     | õ   | Current Operand Data     |
| DEC INC                |        | 6        | Index Register + Offset | Ó   | Ő   | New Operand Data         |
|                        |        | 1        | On Code Address         | 1   | 1   | On Code                  |
|                        |        |          | On Code Address + 1     | 1   | ò   | Offset                   |
|                        |        | 3        | On Code Address + 1     | 1   | õ   | Offset                   |
| JSR                    | 6      | 4        | Index Register + Offset | 1   | õ   | 1st Subroutine Op Code   |
|                        |        | 5        | Stack Pointer           | 0   | 0   | Return Address LO Byte   |
|                        |        | 6        | Stack Pointer - 1       | 0   | 0   | Return Address HI Byte   |
| Indexed, 16-Bit Offset |        |          |                         |     |     |                          |
|                        |        | 1        | On Code Address         | 1   | 1   | On Code                  |
|                        |        | 2        | On Code Address $\pm 1$ | 1   | 0   | Offset (HI Byte)         |
| JMP                    | 4      | 3        | On Code Address + 2     | 1   | Ő   | Offset (LO Byte)         |
|                        |        | 4        | Op Code Address + 2     | 1   | õ   | Offset (LO Byte)         |
| ADC CMP SUB            |        | 1        | On Code Address         | 1   | 1   | On Code                  |
| ADD FOR SBC            |        |          | On Code Address + 1     |     | ò   | Offset (HI Byte)         |
| AND ORA                | 5      | 3        | Op Code Address + 2     | 1   | õ   | Offset (LO Byte)         |
| CPX LDA                | -      | 4        | Op Code Address + 2     | 1   | 0   | Offset (LO Byte)         |
| BIT LDX                |        | 5        | Index Register + Offset | 1   | 0   | Operand Data             |
|                        |        | 1        | Op Code Address         | 1   | 1   | Op Code                  |
|                        |        | 2        | Op Code Address + 1     | 1   | 0   | Offset (HI Byte)         |
| STA                    |        | 3        | Op Code Address + 2     | 1   | 0   | Offset (LO Byte)         |
| STX                    | 6      | 4        | Op Code Address +2      | 1   | 0   | Offset (LO Byte)         |
|                        |        | 5        | Op Code Address + 2     | 1   | 0   | Offset (LO Byte)         |
|                        |        | 6        | Index Register + Offset | 0   | 0   | Operand Data             |
|                        |        | 1        | Op Code Address         | 1   | 1   | Op Code                  |
|                        |        | 2        | Op Code Address + 1     | 1   | 0   | Offset (HI Byte)         |
|                        |        | 3        | Op Code Address + 2     | 1   | 0   | Offset (LO Byte)         |
| JSR                    | 7      | 4        | Op Code Address +2      | 1   | 0   | Offset (LO Byte)         |
|                        |        | 5        | Index Register + Offset | 1   | 0   | 1st Subroutine Op Code   |
|                        |        | 6        | Stack Pointer           | 0   | 0   | Return Address (LO Byte) |
|                        |        | 7        | Stack Pointer – 1       | 0   | 0   | Return Address (HO Byte) |

TABLE 11 - SUMMARY OF CYCLE BY CYCLE OPERATION (CONTINUED)

| Instructions                  | Cycles | Cycles # | Address Bus                           | RESET<br>Pin | R/W<br>Pin | LI<br>Pin | Data Bus                 |
|-------------------------------|--------|----------|---------------------------------------|--------------|------------|-----------|--------------------------|
| Other Functions               |        |          |                                       |              |            |           |                          |
|                               |        |          | \$1FFE                                | 0            | 1          | 0         | Irrelevant Data          |
|                               |        |          | \$1FFE                                | 0            | 1          | 0         | Irrelevant Data          |
|                               |        | 1        | \$1FFE                                | 1            | 1          | 0         | Irrelevant Data          |
| Hardware RESET                | 5      | 2        | \$1FFE                                | 1            | 1          | 0         | Irrelevant Data          |
|                               |        | 3        | \$1FFE                                | 1            | 1          | 0         | Vector High              |
|                               |        | 4        | \$1FFF                                | 1            | 1          | 0         | Vector Low               |
|                               |        | 5        | Reset Vector                          | 1            | 1          | 0         | Op Code                  |
|                               |        | 1        | \$1FFE                                | 1            | 1          | 0         | Irrelevant Data          |
|                               |        | •        | •                                     | •            | •          | •         | •                        |
|                               |        | •        | •                                     | •            | •          | •         | •                        |
| Devues en Reset               | 1022   | ٠        | •                                     | •            | •          | •         | •                        |
| Power on Reset                | 1922   | 1919     | \$1FFE                                | 1            | 1          | 0         | Irrelevant Data          |
|                               |        | 1920     | \$1FFE                                | 1            | 1          | 0         | Vector High              |
|                               |        | 1921     | \$1FFF                                | 1            | 1          | 0         | Vector Low               |
|                               |        | 1922     | Reset Vector                          | 1            | 1          | 0         | Op Code                  |
| Instruction                   | Cycles | Cycles # | Address Bus                           | IRQ<br>Pin   | R/W<br>Pin | Ll<br>Pin | Data Bus                 |
|                               |        |          | Last Cycle of Previous<br>Instruction | 0            | x          | 0         | x                        |
|                               |        | 1        | Next Op Code Address                  | 0            | 1          | 0         | Irrelevant Data          |
|                               |        | 2        | Next Op Code Address                  | Х            | 1          | 0         | Irrelevant Data          |
|                               |        | 3        | SP                                    | х            | 0          | 0         | Return Address (LO Byte) |
| IRQ Interrupt                 | 10     | 4        | SP – 1                                | X            | 0          | 0         | Return Address (HI Byte) |
| (Timer Vector \$1FF8, \$1FF9) |        | 5        | SP – 2                                | х            | 0          | 0         | Contents Index Reg       |
|                               |        | 6        | SP – 3                                | X            | 0          | 0         | Contents Accumulator     |
|                               |        | 7        | SP-4                                  | х            | 0          | 0         | Contents CC Register     |
|                               |        | 8        | \$1FFA                                | х            | 1          | 0         | Vector High              |
|                               |        | 9        | \$1FFB                                | X            | 1          | 0         | Vector Low               |
|                               |        | 10       | IRQ Vector                            | х            | 1          | 0         | Int Routine First        |

The CDP6805E3 Microprocessor Unit (MPU) belongs to the

CDP6805 Family of CMOS Microcomputers. This 8-bit fully

static and expandable microprocessor contains a CPU, on-

chip RAM, I/O, and Timer. It is a low-power, low-cost

processor designed for mid-range applications in the consumer, automotive, industrial, and communications

markets where very low power consumption constitutes an

important factor. The major features of the CDP6805E3 are

# CDP6805E3, CDP6805E3C

| RESET . | -1 | 1   | 40 |   | VDD   |
|---------|----|-----|----|---|-------|
| IRQ -   |    | 2   | 39 |   | OSCI  |
| LI -    | -  | 3   | 38 |   | OSC 2 |
| DS .    |    | 4   | 37 |   | TIMEF |
| R/₩ ·   |    | 5   | 36 | - | PBO   |
| AS -    | _  | 6   | 35 |   | PB1   |
| A15 -   | _  | 7   | 34 | - | PB2   |
| A14     | _  | 8   | 33 | - | P 83  |
| A13     |    | 9   | 32 | - | P84   |
| PA4     | -  | 10  | 31 | - | P85   |
| PA3     | -  | н — | 30 |   | PB6   |
| PA2     |    | 12  | 29 | - | P87   |
| PA1     |    | 13  | 28 | - | во    |
| PAO     |    | 14  | 27 | - | B1    |
| A12     |    | 15  | 26 | - | 82    |
| All     |    | 16  | 25 | - | 83    |
| A 10    |    | 17  | 24 | - | B4    |
| A9      | -  | 18  | 23 | - | 85    |
| 84      | -  | 19  | 22 | - | 86    |
| V       | _  | 20  | 21 | _ | 87    |

- 20 21 TOP VIEW 92CS-37179

# CMOS 8-Bit Microprocessor

### Hardware Features:

- 64K address space version of CMOS . 6805E2
- Typical full speed operating power of . 35 mW @ 5 V
- Typical WAIT mode power of 5 mW -
- Typical STOP mode power of 25 μW .
- . 112 bytes of on-chip RAM
- 13 bidirectional I/O lines
- Internal 8-bit timer with software programmable 7-bit prescaler
- External timer input .
- Full external and timer interrupts

- Multiplexed address/data bus
- Master reset and power-on reset
- . Capable of addressing up to 64K bytes of external memory
- Single 3- to 6-volt supply
- On-chip oscillator

### Software Features:

- Similar to the CDP6805E2, F2, and G2
- Efficient use of program space .
- Versatile interrupt handling .
- Memory mapped I/O

### True bit manipulation .

- Addressing modes with indexed addressing for tables
- . Efficient instruction set
- Two power savings standby modes -

The CDP6805E3 is supplied in a 40-lead hermetic dual-inline ceramic package (D suffix), a 40-lead dual-in-line plastic package (E suffix), and a 44-lead plastic chip-carrier package (Q suffix).



# **TERMINAL ASSIGNMENT**

MAXIMUM RATINGS (voltages referenced to VSS)

| Ratings                                                | Symbol           | Value                                                      | Unit |  |
|--------------------------------------------------------|------------------|------------------------------------------------------------|------|--|
| Supply Voltage                                         | V <sub>DD</sub>  | -03 to +8                                                  | V    |  |
| All Input Voltages Except OSC1                         | V <sub>in</sub>  | V <sub>SS</sub> -05 to V <sub>DD</sub> +0.5                | V    |  |
| Current Drain Per Pin Excluding VDD and VSS            | 1                | 10                                                         | mA   |  |
| Operating Temperature Range<br>CDP6805E3<br>CDP6805E3C | Тд               | T <sub>L</sub> to T <sub>H</sub><br>0 to 70<br>− 40 to +85 | °C   |  |
| Storage Temperature Range                              | T <sub>stg</sub> | - 55 to + 150                                              | °C   |  |

## DC ELECTRICAL CHARACTERISTICS 3 V (V\_DD=3 Vdc, V\_SS=0, T\_A=T\_L to T\_H, unless otherwise noted)

| Characteristics                                                                 | Symbol          | Min                 | Max  | Unit |
|---------------------------------------------------------------------------------|-----------------|---------------------|------|------|
|                                                                                 | VOL             | -                   | 01   | v    |
|                                                                                 | ∨он             | V <sub>DD</sub> -01 | -    | •    |
| Total Supply Current (C <sub>L</sub> = 50 pF - no DC loads) $t_{CYC} = 5 \mu s$ |                 |                     |      |      |
| Run ( $V_{IL} = 0.2 V, V_{IH} = V_{DD} - 0.2 V$ )                               | IDD             | -                   | 13   | mA   |
| Wait (Test Conditions - See Note Below)                                         | IDD             | -                   | 200  | μA   |
| Stop (Test Conditions - See Note Below)                                         | DD              | -                   | 100  | μA   |
| Output High Voltage                                                             |                 |                     |      |      |
| (I <sub>LOAD</sub> =0 25 mA) A8- A15, B0-B7                                     | VOH             | 27                  | -    | v    |
| (ILOAD=0.1 mA) PA0-PA4, PB0-PB7                                                 | VOH             | 27                  | -    | v    |
| $(I_{LOAD} = 0.25 \text{ mA}) \text{ DS, AS, } R/\overline{W}$                  | ∨он             | 27                  | -    | v    |
| Output Low Voltage                                                              |                 |                     |      |      |
| (ILOAD=0 25 mA) A8-A15, B0-B7                                                   | VOL             | - 1                 | 03   | v    |
| (ILOAD = 0 25 mA) PA0-PA4, PB0-PB7                                              | VOL             | -                   | 03   | V    |
| $(I_{LOAD} = 0.25 \text{ mA}) \text{ DS, AS, R/W}$                              | VOL             | -                   | 03   | V    |
| Input High Voltage                                                              |                 |                     |      |      |
| PA0-PA4, PB0-PB7, B0-B7                                                         | VIH             | 21                  | -    | v    |
| TIMER, IRQ, RESET                                                               | VIH             | 25                  | _    | V    |
| OSC1                                                                            | VIH             | 21                  | -    | v    |
| Input Low Voltage (All inputs)                                                  | VIL             | -                   | 05   | v    |
| Frequency of Operation                                                          |                 |                     |      |      |
| Crystal                                                                         | fosc            | 0 032               | 1    | MHz  |
| External Clock                                                                  | fosc            | DC                  | 1    | MHz  |
| Input Current                                                                   |                 |                     |      |      |
| RESET, IRQ, Timer, OSC1                                                         | l <sub>in</sub> | -                   | ±1   | μA   |
| Three-State Output Leakage                                                      |                 |                     |      |      |
| PA0-PA4, PB0-PB7, B0-B7                                                         | ITSL            | -                   | ± 10 | μA   |
| Capacitance                                                                     |                 |                     |      |      |
| RESET, IRQ, Timer                                                               | C <sub>in</sub> | -                   | 8    | pF   |
| Capacitance                                                                     |                 |                     |      |      |
| DS AS R/W A8-A15, PA0-PA4, PB0-PB7, B0-B7                                       | Cout            | -                   | 12   | ) pF |

NOTE Test conditions for Quiescent Current Values are

Port A and B programmed as inputs

 $V_{IL} = 0.2 V$  for PA0-PA4, PB0-PB7, and B0-B7

 $V_{IH} = V_{DD} - 0.2 V$  for RESET, IRQ, and Timer

OSC1 input is a squarewave from  $V_{SS} + 0.2 V$  to  $V_{DD} = 0.2 V$ 

OSC2 output load (including tester) is 35 pF maximum

Wait mode IDD is affected linearly by this capacitance

DC ELECTRICAL CHARACTERISTICS 5 V (VDD=5 Vdc ± 10%, VSS=0, TA=TL to TH, unless otherwise noted)

| Characteristics                                                    | Symbol             | Min                               | Max  | Unit |
|--------------------------------------------------------------------|--------------------|-----------------------------------|------|------|
| Output Voltage I <sub>LOAD</sub> ≤ 10 µA                           | VOL                | -                                 | 01   | v    |
|                                                                    | ∨он                | V <sub>DD</sub> -01               | -    | v    |
| Total Supply Current (CL = 130 pF - On Bus, CL = 50 pF - On Ports, |                    |                                   |      |      |
| No DC Loads, t <sub>cyc</sub> = 1 µs                               | ladi               | -                                 | 10   | mA   |
| Run $(V_{1L} = 0.2 V, V_{1H} = V_{DD} - 0.2 V)$                    |                    |                                   |      |      |
| Wait (Test Conditions - See Note Below)                            | IDD                | -                                 | 15   | mA   |
| Stop (Test Conditions - See Note Below)                            | <sup>I</sup> DD    | -                                 | 200  | μA   |
| Output High Voltage                                                |                    |                                   |      |      |
| (ILOAD = 1 6 mA) A8-A15, B0-B7                                     | VOH                | 4 1                               | -    | V    |
| (ILOAD = 0 36 mA) PA0-PA4, PB0-PB7                                 | ∨он                | 41                                | -    | v    |
| $(I_{LOAD} = 1.6 \text{ mA}) \text{ DS, AS, } R/\overline{W}$      | VQH                | 4 1                               | -    | V    |
| Output Low Voltage                                                 |                    |                                   |      |      |
| (ILOAD = 1 6 mA) A8-A15, B0-B7                                     | Voi                | _                                 | 04   | v    |
| (ILOAD = 1 6 mA) PA0-PA4, PB0-PB7                                  | Voi                | -                                 | 04   | v    |
| $(I_{LOAD} = 1.6 \text{ mA}) \text{ DS, AS, R/W}$                  | Voi                | -                                 | 04   | v    |
| Input High Voltage                                                 |                    |                                   |      |      |
| PA0-PA4, PB0-PB7, B0-B7                                            | VIH                | Vpp - 2                           | _    | l v  |
| TIMER, IRO, RESET                                                  | VIH                | VDD-08                            | -    | v    |
| OSC1                                                               | VIH                | V <sub>DD</sub> - 15 <sup>°</sup> | _    | V    |
| Input Low Voltage (All Inputs)                                     | VII                | -                                 | 08   | v    |
| Frequency of Operation                                             |                    |                                   |      |      |
| Crystal                                                            | fosc               | 0 032                             | 5    | МНZ  |
| External Clock                                                     | fosc               | DC                                | 5    | MHz  |
| Input Current                                                      |                    |                                   |      |      |
| RESET, IRQ, Timer, OSC1                                            | l <sub>in</sub>    | -                                 | ± 1  | μA   |
| Three-State Output Leakage                                         |                    |                                   |      |      |
| PA0-PA4, PB0-PB7, B0-B7                                            | ITSI               | -                                 | ± 10 | μA   |
| Capacitance                                                        |                    |                                   |      |      |
| RESET, IRQ, Timer                                                  | C <sub>in</sub>    | -                                 | 8    | pF   |
| Capacitance                                                        |                    |                                   |      |      |
| DS, AS, R/W, A8-A15, PA0-PA4, PB0-PB7, B0-B7                       | • C <sub>out</sub> | -                                 | 12   | pF   |

NOTE Test conditions for Quiescent Current Values are

Port A and B programmed as inputs

 $\label{eq:VIL} V_{IL} = 0.2 \ V \ \text{for PA0-PA4, PB0-PB7, and B0-B7} \\ V_{IH} = V_{DD} \ - \ 0.2 \ V \ \text{for RESET, IRO, and Timer}$ 

OSC1 input is a squarewave from V<sub>SS</sub> + 0.2 V to V<sub>DD</sub> - 0.2 V OSC2 output load (including tester) is 35 pF maximum Wait mode (I<sub>DD</sub>) is affected linearly by this capacitance

### TERMINAL ASSIGNMENT



**Plastic Chip-Carrier Package**
|                                                            |                    | v<br>fo: | DD=3 V<br>SC=1 MH | 1z  | V <sub>DD</sub><br>for |     |     |      |
|------------------------------------------------------------|--------------------|----------|-------------------|-----|------------------------|-----|-----|------|
| Characteristics                                            | Symbol             | Min      | Тур               | Max | Min                    | Тур | Max | Unit |
| I/O Port Timing – Input Setup Time (Figure 3)              | TPVASL             | 500      | -                 | -   | 250                    | -   | -   | ns   |
| Input Hold Time (Figure 3)                                 | TASLPX             | 100      | -                 | -   | 100                    | -   | -   | ns   |
| Output Delay Time (Figure 3)                               | TASLPV             | -        | -                 | 0   | -                      | -   | 0   | ns   |
| Interrupt Setup Time (Figure 6)                            | <b>tILASL</b>      | 2        | -                 | _   | 04                     | -   | -   | μS   |
| Crystal Oscillator Startup Time (Figure 5)                 | toxov              | -        | 30                | 300 | -                      | 15  | 100 | ms   |
| Wait Recovery Startup Time (Figure 7)                      | <b>UVASH</b>       | -        | -                 | 10  | -                      | -   | 2   | μs   |
| Stop Recovery Startup Time (Crystal Oscillator) (Figure 8) | <b>TILASH</b>      | -        | 30                | 300 | -                      | 15  | 100 | ms   |
| Required Interrupt Release (Figure 6)                      | <sup>t</sup> DSLIH | -        | -                 | 5   | -                      | -   | 1   | μS   |
| Timer Pulse Width (Figure 7)                               | tTH, tTL           | 05       | -                 | -   | 0.5                    | -   | -   | tcvc |
| Reset Pulse Width (Figure 5)                               | tRL                | 52       | -                 | -   | 1 05                   | -   | -   | μS   |
| Timer Period (Figure 7)                                    | <b>TLTL</b>        | 1        | -                 | -   | 1                      | -   | -   | tcyc |
| Interrupt Pulse Width Low (Figure 16)                      | <b>ULIH</b>        | 1        | -                 | -   | 1                      | -   | -   | tcyc |
| Interrupt Pulse Period (Figure 16)                         | tilil              | *        | -                 | -   | *                      | -   | -   | tcyc |
| Oscillator Cycle Period (1/5 of t <sub>cyc</sub> )         | TOLOL              | 1000     | -                 |     | 200                    |     | -   | ms   |
| OSC1 Pulse Width High                                      | tон                | 350      | -                 | -   | 75                     |     | _   | ns   |
| OSC1 Pulse Width Low                                       | tOL                | 350      | -                 | -   | 75                     | -   | -   | ns   |

TABLE 1 - CONTROL TIMING (VSS=0, TA=TL to TH)

\* The minimum period t<sub>ILIL</sub> should not be less than the number of t<sub>CVC</sub> cycles it takes to execute the interrupt service routine plus 20 t<sub>CVC</sub> cycles





92CS-38351

Fig. 2 - Equivalent test-load circuits.



\*The address strobe of the first cycle of the next instruction as shown in Table 11

Fig. 3 – I/O port timing waveforms.

| Num | Characteristics                      | Symbol                          | fosc =<br>VDD =<br>50 pF | 1 MHz,<br>= 3 V<br>Load | fOSC=<br>V <sub>DD</sub> =5<br>1<br>and 130 | Unit |    |
|-----|--------------------------------------|---------------------------------|--------------------------|-------------------------|---------------------------------------------|------|----|
|     |                                      |                                 | Min                      | Max                     | Min                                         | Max  |    |
| 1   | Cycle Time                           | tcyc                            | 5000                     | DC                      | 1000                                        | DC   | ns |
| 2   | Pulse Width, DS Low                  | PWEL                            | 2800                     | -                       | 560                                         | -    | ns |
| 3   | Pulse Width, DS High or RD, WR, Low  | PWEH                            | 1800                     | -                       | 375                                         | -    | ns |
| 4   | Clock Transition                     | t <sub>r</sub> , t <sub>f</sub> | -                        | 100                     | -                                           | 30   | ns |
| 8   | R/W Hold                             | <sup>t</sup> RWH                | 10                       | -                       | 10                                          | _    | ns |
| 9   | Non-Muxed Address Hold               | <sup>t</sup> AH                 | 800                      | -                       | 100                                         | -    | ns |
| 11  | R/W Delay from DS Fall               | <sup>t</sup> AD                 | -                        | 500                     | -                                           | 300  | ns |
| 16  | Non-Muxed Address Delay from AS Rise | <sup>t</sup> ADH                | 0                        | 200                     | 0                                           | 100  | ns |
| 17  | MPU Read Data Setup                  | <sup>t</sup> DSR                | 200                      | -                       | 115                                         | -    | ns |
| 18  | Read Data Hold                       | <sup>t</sup> DHR                | 0                        | 1000                    | 0                                           | 160  | ns |
| 19  | MPU Data Delay, Write                | tDDW                            | -                        | 0                       | -                                           | 120  | ns |
| 21  | Write Data Hold                      | <sup>t</sup> DHW                | 800                      | -                       | 55                                          | -    | ns |
| 23  | Muxed Address Delay from AS Rise     | <sup>t</sup> BHD                | 0                        | 250                     | 0                                           | 120  | ns |
| 24  | Muxed Address Valid to AS Fall       | tASL.                           | 600                      | -                       | 55                                          | -    | ns |
| 25  | Muxed Address Hold                   | <sup>t</sup> AHL                | 250                      | 750                     | 60                                          | 180  | ns |
| 26  | Delay DS Fall to AS Rise             | tASD                            | 800                      | _                       | 160                                         | -    | ns |
| 27  | Pulse Width, AS High                 | PWASH                           | 850                      | -                       | 175                                         | -    | ns |
| 28  | Delay, AS Fall to DS Rise            | †ASED                           | 800                      | -                       | 160                                         | -    | ns |

2

| TABLE 2 - | BUS TIMING | (TA=TL to TH | V <sub>SS</sub> =0 V) See Figure 4 |
|-----------|------------|--------------|------------------------------------|
|-----------|------------|--------------|------------------------------------|



Fig. 4 – Bus timing waveforms.

ω

**CDP6805E3, CDP6805E3C** 

279



Oscillator Waveform



Crystal Oscillator Connections



#### Crystal Parameters Representative Frequencies

| [      | 5 MHz       | 4 MHz       | 1 MHz    |
|--------|-------------|-------------|----------|
| RS max | 50 <b>Ω</b> | 75 <b>Ω</b> | 400Ω     |
| CO     | 8 pF        | 7 pF        | 5 pF     |
| C1     | 0 02 pF     | 0 012 pF    | 0 008 pF |
| Q      | 50 k        | 40 k        | 30 k     |
| Cosc1  | 15-30 pF    | 15-30 pF    | 15-40 pF |
| COSC2  | 15-25 pF    | 15-25 pF    | 15-30 pF |



92CS-38353

Fig. 5 - Power-on reset and reset timing waveforms.



Fig. 7 - Timer Interrupt after WAIT instruction timing waveforms.

ω

92CS-38355



92CS-38356

6805-Series Microprocessors and Microcomputers

\* Represents the internal gating of the OSC1 input pin \*  $t_{CYC}$  is one instruction cycle (for fOSC=5 MHz,  $t_{CYC}$ = 1  $\mu$ s)



#### FUNCTIONAL PIN DESCRIPTION

 $V_{DD}$  and  $V_{SS}$  –  $V_{DD}$  and  $V_{SS}$  provide power to the chip  $V_{DD}$  provides power and  $V_{SS}$  is ground

 $\overline{IRQ}$  (Maskable Interrupt Request) –  $\overline{IRQ}$  is a levelsensitive and edge sensitive input which can be used to request an interrupt sequence. The MPU completes the current instruction before it responds to the request  $|\overline{IRQ}|$  is low and the interrupt mask bit (I-bit) in the Condition Code Register is clear, the MPU begins an interrupt sequence at the end of the current instruction. The interrupt circuit recognizes both a "Wire ORed" level as well as pulses on the  $\overline{IRQ}$  line (see Interrupt Section for more details).  $\overline{IRQ}$  requires an external resistor to  $V_{DD}$  for "Wire OR" operation

**RESET** — The RESET input is not required for start-up but can be used to reset the MPU's internal state and provide an orderly software start-up procedure. Refer to the RESET section for a detailed description.

**TIMER** – The TIMER input is used for clocking the onchip timer. Refer to TIMER section for a detailed description

AS (Address Strobe) – Address Strobe (AS) is an output strobe used to indicate the presence of an address on the 8-bit multiplexed bus. The AS line is used to demultiplex the eight least significant address bits from the data bus. A latch controlled by Address Strobe should capture addresses on the negative edge. This output is capable of driving one standard TTL load and 130 pF and is available at fOSC – 5 when the MPU is not in the WAIT or STOP states.

DS (Data Strobe) — This output is used to transfer data to or from a peripheral or memory DS occurs anytime the MPU does a data read or write DS also occurs when the MPU does a data transfer to or from the MPU's internal memory Refer to Table 2 and Figure 4 for timing characteristics This output is capable of driving one standard TTL load and 130 pF DS is a continuous signal at fOSC  $\pm$  5 when the MPU is not in WAIT or STOP state. Some bus cycles are redundant reads of op code bytes

 $R/\overline{W}$  (Read/Write) – The  $R/\overline{W}$  output is used to indicate the direction of data transfer for both internal memory and I/O registers, and external peripheral devices and memories. This output is used to indicate to a selected peripheral whether the MPU is going to read or write data on the next Data Strobe ( $R/\overline{W}$  low = processor write;  $R/\overline{W}$ high = processor read) The  $R/\overline{W}$  output is capable of driving one standard TTL load and 130 pF. The normal standby state is Read (high)

A8-A15 (High Order Address Lines) — The A8-A15 output lines constitute the higher order non-multiplexed addresses Each output line is capable of driving one standard TTL load and 130 pF

**B0-B7** (Address/Data Bus) — The B0-B7 bidirectional lines constitute the lower order addresses and data. These lines are multiplexed, with address present at Address Strobe time and data present at Data Strobe time. When in the data mode, these lines are bidirectional, transferring data to and from memory and peripheral devices as indicated by the  $R/\overline{W}$  pin As outputs in either the data or address modes, these lines are capable of driving one standard TTL load 130 pF

**OSC1, OSC2** — The CDP6805E3 provides for two types of oscillator inputs — crystal circuit or external clock. The two oscillator pins are used to interface to a crystal circuit, as shown in Figure 5. If an external clock is used, it must be connected to OSC1. The input at these pins is divided by five to form the cycle rate seen on the AS and DS pins. The frequency range is specified by  $f_{OSC}$ . The OSC1 to bus transitions relationships are provided in Figure 9 for system designs using oscillators slower than 5. MHz.



Fig. 9 - OSC1 to bus transitions timing waveforms.

3

**Crystal** — The circuit shown in Figure 5 is recommended when using a crystal. The internal oscillator is designed to interface with an AT-cut parallel resonant quartz crystal resonator in the frequency range specified for fOSC in the electrical characteristics table. An external CMOS oscillator is recommended when crystals outside the specified ranges are to be used. The crystal and components should be mounted as close as possible to the input pins to minimize output distortion and start-up stabilization time.

External Clock – An external clock should be applied to the OSC1 input with the OSC2 input not connected, as shown in Figure 10



Fig. 10 - External clock connection.

LI (Load Instruction) — This output is used to indicate that a fetch of the next opcode is in progress. LI remains low dur ing an External or Timer interrupt. The LI output is only used for certain debugging and test systems. For normal operations this pin is not connected. The LI output is capable of driving one standard. TTL load and 50 pF. This signal overlaps. Data Strobe

PA0-PA4 — These five pins constitute Input/Output Port A. Each line is individually programmed to be either an input or output under software control via its Data Direction Register as shown below An I/O pin is programmed as an output when the corresponding DDR bit is set to a "1", and as an input when it is set to a "0" In the output mode the bits are latched and appear on the corresponding output pins. An MPU read of the port bits programmed as outputs reflect the last value written to that location. When programmed as an input, the input data bit(s) are not latched An MPU read of the port bits programmed as inputs reflects the current status of the corresponding input pins The Read/Write port timing is shown in Figure 3 See typical I/O Port Circuitry in Figure 11 During a Power-On Reset or external RESET all lines are configured as inputs (zero in Data Direction Register) The latched output data is not initialized by reset The TTL compatible three-state output buffers are capable of driving one standard TTL load and 50 pF. The DDR is a read/write register Bits 7-5 of the DDR "A" will be always read as "1" and bits 7-5 of the Port "A" Register will be read as "0"

PB0-PB7 - These eight pins interface to Input/Output Port B Refer to PA0-PA4 description for details of operation





Fig. 11 - Typical I/O port circuitry.

0200 000

TABLE 3 - I/O PIN FUNCTIONS

| R/W | DDR | I/O Pin Functions                                                         |
|-----|-----|---------------------------------------------------------------------------|
| υ   | 0   | The I/O pin is in input mode. Data is written into the output data latch. |
| 0   | 1   | Data is written into the output data latch and<br>output to the I/O pin   |
| 1   | 0   | The state of the I/O pin is read                                          |
| 1   | 1   | The I/O pin is in an output mode. The output<br>data latch is read.       |

#### MEMORY ADDRESSING

The CDP6805E3 is capable of addressing 65536 bytes of memory and I/O registers The address space is divided into internal memory space and external memory space, as shown in Figure 12.

The internal memory space is located within the first 128 bytes of memory (first hålf of page zero) and is comprised of the I/O port locations, timer locations, and 112 bytes of RAM. The MPU can read from or write to any of these locations. A program write to on-chip locations is repeated on the external bus to permit off-chip memory to duplicate the content of on-chip memory. Program reads to on-chip locations also appear on the external bus, but the MPU accepts data appearing on the input bus is ignored.

The stack pointer is used to address data stored on the stack Data is stored on the stack during interrupts and subroutine calls At power up, the stack pointer is set to \$7F and it is decremented as data is pushed onto the stack. When data is removed from the stack, the stack pointer is incremented A maximum of 64 bytes of RAM is available for stack usage. Since most programs use only a small part of the allotted stack locations for interrupts and/or subroutine stacking purposes, the unused bytes are usable for program data storage.

All memory locations above location \$007F are part of the external memory map. In addition, ten locations in the I/O portion of the lower 128 bytes of memory space, as shown In Figure 12, are part of the external memory map. All of the external memory space is user definable except the highest 10 locations. Locations \$FFF6 to \$FFFF of the external address space are reserved for interrupt and reset vectors (see Figure 12).

#### REGISTERS

The CDP6805E3 contains five registers as shown in the programming model in Figure 13. The interrupt stacking order is shown in Figure 14.

ACCUMULATOR (A) – This Accumulator is an 8-bit general purpose register used for arithmetic calculations and data manipulations

**INDEX REGISTER (X)** – The X register is an 8-bit register which is used during the indexed modes of addressing. It provides an 8-bit operand which is used to create an effective address. The index register is also used for data manipulations with the Read/Modify/Write type of instructions and as a temporary storage register when not performing addressing operations.

**PROGRAM COUNTER (PC)** — The program counter is a 16-bit register that contains the address of the next instruction to be executed by the processor.



Fig. 12 - Address map.

92CS-38359



92CS-38360

Fig. 13 - Programming model.



92CS-38361



**STACK POINTER (SP)** — The stack pointer is a 16-bit register containing the address of the next free location on the stack When accessing memory, the ten most-significant bits are permanently set to 000 000 0001 They are appended to the six least-significant register bits to produce an address within the range of \$007F to \$0040. The stack area of RAM is used to store the return address on subroutine calls and the machine state during interrupts During external or power-on reset, and during a "reset stack pointer" instruction, the stack pointer is set to its upper limit (\$007F) Nested interrupts and/or subroutines may be use up to 64 (decimal) locations, beyond which the stack pointer "wraps around" and points to its upper limit thereby losing the previously stored information A subroutine call occupies two RAM bytes on the stack, while an interrupt uses five bytes

**CONDITION CODE REGISTER (CC)** -- The condition code register is a 5-bit register in which each bit is used to indicate the results of the instruction just executed. These bits can be individually tested by a program and specific action

taken as a result of their state. Each of the five bits is explained below

Half Carry Bit (H) - The H-bit is set to a one when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. The H-bit is useful in Binary Coded Decimal addition subroutines.

Interrupt Mask Bit (I) — When the I-bit is set, both the external interrupt and the timer interrupt are disabled. Clearing this bit enables the above interrupts. If an interrupt occurs while the I-bit is set, the interrupt is latched and will be processed when the I-bit is next cleared.

Negative Bit (N) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was negative (bit 7 in the result is a logical one).

Zero Bit (Z) - When set, this bit indicates that the result of the last arithmetic, logical, or data manipulation was zero.

**Carry Bit (C)** — The C-bit is set when a carry or a borrow out of the ALU occurs during an arithmetic instruction. The C-bit is also modified during bit test, shift, rotate, and branch types of instruction.

#### RESETS

The CDP6805E3 has two reset modes: an active low external reset pin (RESET) and a Power-On Reset function, refer to Figure 5

**RESET (Pin #1)** — The RESET input pin is used to reset the MPU and provide an orderly software start-up procedure. When using the external reset mode, the RESET pin must stay low for a minimum of one  $t_{CYC}$  The RESET pin is provided with a Schmitt Trigger to improve its noise immunity capability.

**Power-On Reset** — The Power-on Reset occurs when a positive transition is detected on V<sub>DD</sub>. The Power-on Reset is used strictly for power turn-on conditions and should not be used to detect any drops in the power supply voltage. There is no provision for a power-down reset. The power-on circuitry provides for a 1920 t<sub>CVC</sub> delay from the time of the first oscillator operation. If the external reset pin is low at the end of the 1920 t<sub>CVC</sub> time out, the processor remains in the reset condition.

Either of the two types of reset conditions causes the following to occur:

- Timer control register interrupt request bit (bit 7) is cleared to a "0"
- Timer control register interrupt mask bit (bit 6) is set to a "1".
- All data direction register bits are cleared to a "0" (inputs) - except Port "A" DDR Bits 7-5.
- Stack pointer is set to \$007F
- The address bus is forced to the reset vector (\$FFFE, \$FFFF).
- Condition code register interrupt mask bit (I) is set to a "1".
- STOP and WAIT latches are reset
- External interrupt latch is reset

All other functions, such as other registers (including output ports) the timer, etc , are not cleared by the reset conditions.

#### INTERRUPTS

The CDP6805E3 is capable of operation with three different interrupts, two hardware (timer interrupt and external interrupt) and one software (SWI) When any of these interrupts occur, normal processing is suspended at the end of the current instruction execution. All of the program registers (the machine state) are pushed onto the stack, refer to Figure 14 for stacking order. The appropriate vector pointing to the starting address of the interrupt service routine is then fetched; refer to Figure 15 for the interrupt sequence.

The priority of the various interrupts from highest to lowest is as follows

RESET→ +→ External Interrupt → Timer Interrupt

TIMER INTERRUPT – If the timer mask bit (TCR6) is cleared, then each time the timer decrements to zero (transitions from \$01 to \$00) an interrupt request is generated. The actual processor interrupt is generated only if the interrupt mask bit of the condition code register is also cleared. When the interrupt is recognized, the current state of the machine is pushed onto the stack and the I-bit in the condition code register is set. This masks further interrupts until the present one is serviced. The processor now vectors to the timer interrupt service routine. The address for this service routine is specified by the contents of \$FFF8 and \$FFF9. The contents of \$FFF6 and \$FFF7 specify the service routine if the processor is in the WAIT mode. Also, software must be used to clear the timer interrupt service routine, the software normally executes an RTI instruction which restores the machine state and starts executing the interrupted program.

EXTERNAL INTERRUPT - If the interrupt mask bit of the condition code register is cleared and the external interrupt pin IRQ is "low," then the external interrupt occurs. The action of the external interrupt is identical to the timer interrupt with the exception that the service routine address is specified by the contents of \$FFFA and \$FFFB. The interrupt logic recognizes both a "wire ORed" level and pulses on the external interrupt line Figure 16 shows both a functional diagram and timing for the interrupt line. The timing diagram shows two different treatments of the interrupt line (IRQ) to the processor. The first configuration shows many interrupt lines "wire ORed" to form the interrupts at the processor Thus, if after servicing an interrupt the IRQ remains low, then the next interrupt is recognized. The second method is single pulses on the interrupt line spaced far enough apart to be service. The minimum time between pulses is a function of the length of the interrupt service routine. Once a pulse occurs, the next pulse should not occur until the MPU software has exited the routine (an RTI occurs). This time (till ii) is obtained by adding 20 instruction cycles (one cycle  $t_{cvc}=5/f_{OSC}$ ) to the total number of cycles it takes to complete the service routine including the RTI instruction; refer to Figure 6.

**SOFTWARE INTERRUPT (SWI)** — The software interrupt is an executable instruction. The action of the SWI instruction is similar to the hardware interrupts. The SWI is executed regardless of the state of the interrupt mask in the condition code register. The service routine address is specified by the contents of memory locations **\$FFFC** and **\$FFFD** See Figure 15 for Interrupt and Instruction Processing Flowchart.

The following three functions are not strictly interrupts, however, they are tied very closely to the interrupts. These functions are RESET, STOP, WAIT

**RESET** — The **RESET** input pin and the internal Power-on Reset function each cause the program to vector to an initialization program. This vector is specified by the contents of memory locations \$FFFE and \$FFFF. The interrupt mask of the condition code register is also set. Refer to RESET selection for details

<sup>\*</sup>Any current instruction including SWI



\*NOTE The clear of TCR bit 7 must be accomplished with software

Fig. 15 - Interrupt and instruction processing flowchart.



Fig. 16 – External interrupt.

During the STOP mode, timer control register (TCR) bits 6 and 7 are altered to remove any pending timer interrupt requests and to disable any further timer interrupts. External interrupts are enabled in the condition code register. All other registers and memory remain unaltered. All I/O lines remain unchanged.



Fig. 17 - Stop function flowchart.

WAIT - The WAIT instruction places the CDP6805E3 in a low power consumption mode, but the WAIT mode con-

92CS-38032

# CDP6805E3, CDP6805E3C

sumes somewhat more power than the STOP mode; refer to Table 1. In the WAIT function, the internal clock is disabled from all internal circuitry except the Timer circuit; refer to Figure 18. Thus, all internal processing is halted except the Timer which is allowed to count in a normal sequence. The R/W line goes to a high state, the multiplexed address/data bus goes to the data input state, and the DS and AS lines go to the low state. The high order address lines remain at the address of the next instruction. The MPU remains in this state until an external interrupt, timer interrupt, or a reset occurs, refer to Figures 7 and 18.

During the WAIT mode, the I-bit in the condition code register is cleared to enable interrupts. All other registers, memory, and I/O lines remain in their last state. The timer may be enabled to allow a periodic exit from the WAIT mode If an external and a timer interrupt occur at the same time, the external interrupt is serviced first, then, if the timer interrupt request is not cleared in the external interrupt routine, the normal timer interrupt (not the timer WAIT interrupt) is serviced since the MCU is no longer in the WAIT mode

#### TIMER

The MPU timer contains a single 8-bit software programmable counter with 7-bit software selectable prescaler. The counter may be preset under program control and decrements towards zero. When the counter decrements to zero, the timer interrupt request bit, i.e., bit 7 of the Timer Control Register (TCR) is set. Then if the timer interrupt is not masked, i.e., bit 6 of the TCR and the I-bit in the Condition Code Register are both cleared, the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack, and then fetches the timer vector address from locations \$FFF8 and \$FFF9 in order to begin servicing the interrupt, unless it was in locations \$FFF6 and \$FFF7 the WAIT mode

The counter continues to count after it reaches zero, allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter becomes stable prior to the read portion of a cycle and does not change during the read. The timer interrupt request bit remains set until cleared by the software. If this happens before the timer interrupt is serviced, the interrupt is lost. TCR7 may also be used as a scanned status bit in a noninterrupt mode of operation (TCR6=1)

The prescaler is a 7-bit divider which is used to extend the maximum length of the timer. Bit 0, bit 1, and bit 2 of the TCR are programmed to choose the appropriate prescaler output which is used as the counter input. The processor cannot write into or read from the prescaler, however, its contents are cleared to all "0's" by the write operation into TCR when bit 3 of the written data equals 1, which allows for truncation-free counting.

The Timer input can be configured for three different operating modes, plus a disable mode depending on the value written to the TCR4, TCR5 control bits. Refer to the TIMER CONTROL REGISTER section.

Timer Input Mode 1 – If TCR4 and TCR5 are both programmed to a "0", the input to the Timer is from an internal clock and the Timer input is disabled. The internal clock mode can be used for periodic interrupt generation, as well



Fig. 18 - Wait function flowchart.

as a reference in frequency and event measurement. The internal clock is the instruction cycle clock and is coincident with Address Strobe (AS) except during a WAIT instruction. During a WAIT instruction the AS pin goes to a low state but the internal clock to the Timer continues to run at its normal rate.

**Timer Input Mode 2** — With TCR4=1 and TCR5=0, the internal clock and the TIMER input pin are ANDed together to form the Timer input signal. This mode can be used to measure external pulse widths The external pulse simply turns on the internal clock for the duration of the pulse. The resolution of the count in this mode is  $\pm 1$  clock and therefore accuracy improves with longer input pulse widths.

Timer Input Mode 3 – If TCR4 = 0 and TCR5 = 1, then all inputs to the Timer are disabled

**Timer Input Mode 4** – If TCR4=1 and TCR5=1, the internal clock input to the Timer is disabled and the TIMER input pin becomes the input to the Timer. The external Timer pin can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts.

Figure 19 shows a block diagram of the Timer subsystem Power-on Reset and the STOP instruction cause the counter to be set to \$F0





Timer Control Register (TCR)

| 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|
| TCR7 | TCR6 | TCR5 | TCR4 | TCR3 | TCR2 | TCR1 | TCR0 |

All bits in this register except bit 3 are Read/Write bits

**TCR7** - Timer interrupt request bit bit used to indicate the timer interrupt when it is logic "1"

- Set whenever the counter decrements to zero, or under program control
- O Cleared on external reset, power-on reset, STOP instruction, or program control

**TCR6** – Timer interrupt mask bit when this bit is a logic "1" it inhibits the timer interrupt to the processor

- Set on external reset, power-on reset, STOP instruction, or program control
- 0 Cleared under program control

**TCR5** – External or internal bit selects the input clock source to be either the external timer pin or the internal clock (Unaffected by RESET)

- 1 Select external clock source
- 0 Select internal clock source (AS)

**TCR4** – External enable bit control bit used to enable the external timer pin (Unaffected by RESET)

- 1 Enable external timer pin
- 0 Disable external timer pin

#### TCR5 TCR4

| 0 | 0 | Internal clock (AS) to Timer         |
|---|---|--------------------------------------|
| 0 | 1 | AND of internal clock (AS) and TIMER |
|   |   | pin to Timer                         |
| 1 | 0 | Inputs to Timer disabled             |
| 1 | 1 | TIMER pin to Timer                   |

Refer to Figure 19 for Logic Representation

TCR3 – Timer Prescaler Reset bit writing a "1" to this bit resets the prescaler to zero. A read of this location always indicates a "0" (Unaffected by  $\overrightarrow{\text{RESET}}$ )

TCR2, TCR1, TCR0 – Prescaler address bits decoded to select one of eight taps on the prescaler (Unaffected by  $\overrightarrow{\text{RESET}}$ )

|      | Pre  | scaler |        |
|------|------|--------|--------|
| TCR2 | TCR1 | TCR0   | Result |
| 0    | 0    | 0      | - 1    |
| 0    | 0    | 1      | - 2    |
| 0    | 1    | 0 '    | - 4    |
| 0    | 1    | 1      | -8     |
| 1    | 0    | 0      | - 16   |
| 1    | 0    | 1      | ÷ 32   |
| 1    | 1    | 0      | ÷ 64   |
| 1    | 1    | 1      | - 128  |

#### INSTRUCTION SET

The MPU has a set of 61 basic instructions. They can be divided into five different types: register/memory, read/modify/write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

**REGISTER/MEMORY INSTRUCTIONS** – Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 4

**READ/MODIFY/WRITE INSTRUCTIONS** — These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is an exception to the read/modify/write sequence since it does not modify the value. Refer to Table 5

**BRANCH INSTRUCTIONS** – This set of instructions branches if a particular condition is met, otherwise no operation is performed. Branch instructions are two byte instructions Refer to Table 6

**BIT MANIPULATION INSTRUCTIONS** – The MPU is capable of setting or clearing any bit which resides in the first 256 bytes of the memory space, where all port registers, port DDRs, timer, timer control, and on-chip RAM reside An additional feature allows the software to test and branch on the state of any bit within these 256 locations. The bit set, bit clear and bit test and branch functions are all implemented with a single instruction. For the test and branch instructions the value of the bit tested is also placed in the carry bit of the Condition Code Register. Refer to Table 7 for instruction cycle timing

**CONTROL INSTRUCTIONS** – These instructions are register reference instructions and are used to control processor operation during program execution. Refer to Table 8 for instruction cycle timing

ALPHABETICAL LISTING – The complete instruction set is given in alphabetical order in Table 9

 $\ensuremath{\text{OPCODE}}$  MAP SUMMARY - Table 10 is an opcode map for the instructions used on the MCU

#### ADDRESSING MODES

The MPU uses ten different addressing modes to give the programmer an opportunity to optimize the code to all situations. The various indexed addressing modes make it possible to locate data tables, code conversion tables and scaling tables anywhere in the memory space. Short indexed accesses are single byte instructions, while the longest instructions (three bytes) permit tables throughout memory. Short and long absolute addressing is also included. Two byte

direct addressing instructions access all data bytes in most applications. Extended addressing permits jump instructions to reach all memory. Table 9 shows the addressing modes for each instruction, with the effects each instruction has on the Condition Code Register. An opcode map is shown in Table 10.

The term "Effective Address" or EA is used in describing the various addressing modes, which is defined as the address to or from which the argument for an instruction is fetched or stored. The ten addressing modes of the processor are described below. Parentheses are used to indicate "contents of," an arrow indicates "is replaced by" and a colon indicates concatenation of two bytes

**Inherent** — In inherent instructions all the information necessary to execute the instruction is contained in the opcode Operations specifying only the index register or accumulator, and no other arguments, are included in this mode

Immediate — In immediate addressing, the operand is contained in the byte immediately following the opcode. Immediate addressing is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

$$EA = PC + 1$$
,  $PC \leftarrow PC + 2$ 

**Direct** — In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to direct-ly address the lowest 256 bytes in memory with a single two byte instruction. This includes all on-cnip RAM and I/O registers and up to 128 bytes of off-chip ROM. Direct addressing is efficient in both memory and speed

 $EA = (PC + 1), PC \leftarrow PC + 2$ Address Bus High  $\leftarrow 0$ , Address Bus Low  $\leftarrow (PC + 1)$ 

**Extended** — In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode Instructions with extended addressing modes are capable of referencing arguments anywhere in memory with a single three byte instruction

EA = (PC + 1) (PC + 2), PC - PC + 3Address Bus High - (PC + 1), Address Bus Low - (PC + 2)

Indexed, No-Offset – In the indexed, no offset addressing mode, the effective address of the argument is contained in the 8-bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is used to move a pointer through a table or to address a frequently referenced RAM or I/O location.

 $EA = X, PC \leftarrow PC + 1$ Address Bus High  $\leftarrow 0$ , Address Bus Low  $\leftarrow X$ 

|                                             |          |            | Addressing Modes |             |            |            |             |            |            |             |                        |            |             |                           |            |             |                            |            |             |
|---------------------------------------------|----------|------------|------------------|-------------|------------|------------|-------------|------------|------------|-------------|------------------------|------------|-------------|---------------------------|------------|-------------|----------------------------|------------|-------------|
|                                             |          | I          | mmediat          | e           |            | Direct     |             |            | Extended   | 1           | Indexed<br>(No Offset) |            |             | Indexed<br>(8-Bit Offset) |            |             | Indexed<br>(16-Bit Offset) |            | set)        |
| Function                                    | Mnemonic | Op<br>Code | #<br>Bytes       | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code             | #<br>Bytes | #<br>Cycles | Op<br>Code                | #<br>Bytes | #<br>Cycles | Op<br>Code                 | #<br>Bytes | #<br>Cycles |
| Load A from Memory                          | LDA      | A6         | 2                | 2           | B6         | 2          | 3           | C6         | 3          | 4           | F6                     | 1          | 3           | E6                        | 2          | 4           | D6                         | 3          | 5           |
| Load X from Memory                          | LDX      | AE         | 2                | 2           | BE         | 2          | 3           | CE         | 3          | 4           | FE                     | 1          | 3           | EE                        | 2          | 4           | DE                         | 3          | 5           |
| Store A in Memory                           | STA      |            | -                |             | B7         | 2          | 4           | C7         | 3          | 5           | F7                     | 1          | 4           | E7                        | 2          | 5           | D7                         | 3          | 6           |
| Store X in Memory                           | STX      | -          | -                | -           | BF         | 2          | 4           | CF         | 3          | 5           | FF                     | 1          | 4           | EF                        | 2          | 5           | DF                         | 3          | 6           |
| Add Memory to A                             | ADD      | AB         | 2 -              | 2           | BB         | 2          | 3           | СВ         | 3          | 4           | FB                     | 1          | 3           | EB                        | 2          | 4           | DB                         | 3          | 5           |
| Add Memory and<br>Carry to A                | ADC      | A9         | 2                | 2           | B9         | 2          | 3           | С9         | 3          | 4           | F9                     | 1          | 3           | E9                        | 2          | 4           | D9                         | 3          | 5           |
| Subtract Memory                             | SUB      | A0         | 2                | 2           | BO         | 2          | 3           | C0         | 3          | 4           | F0                     | 1          | 3           | EO                        | 2          | 4           | D0                         | 3          | 5           |
| Subtract Memory from<br>A with Borrow       | SBC      | A2         | 2                | 2           | B2         | 2          | 3           | C2         | 3          | 4           | F2                     | 1          | 3           | E2                        | 2          | 4           | D2                         | 3          | 5           |
| AND Memory to A                             | AND      | Α4         | 2                | 2           | B4         | 2          | 3           | C4         | 3          | 4           | F4                     | 1          | 3           | E4                        | 2          | 4           | D4                         | 3          | 5           |
| OR Memory with A                            | ORA      | AA         | 2                | 2           | BA         | 2          | 3           | СA         | 3          | 4           | FA                     | 1          | 3           | EA                        | 2          | 4           | DA                         | 3          | 5           |
| Exclusive OR Memory<br>with A               | EOR      | A8         | 2                | 2           | B8         | 2          | 3           | C8         | 3          | 4           | F8                     | 1          | 3           | E8                        | 2          | 4           | D8                         | 3          | 5           |
| Arithmetic Compare A with Memory            | CMP      | A1         | 2                | 2           | B1         | 2          | 3           | C1         | 3          | 4           | F1                     | 1          | 3           | E1                        | 2          | 4           | D1                         | 3          | 5           |
| Arithmetic Compare X<br>with Memory         | СРХ      | A3         | 2                | 2           | B3         | 2          | 3           | C3         | 3          | 4           | F3                     | 1          | 3           | E3                        | 2          | 4           | D3                         | 3          | 5           |
| Bit Test Memory with<br>A (Logical Compare) | віт      | A5         | 2                | 2           | B5         | 2          | 3           | C5         | 3          | 4           | F5                     | 1          | 3           | E5                        | 2          | 4           | D5                         | 3          | 5           |
| Jump Unconditional                          | JMP      | -          | -                | -           | BC         | 2          | 2           | СС         | 3          | 3           | FC                     | 1          | 2           | EC                        | 2          | 3           | DC                         | 3          | 4           |
| Jump to Subroutine                          | JSR      | -          | -                | -           | BD         | 2          | 5           | CD         | 3          | 6           | FD                     | 1          | 5           | ED                        | 2          | 6           | DD                         | 3          | 7           |

#### TABLE 4 - REGISTER/MEMORY INSTRUCTIONS

#### TABLE 5 - READ/MODIFY/WRITE INSTRUCTIONS

|                              |              |            | Addressing Modes |             |              |            |             |            |            |             |                        |            |             |                           |            |             |
|------------------------------|--------------|------------|------------------|-------------|--------------|------------|-------------|------------|------------|-------------|------------------------|------------|-------------|---------------------------|------------|-------------|
|                              | Inherent (A) |            |                  | Ir          | Inherent (X) |            |             | Direct     |            |             | Indexed<br>(No Offset) |            |             | Indexed<br>(8-Bit Offset) |            |             |
| Function                     | Mnemonic     | Op<br>Code | #<br>Bytes       | #<br>Cycles | Op<br>Code   | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code             | #<br>Bytes | #<br>Cycles | Op<br>Code                | #<br>Bytes | #<br>Cycles |
| Increment                    | INC          | 4C         | 1                | 3           | 5C           | 1          | 3           | 3C         | 2          | 5           | 7C                     | 1          | 5           | 6C                        | 2          | 6           |
| Decrement                    | DEC          | 4A         | 1                | 3           | 5A           | 1          | 3           | 3A         | 2          | 5           | 7A                     | 1          | 5           | 6A                        | 2          | 6           |
| Clear                        | CLR          | 4F         | 1                | 3           | 5F           | 1          | 3           | 3F         | 2          | 5           | 7F                     | 1          | 5           | 6F                        | 2          | 6           |
| Complement                   | COM          | 43         | 1                | 3           | 53           | 1          | 3           | 33         | 2          | 5           | 73                     | 1          | 5           | 63                        | 2          | 6           |
| Negate<br>(2's Complement)   | NEG          | 40         | 1                | 3           | 50           | 1          | 3           | 30         | 2          | 5           | 70                     | 1          | 5           | 60                        | 2          | 6           |
| Rotate Left Thru Carry       | ROL          | 49         | 1                | 3           | 59           | 1          | 3           | 39         | 2          | 5           | 79                     | 1          | 5           | 69                        | 2          | 6           |
| Rotate Right Thru<br>Carry   | ROR          | 46         | 1                | 3           | 56           | 1          | 3           | 36         | 2          | 5           | 76                     | 1          | 5           | 66                        | 2          | 6           |
| Logical Shift Left           | LSL          | 48         | 1                | 3           | 58           | 1          | 3           | 38         | 2          | 5           | 78                     | 1          | 5           | 68                        | 2          | 6           |
| Logical Shift Right          | LSR          | 44         | 1                | 3           | 54           | 1          | 3           | 34         | 2          | 5           | 74                     | 1          | 5           | 64                        | 2          | 6           |
| Arithmetic Shift Right       | ASR          | 47         | 1                | 3           | 57           | 1          | 3           | 37         | 2          | 5           | /7                     | 1          | 5           | 67                        | 2          | 6           |
| Test for Negative<br>or Zero | TST          | 4D         | 1                | 3           | 5D           | 1          | 3           | 3D         | 2          | 4           | 7D                     | 1          | 4           | 6D                        | 2          | 5           |

\_6805-Series Microprocessors and Microcomputers CDP6805E3, CDP6805E3C

ω

|                                        |          | Relative   | Addressin  | g Mode      |
|----------------------------------------|----------|------------|------------|-------------|
| Function                               | Mnemonic | Op<br>Code | #<br>Bytes | #<br>Cycles |
| Branch Always                          | BRA      | 20         | 2          | 3           |
| Branch Never                           | BRN      | 21         | 2          | 3           |
| Branch IFF Higher                      | BHI      | 22         | 2          | 3           |
| Branch IFF Lower or Same               | BLS      | 23         | 2          | 3           |
| Branch IFF Carry Clear                 | BCC      | 24         | 2          | 3           |
| (Branch IFF Higher or Same)            | (BHS)    | 24         | 2          | 3           |
| Branch IFF Carry Set                   | BCS      | 25         | 2          | 3           |
| (Branch IFF Lower)                     | (BLO)    | 25         | 2          | 3           |
| Branch IFF Not Equal                   | BNE      | 26         | 2          | 3           |
| Branch IFF Equal                       | BEQ      | 27         | 2          | 3           |
| Branch IFF Half Carry Clear            | BHCC     | 28         | 2          | 3           |
| Branch IFF Half Carry Set              | BHCS     | 29         | 2          | 3           |
| Branch IFF Plus                        | BPL      | 2A         | 2          | 3           |
| Branch IFF Minus                       | BMI      | 2B         | 2          | 3           |
| Branch IFF Interrupt Mask Bit is Clear | BMC      | 2C         | 2          | 3           |
| Branch IFF Interrupt Mask Bit is Set   | BMS      | 2D         | 2          | 3           |
| Branch IFF Interrupt Line is Low       | BIL      | 2E         | 2          | 3           |
| Branch IFF Interrupt Line is High      | BIH      | 2F         | 2          | 3           |
| Branch to Subroutine                   | BSR      | AD         | 2          | 6           |

#### TABLE 6 - BRANCH INSTRUCTIONS

TABLE 7 - BIT MANIPULATION INSTRUCTIONS

|                           |                  | Addressing Modes |                                   |             |            |            |             |  |  |  |  |
|---------------------------|------------------|------------------|-----------------------------------|-------------|------------|------------|-------------|--|--|--|--|
|                           |                  | B                | Bit Set/Clear Bit Test and Branch |             |            |            |             |  |  |  |  |
| Function                  | Mnemonic         | Op<br>Code       | #<br>Bytes                        | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles |  |  |  |  |
| Branch IFF Bit n is Set   | BRSET n (n=0 7)  | -                |                                   | -           | _2•n       | 3          | 5           |  |  |  |  |
| Branch IFF Bit n is Clear | BRCLR n (n=0 7)  | -                | -                                 | -           | 01 + 2•n   | 3          | 5           |  |  |  |  |
| Set Bit n                 | BSET_n (n = 0 7) | 10 + 2•n         | 2                                 | 5           | -          | -          | -           |  |  |  |  |
| Clear Bit n               | BCLR n (n = 0 7) | 11 + 2∙n         | 2                                 | 5           | -          | -          | -           |  |  |  |  |

|                          |          |            | Inherent   |             |
|--------------------------|----------|------------|------------|-------------|
| Function                 | Mnemonic | Op<br>Code | #<br>Bytes | #<br>Cycles |
| Transfer A to X          | TAX      | 97         | 1          | 2           |
| Transfer X to A          | TXA      | 9F         | 1          | 2           |
| Set Carry Bit            | SEC      | 99         | 1          | 2           |
| Clear Carry Bit          | CLC      | 98         | 1          | 2           |
| Set Interrupt Mask Bit   | SEI      | 9B         | 1          | 2           |
| Clear Interrupt Mask Bit | CLI      | 9A         | 1          | 2           |
| Software Interrupt       | SWI      | 83         | 1          | 10          |
| Return from Subroutine   | RTS      | 81         | 1          | 6           |
| Return from Interrupt    | RTI      | 80         | 1          | 9           |
| Reset Stack Pointer      | RSP      | 9C         | 1          | 2           |
| No-Operation             | NOP      | 9D         | 1          | 2           |
| Stop                     | STOP     | 8E         | 1          | 2           |
| Wait                     | WAIT     | 8F         | 1          | 2           |

#### TABLE 8 - CONTROL INSTRUCTIONS

|            | Addressing Modes |           |          |          |          |                        |                     |                      |                      |                         |   | Condition Cod |     |            |                   |  |
|------------|------------------|-----------|----------|----------|----------|------------------------|---------------------|----------------------|----------------------|-------------------------|---|---------------|-----|------------|-------------------|--|
| Mnemonic   | Inherent         | Immediate | Direct   | Extended | Relative | Indexed<br>(No Offset) | Indexed<br>(8 Bits) | Indexed<br>(16 Bits) | Bit<br>Set/<br>Clear | Bit<br>Test &<br>Branch | н | 1             | N   | z          | c                 |  |
| ADC        |                  | ×         | ×        | x        |          | x                      | X                   | x                    |                      |                         | ۸ | ٠             | ۸   | ۸          | Λ                 |  |
| ADD        |                  | X         | X        | X        |          | X                      | X                   | X                    |                      |                         | Λ | ٠             | Λ   | A          | Λ                 |  |
| AND        |                  | X         | X        | X        |          | X                      | X                   | X                    |                      |                         | ٠ | ٠             | Λ   | 1          | •                 |  |
| ASL        | X                |           | X        |          |          | <u>×</u>               | <u> </u>            |                      |                      |                         | • | ٠             | Λ   | 1          | 1                 |  |
| ASR        | ×                |           | ×        |          |          | X                      | X                   |                      |                      |                         | • | •             | 1A  | 14         |                   |  |
| BCC        |                  |           |          |          | <u> </u> |                        |                     |                      |                      |                         | • | •             | l•  | •          | •                 |  |
| BCLR       |                  |           |          |          |          |                        |                     |                      | ×                    |                         | • | •             | •   |            | -                 |  |
| BCS        |                  |           |          |          | ↓        |                        |                     |                      |                      |                         | • | •             |     |            | <b>!</b>          |  |
| BEQ        |                  |           |          |          | ÷        |                        |                     |                      |                      |                         |   |               |     |            |                   |  |
| BHCC       |                  |           |          |          | ×        |                        |                     |                      |                      |                         |   | -             | -   |            |                   |  |
| BHCS       |                  |           |          |          | ×        |                        |                     |                      |                      |                         |   | -             | -   |            |                   |  |
| BHS        |                  |           |          |          | X        |                        |                     |                      |                      |                         |   | -             |     | -          |                   |  |
| BIH        |                  |           |          |          | ×        |                        |                     |                      |                      |                         |   | -             |     | 1÷         | i                 |  |
| BII        |                  |           |          |          | ×        |                        |                     |                      |                      |                         |   |               | ē   | 1 i        | •                 |  |
| BIT        |                  | X         | X        | х        |          | x                      | х                   | X                    |                      |                         | • | •             | A   | Ā          |                   |  |
| BLO        |                  |           |          |          | X        |                        |                     |                      |                      |                         | • | •             | •   | •          | •                 |  |
| BLS        |                  |           |          |          | X        |                        |                     |                      |                      |                         | • | •             | •   | •          | •                 |  |
| BMC        |                  |           |          |          | X        |                        |                     |                      |                      |                         | • | ۰             | •   | •          | •                 |  |
| BMI        |                  |           |          |          | Х        |                        |                     |                      |                      |                         | ٠ | ٠             | •   | •          | •                 |  |
| BMS        |                  |           |          |          | X        |                        |                     |                      |                      |                         | • | ٠             | •   | •          | •                 |  |
| BNE        |                  |           |          |          | X        |                        |                     |                      |                      |                         | ۲ | ۰             | ٠   | •          | •                 |  |
| BPL        |                  |           |          |          | X        |                        |                     |                      |                      |                         | ٠ | ٠             | ٠   | •          | •                 |  |
| BRA        |                  |           |          |          | <u> </u> |                        |                     |                      |                      |                         | • | •             | •   | •          | •                 |  |
| BRN        |                  |           |          |          | X        |                        |                     |                      |                      |                         | • | ٠             | •   | ٠          | •                 |  |
| BRCLR      |                  |           |          |          |          |                        |                     |                      |                      | X                       | • | •             | •   | •          | Λ                 |  |
| BRSET      |                  |           |          |          |          |                        |                     |                      |                      | <u> </u>                | • | •             | •   | •          | Λ                 |  |
| BSET       |                  |           |          |          |          |                        |                     |                      | X                    |                         | • | •             | •   | •          | •                 |  |
| BSR        |                  |           |          |          | <u>×</u> |                        |                     |                      |                      |                         | • | •             | •   |            | •                 |  |
|            | X                |           |          |          |          |                        |                     |                      |                      |                         |   | •             |     | 1.         | 10                |  |
|            | - ÷              |           |          |          |          |                        | ~~~~                |                      |                      |                         | - | 0             | -   | -          |                   |  |
| CMP        | <u>^</u>         | ×         | ÷        |          |          |                        |                     |                      |                      |                         |   | -             | Å   | +          |                   |  |
| COM        |                  | ^         |          | ^        |          | Ŷ                      | Ŷ                   | ^                    |                      |                         |   | -             | A   | A          | +                 |  |
| CPX        | ^                | ×         | Ŷ        | x        |          | - Â                    | - Â                 | ×                    |                      |                         |   | -             | 1   | 17         |                   |  |
| DEC        | ×                | ^         | X        | ^        |          | ×                      | X                   |                      |                      |                         | • |               | Ä   | Å          | ÷                 |  |
| EOR        |                  | x         | X        | X        |          | X                      | X                   | X                    |                      |                         | • | •             | Ā   | Ā          | •                 |  |
| INC        | х                |           | X        |          |          | X                      | X                   |                      |                      |                         | • |               | Λ   | Λ          | •                 |  |
| JMP        |                  |           | X        | X        |          | x                      | x                   | X                    |                      |                         | ٠ | •             | •   | •          | •                 |  |
| JSR        |                  |           | X        | x        |          | X                      | Х                   | X                    |                      |                         | ٠ | ٠             | •   | •          | •                 |  |
| LDA        |                  | Х         | X        | Х        |          | X                      | X                   | X                    |                      |                         | • | ٠             | Λ   | Λ          | •                 |  |
| LDX        |                  | X         | X        | X        |          | x                      | X                   | X                    |                      |                         | ٠ | •             | Λ   | Λ          | •                 |  |
| LSL        | X                |           | X        |          |          | X                      | Х                   |                      |                      |                         | ٠ | •             | Λ   | ۸          | Λ                 |  |
| LSR        | Х                |           | X        |          |          | X                      | Х                   |                      |                      |                         | • | ٠             | 0   | Â          | Λ                 |  |
| NEG        | X                |           | Х        |          |          | X                      | X                   |                      |                      |                         | • | ۰             | ۸   | ۱ <u>۸</u> | Λ                 |  |
| NOP        | X                |           |          |          |          |                        |                     |                      |                      |                         | • | •             | •   | Ļ          |                   |  |
| ORA        | L                | X         | X        | X        |          | X                      | X                   | <u>×</u>             |                      |                         | • | •             |     | 1A         | <b>!</b>          |  |
| HOL        | ×                |           | X        |          |          | <u> </u>               | X                   |                      |                      |                         |   |               | 1 A | IA.        |                   |  |
| HUH        | - <del>č</del>   |           | X        |          |          | X                      | X                   |                      |                      |                         |   | -             | A   | 1          |                   |  |
| nor<br>DTI |                  |           |          |          |          |                        |                     |                      |                      |                         | - | -             | 5   | 5          | <b> </b> <u>−</u> |  |
|            |                  |           |          |          |          |                        |                     |                      |                      |                         | - |               |     | 6          |                   |  |
| 580        | <u>^</u>         |           |          |          |          |                        | v                   | Y                    |                      |                         | - |               | 1   | H.         | 1                 |  |
| SEC        | X                | ^         | <u> </u> | ^        |          | ^                      |                     | ^                    |                      |                         |   |               |     | 1          | ti-l              |  |
| SEI        | Ŷ                |           |          |          |          |                        |                     |                      |                      |                         | - | 1             | •   |            |                   |  |
| STA        | <u>^</u>         |           | Y Y      | y        |          | Y                      | ¥                   | x                    |                      |                         |   |               | Ā   | 1          | 1                 |  |
| STOP       | ×                |           | <u>├</u> | ^        |          | ^                      | <u>^</u>            | ^`                   |                      |                         |   | Ō             |     | i          | 1                 |  |
| STX        |                  |           | X        | x        |          | x                      | X                   | Х                    |                      |                         | • | •             | Λ   | A          |                   |  |
| SUB        |                  | ×         | Ŷ        | x        |          | x                      | X                   | X                    |                      |                         | • | •             | ٨   | ٨          | Λ                 |  |
| SWI        | X                | ,         | <u> </u> |          |          |                        |                     |                      |                      |                         | • | 1             | •   | ٠          | •                 |  |
| TAX        | X                |           |          |          |          |                        |                     |                      |                      |                         | • | ٠             | ٠   | ٠          | ٠                 |  |
| TST        | X                |           | X        |          |          | х                      | Х                   |                      |                      |                         | • | •             | Λ   | ۸          | ۲                 |  |
| TXA        | X                |           |          |          |          |                        |                     |                      |                      |                         |   | ٠             | •   | ۰          | •                 |  |
| WAIT       | X                |           |          |          |          |                        |                     |                      |                      |                         |   | 0             | •   | •          |                   |  |

TABLE 9 - INSTRUCTION SET

Condition Code Symbols

- H Half Carry (From Bit 3) I Interrupt Mask
- N Negative (Sign Bit)
- Z Zero C Carry/Borrow
- ▲ Test and Set if True Cleared Otherwise
   Not Affected
  > Load CC Register From Stack
  > Otherwise

- 0 Cleared 1 Set

|           |                 |                |                   | ·                   |               |               |                |       |               |                   | ·                 |              |                           |              |                   |           |           |
|-----------|-----------------|----------------|-------------------|---------------------|---------------|---------------|----------------|-------|---------------|-------------------|-------------------|--------------|---------------------------|--------------|-------------------|-----------|-----------|
|           | Bit Ma          | nipulation     | Branch            | DIR                 | H             | ead/Modify/   | Write          |       | Cor           | ntrol             | 18484             | 00           | Registe                   | er/Memory    |                   | 19        | - 1       |
| HI        |                 | BSU            | 2                 | 3                   | 4             | 5             | 6              | 9     | 8             | 9                 | A                 | B            | C                         | D            | E                 | F         | HI        |
| LOW       |                 | 0001           | 0010              |                     | 0100          | 0101          | 0110           | 0111  | 1000          | 1001              | 1010              | 1011         | 1100                      | 1101         | 1110              |           | LOW       |
| 0000      | BRSETO<br>3 BTB | BSET0<br>2 BSC | BRA<br>2 REL      | NEG 2 DIR           | NEGA          | NEGX          | NEG 1x1        | NEG   | RTI<br>1NH    |                   | SUB<br>2 IMM      | SUB<br>2 DIR | SUB<br>3 EXT              | SUB<br>3 IX2 | SUB IX1           | , SUB     | 0000      |
| 1 0001    |                 |                | BRN<br>2 REL      |                     |               |               |                |       |               |                   |                   | CMP 2 DIB    | CMP<br>3 EXT              | 3 CMP 3      | CMP 4             | . CMP 3   | 1<br>0001 |
| 2<br>0010 | BRSET1<br>3 BTB | BSET1<br>2 BSC | BHI<br>2 REL      |                     |               |               |                |       |               |                   | SBC 2 IMM         | SBC 3        | SBC 4                     | SBC SBC      | SBC 4             | SBC 3     | 2<br>0010 |
| 3         | BRCLR1<br>3 BTB | BCLR1<br>2 BSC | BLS<br>2 REL      |                     |               |               | COM 2 1X1      | COM 1 | SWI<br>1 INH  |                   | 2<br>CPX<br>2 IMM | CPX<br>2 DIR | CPX<br>3 ExT              | CPX 5        | CPX 4             | , CPX ,   | 3<br>3011 |
| 4         | BRSET2<br>3 BTB | BSET2<br>2 BSC | BCC 3             | LSR<br>2 DIR        |               |               | LSR<br>2 IX1   |       |               |                   | 2<br>AND<br>2 IMM | AND<br>2 DIR | AND<br>3 EXT              | AND 5        | 4<br>AND<br>2 (x1 | , AND , X | 4<br>0100 |
| 5<br>0101 | BRCLR2<br>3 BTB |                | BCS<br>2 BEL      |                     |               |               |                |       |               |                   | 2<br>BIT<br>2 IMM | 8IT<br>2 DIR | 81T<br>3 EXT              | BIT 5        | BIT 4             | BIT 3     | 5<br>0101 |
| 6<br>0110 | BRSET3<br>3 BTB | BSET3<br>2 BSC | BNE<br>2 REL      | ROR 5<br>2 DIR      |               |               | 808 2 IX1      |       |               |                   | 2<br>LDA<br>2 IMM | LDA<br>2 DIR | LDA<br>3 EXT              | LDA 5        | 4<br>LDA<br>2 ix1 | , LDA x   | 6<br>0110 |
| 7<br>0111 | BRCLR3<br>3 BTB |                | BEQ 3             | ASR<br>2 DIR        |               |               | ASR 2 1X1      | ASR 5 |               | TAX 2             |                   | STA<br>2 DIR | STA<br>3 EXT              | STA 6        | STA 5             | , STA ,   | 7         |
| 8<br>1000 | BRSET4<br>3 BTB | BSET4<br>2 BSC | BHCC<br>2 REL     | LSL<br>2 DIR        | LSLA<br>1 INH | LSLX<br>1 INH | LSL 6          |       |               | CLC               | EOR               | EOR 2 DIR    | EOR<br>3 EXT              | EOR 5        | EOR 1             | , EOR ,   | 8<br>300  |
| 9<br>1001 | BRCLR4<br>3 BTB |                | BHCS<br>2 BEL     | ROL 5               | ROLA<br>1 INH | ROLX 3        | ROL 6          | ROL   |               | SEC               | ADC 2             | ADC DIB      | ADC 4                     | ADC 3        | ADC ADC           |           | .9,       |
| A<br>1010 | BRSET5          | BSET5<br>2 BSC | BPL<br>2 REL      | DEC 5               | DECA<br>1 INH |               | DEC 6          | DEC   |               | CLI<br>1 INH      |                   |              |                           | ORA 5        |                   | ORA       | A         |
| B<br>1011 | BRCLR5<br>3 BTB | BCLR5<br>2 BSC | BMI<br>2 REL      |                     |               |               |                |       |               | SEI<br>I INH      | ADD 2<br>2 IMM    | ADD 3        | ADD<br>3 EXT              | ADD 3 1×2    |                   |           | B         |
| C<br>1100 | BRSET6<br>3 BTB | BSET6<br>2 BSC | BMC<br>2 REL      | INC<br>2 DIR        | INCA<br>1 INH | INCX INH      | 1NC 1X1        |       |               | RSP 2<br>1 INH    |                   | JMP<br>2 DIB | JMP<br>3 EXT              | JMP<br>3 1×2 | JMP 2 1X1         | JMP       | C<br>x    |
| D<br>1101 | BRCLR6<br>3 BTB | BCLR6<br>2 BSC | BMS<br>2 REL      | 4<br>1 TST<br>2 DIR | TSTA<br>1 INH | TSTX 3        | TST 5<br>2 IX1 | TST 4 |               | 2<br>NOP<br>1 INH | BSR<br>2 REL      | JSR<br>2 DIR | JSR<br>3 EXT              | JSR<br>3 1×2 | JSR 2 1X1         | JSR       | D         |
| E<br>1110 | BRSET7<br>3 BTB | BSET7<br>2 BSC | 3<br>BIL<br>2 REL |                     |               |               |                |       | STOP 2        |                   | 2<br>LDX<br>2 IMM | LDX<br>2 DIR | 4<br>LDX<br>3 <u>E</u> XT | LDX 5        | LDX 4<br>2 1×1    |           | E         |
| F<br>1111 | BRCLR7<br>3 BTB | BCLR7<br>2 BSC | 3<br>BIH<br>2 REL | CLR<br>2 DIR        |               |               | CLR 2 IX1      |       | WAIT<br>1 INH | 1 TXA             |                   | STX<br>2 DIR | STX<br>3 EXT              | STX 6        | STX 5             | STX       | <u>.</u>  |

#### TABLE 10 - CDP6805E3 INSTRUCTION SET OPCODE MAP

#### Abbreviations for Address Modes

- INH Inherent
- IMM Immediate
- DIR Direct
- EXT Extended
- REL Relative
- BSC Bit Set/Clear
- BTB Bit Test and Branch
- IX Indexed (No Offset)
- IX1 Indexed, 1 Byte (8-Bit) Offset
- IX2 Indexed, 2 Byte (16-Bit) Offset
- CMOS Versions Only

LEGEND



Indexed, 8-bit Offset – Here the EA is obtained by adding the contents of the byte following the opcode to that of the index register. The operand is therefore located anywhere within the lowest 511 memory locations. For example, this mode of addressing is useful for selecting the m-th element in an n element table. All instructions are two bytes. The contents of the index register (X) is not changed. The contents of (PC + 1) is an unsigned 8-bit integer. One byte offset indexing permits look-up tables to be easily accessed in either RAM or ROM.

 $EA = X + (PC + 1), PC \leftarrow PC + 2$ Address Bus High  $\leftarrow K$ , Address Bus Low  $\leftarrow X + (PC + 1)$ Where K = The carry from the addition of X + (PC + 1)

Indexed, 16-Bit Offset – In the indexed, 16-bit offset addressing mode the effective address is the sum of the contents of the unsigned 8-bit index register and the two unsigned bytes following the opcode This addressing mode can be used in a manner similar to indexed 8-bit offset, except that this three byte instruction allows tables to be anywhere in memory (e.g., jump tables in ROM) The content of the index register is not changed

 $\begin{aligned} \mathsf{EA} &= \mathsf{X} + [(\mathsf{PC} + 1) \ (\mathsf{PC} + 2)], \ \mathsf{PC} \leftarrow \mathsf{PC} + 3 \\ & \mathsf{Address} \ \mathsf{Bus} \ \mathsf{High} \leftarrow (\mathsf{PC} + 1) + \mathsf{K}, \\ & \mathsf{Address} \ \mathsf{Bus} \ \mathsf{Low} \leftarrow \mathsf{X} + (\mathsf{PC} + 2) \end{aligned}$  Where  $\mathsf{K} = \mathsf{The} \ \mathsf{carry} \ \mathsf{from} \ \mathsf{the} \ \mathsf{addition} \ \mathsf{of} \ \mathsf{X} + (\mathsf{PC} + 2) \end{aligned}$ 

**Relative** – Relative addressing is only used in branch instructions. In relative addressing the contents of the 8-bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is limited to the range of -126 to +129 bytes from the branch instruction opcode location.

# CDP6805E3, CDP6805E3C

EA = PC + 2 + (PC + 1),  $PC \leftarrow EA$  if branch taken, otherwise  $PC \leftarrow PC + 2$ 

Bit Set/Clear — Direct addressing and bit addressing are combined in instructions which set and clear individual memory and I/O bits. In the bit set and clear instructions, the byte is specified as a direct address in the location following the opcode. The first 256 addressable locations are thus accessed. The bit to be modified within that byte is specified with three bits of the opcode. The bit set and clear instructions occupy two bytes, one for the opcode (including the bit number) and the second to address the byte which contains the bit of interest.

 $EA = (PC + 1), PC \leftarrow PC + 2$ Address Bus High  $\leftarrow 0, Address Bus Low \leftarrow (PC + 1)$ 

Bit Test and Branch — Bit test and branch is a combination of direct addressing, bit addressing and relative addressing. The bit address and condition (set or clear) to be tested is part of the opcode. The address of the byte to be tested is in the single byte immediately following the opcode byte (EA1). The signed relative 8-bit offset is in the third byte (EA2) and is added to the PC if the specified bit is set or clear in the specified memory location. This single three byte instruction allows the program to branch based on the condition of any bit in the first 256 locations of memory.

$$\mathsf{EA1} = (\mathsf{PC} + 1)$$

Address Bus High-0, Address Bus Low- (PC + 1) EA2 = PC + 3 + (PC + 2), PC-EA2 if branch taken, otherwise PC-PC + 3

#### SYSTEM CONFIGURATION

Figures 20 through 25 show in general terms how the CDP6805E3 bus structure may be utilized. Specified interface details vary with the various peripheral and memory devices employed



Fig. 20 - Connection to CMOS peripherals.



Fig. 21 - Connection to CMOS multiplexed memories.



Fig. 22 - Connection to peripherals.



92CS-38365

Fig. 23 - Connection to latch non-multiplexed CMOS ROM or EPROM.



92CS-38367

Fig. 24 - Connection to static CMOS RAMs.



Fig. 25 - Connection to latched non-multiplexed CMOS RAM.

Table 11 provides a detailed description of the information present on the Bus, the Read/Write  $(R/\overline{W})$  pin and the Load Instruction (LI) pin during each cycle for each instruction. This information is useful in comparing actual with ex-

pected results during debug of both software and hardware as the control program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction.

| Address Mode        | Cycles | Cycles Cycle # Address Bus |                                        | R/W<br>Pin | Ll<br>Pin | Data Bus                          |
|---------------------|--------|----------------------------|----------------------------------------|------------|-----------|-----------------------------------|
| Inherent            |        |                            |                                        | •          | L         |                                   |
|                     | [      | r                          | [                                      | 1          |           |                                   |
| ASB NEG             |        | 1                          | On Code Address                        | 1          | 1         | On Code                           |
| CLR ROL             | 3      | 2                          | Op Code Address + 1                    | 1          | Ó         | Op Code Next Instruction          |
| COM ROR             |        | 3                          | Op Code Address + 1                    | 1          | Ō         | Op Code Next Instruction          |
| DEC INC TST         |        | -                          |                                        |            | -         |                                   |
| TAX CLC SEC         |        |                            |                                        |            |           |                                   |
| STOP CLI SEI        | 2      | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
| RSP WAIT NOP TXA    | -      | 2                          | Op Code Address +1                     | 1          | 0         | Op Code Next Instruction          |
|                     |        | 1                          | On Code Address                        | 1          | 1         | On Code                           |
|                     |        | 2                          | On Code Address +1                     | 1          | Ó         | Op Code Next Instruction          |
|                     |        | 3                          | Stack Pointer                          | 1          | Ō         | Irrelevant Data                   |
| RIS                 | 6      | 4                          | Stack Pointer + 1                      | 1          | Ō         | Irrelevant Data                   |
|                     |        | 5                          | Stack Pointer + 2                      | 1          | 0         | Irrelevant Data                   |
|                     |        | 6                          | New Op Code Address                    | 1          | 0         | New Op Code                       |
|                     |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
|                     |        | 2                          | Op Code Address + 1                    | 1          | 0         | Op Code Next Instruction          |
|                     |        | 3                          | Stack Pointer                          | 0          | 0         | Return Address (LO Byte)          |
| 1                   |        | 4                          | Stack Pointer – 1                      | 0          | 0         | Return Address (HI Byte)          |
| CIAL                | 10     | 5                          | Stack Pointer – 2                      | 0          | 0         | Contents of Index Register        |
| 15001               | 10     | 6                          | Stack Pointer - 3                      | 0          | 0         | Contents of Accumulator           |
|                     |        | 7                          | Stack Pointer - 4                      | 0          | 0         | Contents of CC Register           |
|                     |        | 8                          | Vector Address FFFC (Hex)              | 1          | 0         | Address of Int Routine (HI Byte)  |
|                     |        | 9                          | Vector Address FFFD (Hex)              | 1          | 0         | Address of Int. Routine (LO Byte) |
|                     |        | 10                         | Interrupt Routine Starting Address     | 1          | 0         | Interrupt Routine First Opcode    |
|                     |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
|                     |        | 2                          | Op Code Address + 1                    | 1          | 0         | Op Code Next Instruction          |
|                     |        | 3                          | Stack Pointer                          | 1          | 0         | Irrelevant Data                   |
|                     |        | 4                          | Stack Pointer + 1                      | 1          | 0         | Irrelevant Data                   |
| RTI                 | 9      | 5                          | Stack Pointer + 2                      | 1          | 0         | Irrelevant Data                   |
|                     |        | 6                          | Stack Pointer +3                       | 1          | 0         | Irrelevant Data                   |
|                     |        | 7                          | Stack Pointer +4                       | 1          | 0         | Irrelevant Data                   |
|                     |        | 8                          | Stack Pointer +5                       | 1          | 0         | Irrelevant Data                   |
|                     |        | 9                          | New Op Code Address                    | 1          | 0         | New Op Code                       |
| Immediate           |        |                            |                                        |            |           |                                   |
| ADC EOR CPX         |        |                            |                                        |            |           |                                   |
| ADD LDA LDX         |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
| AND ORA BIT         | 2      | 2                          | Op Code Address + 1                    | 1          | 0         | Operand Data                      |
| SBC CMB SUB         |        |                            |                                        |            |           |                                   |
| Bit Set/Clear       |        |                            |                                        |            |           |                                   |
|                     |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
|                     |        | 2                          | Op Code Address + 1                    | 1          | 0         | Address of Operand                |
| BSEIn               | 5      | 3                          | Address of Operand                     | 1          | 0         | Operand Data                      |
| BCLK N              |        | 4                          | Address of Operand                     | 1          | 0         | Operand Data                      |
|                     |        | 5                          | Address of Operand                     | 0          | 0         | Manipulated Data                  |
| Bit Test and Branch |        |                            |                                        |            |           |                                   |
|                     | 1      | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
| _                   |        | 2                          | On Code Address + 1                    | 1          | Ó         | Address of Operand                |
| BRSET n             | 5      | 3                          | Address of Operand                     | 1          | Ō         | Operand Data                      |
| BRCLR n             |        | 4                          | Op Code Address + 2                    | 1          | 0         | Branch Offset                     |
|                     |        | 5                          | Op Code Address + 2                    | 1          | 0         | Branch Offset                     |
| Relative            |        |                            | ······································ |            |           |                                   |
| BCC BHI BNE BEQ     | [      |                            |                                        |            | <u> </u>  |                                   |
| BCS BPL BHCC BLS    |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
| BIL BMC BRN BHCS    | 3      | 2                          | Op Code Address + 1                    | 1          | 0         | Branch Offset                     |
| BIH BMI BMS BRA     |        | 3                          | Up Lode Address + 1                    | 1          | 0         | Branch Offset                     |
|                     |        | 1                          | Op Code Address                        | 1          | 1         | Op Code                           |
|                     |        | 2                          | Op Code Address + 1                    | 1          | İò        | Branch Offset                     |
| 200                 |        | 3                          | Op Code Address + 1                    | 1          | 0         | Branch Offset                     |
| Don                 | 0      | 4                          | Subroutine Starting Address            | 1          | Ō         | First Subroutine Op Code          |
|                     |        | 5                          | Stack Pointer                          | 0          | 0         | Return Address (LO Byte)          |
|                     |        | 6                          | Stack Pointer – 1                      | 0          | 0         | Return Address (HI Byte)          |

#### TABLE 11 - SUMMARY OF CYCLE BY CYCLE OPERATION

|                    | TABLE  | 1 - SUN  | MARY OF CYCLE BY CYCLE OPERATION | N (CON | TINUED) |                                  |
|--------------------|--------|----------|----------------------------------|--------|---------|----------------------------------|
| Address Mode       | Cycles | Cucies   |                                  | R/W    | u       | Data Bua                         |
| Instructions       | Cycles | Cycles # | Address Bus                      | Pin    | Pin     |                                  |
| Direct             |        |          |                                  |        |         |                                  |
|                    | _      | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
| JMP                | 2      | 2        | Op Code Address + 1              | 1      | Ó       | Jump Address                     |
| ADC EOR CPX        |        |          |                                  |        |         |                                  |
| ADD LDA LDX        |        | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
| AND ORA BIT        | 3      | 2        | Op Code Address + 1              | 1      | 0       | Address of Operand               |
| SBC CMP SUB        |        | 3        | Address of Operand               | 1      | 0       | Operand Data                     |
|                    |        | 1        | On Code Address                  | 1      | 1       | On Code                          |
|                    |        | 2        | Op Code Address + 1              | 1 1    | ó       | Address of Operand               |
| TST                | 4      | 3        | Address of Operand               | 1      | l õ 1   | Operand Data                     |
| •                  |        | 4        | Op Code Address + 2              | l i    | õ       | On Code Next Instruction         |
|                    |        | 1        | On Code Address                  | 1      | 1       | On Code                          |
| STA                |        | 2        | Op Code Adress + 1               | l i    | ò       | Address of Operand               |
| STX                | 4      | 3        | On Code Address + 1              | l i    | ő       | Address of Operand               |
| 01/A               |        | 4        | Address of Operand               | ó      | 0       | Operand Data                     |
|                    |        |          | On Code Address                  | 1      | 1       | Op Codo                          |
| LSL LSR DEC .      |        |          | Op Code Address                  |        |         | Address of Operand               |
| ASR NEG INC        | 5      | 2        | Operand Address                  | 1      | 0       | Current Operand Data             |
| CLR ROL            |        |          | Operand Address                  | 1      | 0       | Current Operand Data             |
| COM ROR            |        | 5        | Operand Address                  | ó      | ő       | New Operand Data                 |
|                    |        | 1        | Op Code Address                  | 1      | 1       | On Code                          |
|                    |        |          | Op Code Address + 1              |        |         | Subroutine Address (LO Byte)     |
| ISP.               | 5      |          | Subrouting Starting Address      |        | 0       | 1st Subroutine Address (EO Byter |
| 3311               |        | 1        | Stack Pointer                    |        | 0       | Roturn Address (LO Byte)         |
|                    |        | 5        | Stack Pointer - 1                | Ň      | 0       | Return Address (EC Byte)         |
| Future de d        |        |          | Stack I blitter - 1              |        | 0       | Heldin Address (in Dyle)         |
| Extended           | 1      |          |                                  |        |         |                                  |
|                    |        |          | Op Code Address                  | 1      | 1       | Op Code                          |
| ЛМР                | 3      | 2        | Op Code Address + 1              | 1      | 0       | Jump Address (HI Byte)           |
|                    |        | 3        | Op Code Address +2               | 1      | 0       | Jump Address (LO Byte)           |
| ADC BIT ORA        |        | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
| ADD CMP LDX        | 4      | 2        | Op Code Address + 1              | 1      | 0       | Address Operand (HI Byte)        |
| AND EOR SBC        | - T    | 3        | Op Code Address + 2              | 1      | 0       | Address Operand (LO Byte)        |
| CPX LDA SUB        |        | 4        | Address of Operand               | 1      | 0       | Operand Data                     |
|                    |        | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
| CTA                |        | 2        | Op Code Address + 1              | 1      | 0       | Address of Operand (HI Byte)     |
| STA                | 5      | 3        | Op Code Address +2               | 1      | 0       | Address of Operand (LO Byte)     |
| SIX                |        | 4        | Op Code Address + 2              | 1      | 0       | Address of Operand (LO Byte)     |
|                    |        | 5        | Address of Operand               | 0      | 0       | Operand Data                     |
|                    |        | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
|                    |        | 2        | Op Code Address + 1              | 1      | 0       | Address of Subroutine (HI Byte)  |
| 100                |        | 3        | Op Code Address + 2              | 1      | 0       | Address of Subroutine (LO Byte)  |
| JSR                | 0      | 4        | Subroutine Starting Address      | 1      | 0       | 1st Subroutine Op Code           |
|                    |        | 5        | Stack Pointer                    | 0      | 0       | Return Address (LO Byte)         |
|                    |        | 6        | Stack Pointer - 1                | 0      | 0       | Return Address (HI Byte)         |
| Indexed, No-Offset |        |          |                                  |        |         |                                  |
|                    |        | 1        | On Code Address                  | 1      | 1       | On Code                          |
| ЈМР                | 2      | 2        | Op Code Address + 1              | 1      | Ó       | Op Code Next Instruction         |
| ADC FOR CPX        |        |          |                                  |        |         |                                  |
|                    |        | 1        | Op Code Address                  | 1      | 1       | Op Code                          |
| AND ORA BIT        | 3      | 2        | Op Code Address +1               | 1      | 0       | Op Code Next Instruction         |
| SBC CMP SUB        |        | 3        | Index Register                   | 1      | 0       | Operand Data                     |
|                    |        | 1        | On Code Address                  | 1      | 1       | On Code                          |
|                    |        |          | On Code Address + 1              |        | ó       | On Code Next Instruction         |
| TST                | 4      | 3        | Index Begister                   | l i    | õ       | Operand Data                     |
|                    |        | 4        | Op Code Address + 1              | 1      | õ       | Op Code Next Instruction         |
|                    |        | 1        | On Code Address                  | 1      | 1       | Op Code                          |
| STA                |        | 2        | On Code Address + 1              | i i    | Ó       | On Code Next Instruction         |
| STX                | 4      | 3        | On Code Address + 1              | 1      | ő       | On Code Next Instruction         |
|                    |        | 4        | Index Begister                   | o i    | õ       | Operand Data                     |
| P                  |        | 1        | On Code Address                  | 1      | 1       | Op Codo                          |
| LSL LSR DEC        |        | 2        | On Code Address + 1              |        |         | On Code Next Instruction         |
| ASR NEG INC        | 5      | 2        |                                  |        |         | Current Operand Data             |
| CLR ROL            |        | 4        | Index Register                   |        | ŏ       | Current Operand Data             |
| COM ROR            |        | 5        | Index Register                   | l ò    | ő       | New Operand Data                 |
|                    |        | 1        | On Code Address                  | 1      | 1       | On Code                          |
| 1                  |        | 2        | On Code Address + 1              |        |         | On Code Next Instruction         |
| ISB                | 5      | 2        | Index Begister                   |        | ň       | 1st Subroutine On Code           |
| 10011              |        | 4        | Stack Pointer                    |        | ň       | Return Address (LO Byte)         |
|                    |        | 5        | Stack Pointer - 1                | lő     | Ň       | Return Address (HI Ryte)         |
|                    | 1      |          |                                  | I      | · · ·   |                                  |

SLIMA - - -.....

| Address Mode           | Cycles | Cycles # | Address Bus                                                                                                     | R/W<br>Bin | LI | Data Bus                 |
|------------------------|--------|----------|-----------------------------------------------------------------------------------------------------------------|------------|----|--------------------------|
| Indexed 8-Bit Offset   |        | 1        | Letter of the second |            |    |                          |
|                        |        | 1        | Op Code Address                                                                                                 | 1          | 1  | On Code                  |
| JMP                    | 3      | 2        | Op Code Address + 1                                                                                             | 1          | ò  | Offset                   |
|                        | , i    | 3        | Op Code Address + 1                                                                                             | 1          | 0  | Offset                   |
| ADC EOR CPX            |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
| ADD LDA LDX            |        | 2        | Op Code Address + 1                                                                                             | 1          | Ó  | Offset                   |
| AND ORA CMP            | 4      | 3        | Op Code Address + 1                                                                                             | 1          | 0  | Offset                   |
| SUB BIT SBC            |        | 4        | Index Register + Offset                                                                                         | 1          | 0  | Operand Data             |
|                        |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
| STA                    |        | 2        | Op Code Address + 1                                                                                             | 1          | 0  | Offset                   |
| STA                    | 5      | 3        | Op Code Address + 1                                                                                             | 1          | 0  | Offset                   |
| SIX                    |        | 4        | Op Code Address + 1                                                                                             | 1          | 0  | Offset                   |
|                        |        | 5        | Index Register + Offset                                                                                         | 0          | 0  | Operand Data             |
|                        |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
|                        | _      | 2        | Op Code Address +1                                                                                              |            | 0  | Offset                   |
| ISI                    | 5      | 3        | Op Code Address + 1                                                                                             |            | 0  | Offset                   |
|                        |        |          | Index Register + Offset                                                                                         |            | 0  | Operand Data             |
|                        |        | 5        | Op Code Address + 2                                                                                             |            | 0  | Op code Next Instruction |
| LSL LSR                |        |          | Op Code Address                                                                                                 |            | 1  | Op Code                  |
| ASR NEG                |        | 2        | Op Code Address + 1                                                                                             |            | 0  | Offset                   |
| CLR ROL                | 6      |          | Up Code Address + 1                                                                                             |            |    | Current Operand Data     |
| COM ROR                |        | 5        | Index Register + Offset                                                                                         |            | ő  | Current Operand Data     |
| DEC INC                |        | 6        | Index Register + Offset                                                                                         | ò          | ŏ  | New Operand Data         |
|                        |        | 1        | On Code Address                                                                                                 | 1          | 1  | On Code                  |
|                        |        | 2        | Op Code Address + 1                                                                                             | 1          | ò  | Offset                   |
|                        |        | 3        | Op Code Address + 1                                                                                             | 1          | Ō  | Offset                   |
| JSR                    | 6      | 4        | Index Register + Offset                                                                                         | 1          | Ō  | 1st Subroutine Op Code   |
|                        |        | 5        | Stack Pointer                                                                                                   | 0          | 0  | Return Address LO Byte   |
|                        |        | 6        | Stack Pointer – 1                                                                                               | 0          | 0  | Return Address HI Byte   |
| Indexed, 16-Bit Offset |        |          |                                                                                                                 |            |    |                          |
|                        |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
| INAD                   | 1      | 2        | Op Code Address + 1                                                                                             | 1          | 0  | Offset (HI Byte)         |
| SIMP                   | -      | 3        | Op Code Address + 2                                                                                             | 1          | 0  | Offset (LO Byte)         |
|                        |        | 4        | Op Code Address +2                                                                                              | 1          | 0  | Offset (LO Byte)         |
| ADC CMP SUB            |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
| ADD EOR SBC            |        | 2        | Op Code Address + 1                                                                                             | 1          | 0  | Offset (HI Byte)         |
| AND ORA                | 5      | 3        | Op Code Address +2                                                                                              | 1          | 0  | Offset (LO Byte)         |
| CPX LDA                |        | 4        | Op Code Address + 2                                                                                             | 1          | 0  | Offset (LO Byte)         |
| BITLDX                 |        | 5        | Index Register + Offset                                                                                         |            | 0  | Operand Data             |
|                        |        | 1        | Op Code Address                                                                                                 | 1          | 1  | Op Code                  |
|                        |        | 2        | Op Code Address + 1                                                                                             |            | 0  | Offset (HI Byte)         |
| STA                    | 6      | 3        | Op Code Address + 2                                                                                             |            | 0  | Offset (LO Byte)         |
| 51.4                   |        | 4        | Op Code Address + 2                                                                                             |            |    | Offset (LO Byte)         |
| 1                      |        | 6        | Index Begister + Offset                                                                                         |            | Ň  | Operand Data             |
|                        |        |          | On Code Address                                                                                                 | +          | 1  | Op Code                  |
|                        |        | 2        | On Code Address + 1                                                                                             |            |    | Offset (HI Byte)         |
|                        |        | 3        | On Code Address +2                                                                                              | l i        | ŏ  | Offset (LO Byte)         |
| JSR                    | 7      | 4        | Op Code Address + 2                                                                                             |            | ŏ  | Offset (LO Byte)         |
| I                      |        | 5        | Index Register + Offset                                                                                         | 1          | Ō  | 1st Subroutine Op Code   |
| 1                      |        | 6        | Stack Pointer                                                                                                   | 0          | 0  | Return Address (LO Byte) |
|                        |        | 7        | Stack Pointer - 1                                                                                               | 0          | 0  | Beturn Address (HO Byte) |

| Instructions    | Cycles | Cycles # | Address Bus                           | RESET<br>Pin | R/W<br>Pin | LI<br>Pin | Data Bus                 |
|-----------------|--------|----------|---------------------------------------|--------------|------------|-----------|--------------------------|
| Other Functions |        |          |                                       |              |            |           |                          |
|                 |        |          | \$FFFE                                | 0            | 1          | 0         | Irrelevant Data          |
|                 |        |          | \$FFFE                                | 0            | 1          | 0         | Irrelevant Data          |
|                 |        | 1        | \$FFFE                                | 1            | 1          | 0         | Irrelevant Data          |
| Hardware RESET  | 5      | 2        | \$FFFE                                | 1            | 1          | 0         | Irrelevant Data          |
|                 |        | 3        | \$FFFE                                | 1            | 1          | 0         | Vector High              |
|                 |        | 4        | \$FFFF                                | 1            | 1          | 0         | Vector Low               |
|                 |        | 5        | Reset Vector                          | 1            | 1          | 0         | Op Code                  |
|                 |        | 1        | \$FFFF                                | 1            | 1          | 0         | Irrelevant Data          |
|                 |        | •        | •                                     | •            | •          | •         | •                        |
|                 |        | •        | •                                     | •            | •          | •         | •                        |
| Power on Reset  | 1922   | •        | •                                     | •            | •          | •         | •                        |
|                 | IULL   | 1919     | \$FFFE                                | 1            | 1          | 0         | Irrelevant Data          |
|                 |        | 1920     | \$FFFE                                | 1            | 1          | 0         | Vector High              |
|                 |        | 1921     | \$FFFF                                | 1            | 1          | 0         | Vector Low               |
|                 |        | 1922     | Reset Vector                          | 1            | 1          | 0         | Op Code                  |
| Instruction     | Cycles | Cycles # | Address Bus                           | IRQ.<br>Pin  | R/₩<br>Pin | LI<br>Pin | Data Bus                 |
|                 |        |          | Last Cycle of Previous<br>Instruction | 0            | ×          | 0         | x                        |
|                 |        | 1        | Next Op Code Address                  | 0            | 1          | 0         | Irrelevant Data          |
|                 |        | 2        | Next Op Code Address                  | ×            | 1          | 0         | Irrelevant Data          |
|                 |        | 3        | SP                                    | х            | 0          | 0         | Return Address (LO Byte) |
| IRQ Interrupt   | 10     | 4        | SP – 1                                | х            | 0          | 0         | Return Address (HI Byte) |
|                 | 10     | 5        | SP – 2                                | X            | 0          | 0         | Contents Index Reg       |
|                 |        | 6        | SP – 3                                | X            | 0          | 0         | Contents Accumulator     |
|                 |        | 7        | SP – 4                                | X            | 0          | 0         | Contents CC Register     |
|                 |        | 8        | See Note Below                        | X            | 1          | 0         | Vector High              |
|                 |        | 9        | See Note Below                        | Х            | 1          | 0         | Vector Low               |
|                 |        | 10       | IRQ Vector                            | ×            | 1          | 0         | Int Routine First        |

TABLE 11 - SUMMARY OF CYCLE BY CYCLE OPERATION (CONTINUED)

| NOTE: Interrupt Cycles. | Ext. Int | Timer Int | Timer Int From |
|-------------------------|----------|-----------|----------------|
|                         | Address  | Address   | Wait Address   |
| Cycle #8                | \$FFFA   | \$FFF8    | \$FFF6         |
| Cycle #9                | \$FFFB   | \$FFF9    | \$FFF7         |



# CMOS High-Performance Silicon-Gate 8-Bit Microcomputer

Hardware Features:

- Typical full speed operating power of 10 mW at 5 V
- Typical WAIT mode power of 3 mW
- Typical STOP mode power of 5 μW
- 64 bytes of on-chip RAM
- 1089 bytes of on-chip ROM
- 16 bidirectional I/O lines
- 4 input-only lines

- Internal 8-bit timer with software programmable 7-bit prescaler
  - External timer input
  - External and timer interrupts
  - Master reset and power-on reset
  - Single 3 to 6 volt supply
  - On-chip oscillator
  - 1 μs cycle time

# The CDP6805F2 Microcomputer Unit (MCU) belongs to the CDP6805 Family of CMOS Microcomputers. This 8-bit MCU contains on-chip oscillator CPU, RAM, ROM, I/O, and Timer. Fully static design allows operation at frequencies down to DC, further reducing its already low-power consumption. It is a low-power processor designed for low-end to mid-range applications in the consumer, automotive, industrial, and communications markets where very low power consumption constitutes an important factor.

#### Software Features:

- Versatile interrupt handling
- True bit manipulation
- 10 addressing modes
- Efficient instruction set
- Memory-mapped I/O
- User-callable self-check routines
- Two power-saving standby modes



Fig. 1 - CDP6805F2 CMOS microcomputer block diagram

| Ratings                                                | Symbol           | Value                                                      | Unit |
|--------------------------------------------------------|------------------|------------------------------------------------------------|------|
| Supply Voltage                                         | V <sub>DD</sub>  | -03 to +8                                                  | V    |
| All Input Voltages Except OSC1                         | Vin              | $V_{SS}$ – 0 5 to $V_{DD}$ + 0 5                           | V    |
| Current Drain per Pin Excluding VDD and VSS            | I                | 10                                                         | mA   |
| Operating Temperature Range<br>CDP6805F2<br>CDP6805F2C | TA               | T <sub>L</sub> to T <sub>H</sub><br>0 to 70<br>- 40 to +85 | °C   |
| Storage Temperature Range                              | T <sub>stg</sub> | - 55 to + 150                                              | °C   |

MAXIMUM RATINGS (Voltages Referenced to VSS)







Fig. 3 - Typical operating current vs. internal frequency.

DC ELECTRICAL CHARACTERISTICS (VDD=5 Vdc ± 10%, VSS=0 Vdc, TA=TL to TH, unless otherwise noted) (See Note 1)

| Characteristics                                                                                                                                                                                                                                     | Symbol          | Min                                                                   | Max               | Unit           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|-------------------|----------------|
| Output Voltage, I <sub>Load</sub> ≤10 0 μA                                                                                                                                                                                                          | Vol<br>Voh      | -<br>V <sub>DD</sub> -01                                              | 01                | v              |
| Output High Voltage ( $I_{Load} = -200 \ \mu A$ ) PA0-PA7, PB0-PB7                                                                                                                                                                                  | ∨он             | 4 1                                                                   | -                 | V              |
| Output Low Voltage, (ILoad = 800 µA) PA0-PA7, PB0-PB7                                                                                                                                                                                               | VOL             | -                                                                     | 04                | V              |
| Input High Voltage<br>Ports PAO-PA7, PBO-PB7, PCO-PC3<br>TIMER, IRO, RESET<br>OSC1                                                                                                                                                                  | VIH             | V <sub>DD</sub> - 2<br>V <sub>DD</sub> - 0 8<br>V <sub>DD</sub> - 1 5 | VDD<br>VDD<br>VDD | v              |
| Input Low Voltage, All Inputs                                                                                                                                                                                                                       | VIL             | VSS                                                                   | 08                | V              |
| Total Supply Current (C <sub>L</sub> = 50 pF on Ports, No dc Loads, t <sub>CVC</sub> = 1 $\mu$ s)<br>RUN (Measured During Self-Check, V <sub>IL</sub> = 0 2 V, V <sub>IH</sub> = V <sub>DD</sub> - 0 2 V)<br>WAIT (See Note 2)<br>STOP (See Note 2) | DD              | -<br><br>-                                                            | 4<br>1.5<br>150   | mA<br>mA<br>μA |
| I/O Ports Input Leakage – PA0-PA7, PB0-PB7                                                                                                                                                                                                          | hL              | -                                                                     | ± 10              | μA             |
| Input Current – RESET, IRO, TIMER, OSC1, PC0-PC3                                                                                                                                                                                                    | l <sub>in</sub> | -                                                                     | ±1                | μA             |
| Output Capacitance – Ports A and B                                                                                                                                                                                                                  | Cout            | -                                                                     | 12                | pF             |
| Input Capacitance – RESET, IRO, TIMER, OSC1, PC0-PC3                                                                                                                                                                                                | C <sub>in</sub> | -                                                                     | 8                 | pF             |

NOTES

1 Electrical Characteristics for  $V_{DD} = 3 V$  available soon

2 Test Conditions for  $\mathsf{I}_{\mbox{DD}}$  are as follows

All ports programmed as inputs

VIL = 0 2 V (PA0-PA7, PB0-PB7, PC0-PC3)

 $V_{IH} = V_{DD} - 0.2 V$  for RESET, TRO, TIMER

OSC1 input is a square wave from 0.2 V to VDD-0.2 V

OSC2 output load = 20 pF (WAIT IDD is affected linearly by the OSC2 capacitance)

#### $\textbf{TABLE 1} - \textbf{CONTROL TIMING CHARACTERISTICS (V_{DD}=5 \quad Vdc \pm 10\%, \ V_{SS}=0, \ T_A=T_L \ to \ T_H, \ f_{OSC}=4 \ MHz, \ t_{CVC}=1 \ \mu s)$

| Characteristics                                                | Symbol                  | Min  | Max | Unit |
|----------------------------------------------------------------|-------------------------|------|-----|------|
| Crystal Oscillator Startup Time (See Figure 5)                 | toxov                   | -    | 100 | ms   |
| Stop Recovery Startup Time – Crystal Oscillator (See Figure 6) | <b><sup>t</sup>ILCH</b> | -    | 100 | ms   |
| Timer Pulse Width (See Figure 4)                               | <sup>t</sup> TH, tTL    | 05   | -   | tcyc |
| Reset Pulse Width (See Figure 5)                               | tRL                     | 15   | -   | tcyc |
| Timer Period (See Figure 4)                                    | <sup>t</sup> TLTL       | 1    | -   | tcyc |
| Interrupt Pulse Width (See Figure 15)                          | tilih                   | 1    | -   | tcyc |
| Interrupt Pulse Period (See Figure 15)                         | till                    | *    | -   | tcyc |
| OSC1 Pulse Width (See Figure 7)                                | tOH, tOL                | 100  | -   | ns   |
| Cycle Time                                                     | tcyc                    | 1000 | -   | ns   |
| Frequency of Operation                                         |                         |      |     |      |
| Crystal                                                        | fosc                    | -    | 4   | MHz  |
| External Clock                                                 |                         | dc   | 4   |      |

\*The minimum period, tILIL, should not be less than the number of t<sub>CVC</sub> cycles it takes to execute the interrupt service routines plus 20 t<sub>CVC</sub> cycles



TERMINAL ASSIGNMENT



Fig. 5 - Power-on RESET and RESET.

6805–Series Microprocessors and Microcomputers

310



Fig. 6 - Stop recovery.

#### FUNCTIONAL PIN DESCRIPTION

#### VDD and VSS

Power is supplied to the MCU using these two pins  $\,V_{DD}$  is power and VSS is ground

#### IRQ (MASKABLE INTERRUPT REQUEST)

 $\overline{IRQ}$  is photomask option selectable with the choice of interrupt sensitivity being both level and negative edge or negative edge only. The MCU completes the current instruction before it responds to the request. If  $\overline{IRQ}$  is low and the interrupt mask bit (I bit) in the condition code register is clear, the MCU begins an interrupt sequence at the end of the current instruction.

If the photomask option is selected to include level sensitivity, then the  $\overline{IRQ}$  input requires an external resistor to VDD for "wire-OR" operation. See the Interrupt section for more detail.

#### RESET

The RESET input is not required for start-up but can be used to reset the MCU's internal state and provide an orderly software start-up procedure. Refer to the Resets section for a detailed description

#### TIMER

The TIMER input may be used as an external clock for the on-chip timer Refer to the Timer section for a detailed description

#### NUM (NON-USER MODE)

This pin is intended for use in self-check only User applications should leave this pin connected to ground through a 10 kilohm resistor

#### OSC1, OSC2

The **CDP6805F2** can be configured to accept either a crystal input or an RC network Additionally, the internal clocks can be derived from either a divide-by-two or divide-by-four of the external frequency ( $f_{OSC}$ ) Both of these options are photomask selectable

RC – If the RC oscillator option is selected, then a resistor is connected to the oscillator pins as shown in Figure 7(b) The relationship between R and  $f_{OSC}$  is shown in Figure 8

**EXTERNAL CLOCK** — An external clock should be applied to the OSC1 input with the OSC2 input not connected, as shown in Figure 7(c) An external clock may be used with either the RC or crystal oscillator mask option  $t_{OXOV}$  or  $t_{ILCH}$  do not apply when using an external clock input

#### PA0-PA7

These eight I/O lines comprise Port A The state of any pin is software programmable. Refer to the Input/Output Programming section for a detailed description.

#### **Crystal Parameters**

|                   | 1 MHz | 4 MHz | Units |
|-------------------|-------|-------|-------|
| RSMAX             | 400   | 75    | Ω     |
| CO                | 5     | 7     | pF    |
| C1                | 0 008 | 0 012 | μF    |
| COSC1             | 15-40 | 15-30 | рF    |
| C <sub>OSC2</sub> | 15-30 | 15-25 | pF    |
| Rp                | 10    | 10    | MΩ    |
| Q                 | 30 k  | 40 k  | -     |

Oscillator Waveform



(a) Crystal Oscillator Connections and Equivalent Crystal Circuit





(b) RC Oscillator Connection



(c) External Clock Source Connections



Fig. 7 – Oscillator connections.

92CS-38000
#### **PB0-PB7**

These eight lines comprise Port B The state of any pin is software programmable Refer to the Input/Output Programming section for a detailed description

### PC0-PC3

(ZHW)

FREQUENCY

OSILLIATOR

00

10 τι RESISTANCE (ΚΩ)

R (kΩ)

Fig. 8 - Typical frequency vs. resistance

for RC oscillator option only.

100

9205-42274

1000

These four lines comprise Port C, a fixed input port. When Port C is read, the four most-significant bits on the data bus are "1s" There is no data direction register associated with Port C

#### INPUT/OUTPUT PROGRAMMING

Any Port A or B pin may be software programmed as an input or output by the state of the corresponding bit in the port data direction register (DDR) A pin is configured as an output if its corresponding DDR bit is set to a logic "1" A pin is configured as an input if its corresponding DDR bit is cleared to a logic "0" At reset, all DDRs are cleared, which configures all port pins as inputs. A port pin configured as an output will output the data in the corresponding bit of its port data latch Refer to Figure 9 and Table 2





| R/W | DDR | I/O Pin Function                                                         |
|-----|-----|--------------------------------------------------------------------------|
| 0   | 0   | The I/O pin is in input mode. Data is written into the output data latch |
| 0   | 1   | Data is written into the output data latch and output to the I/O pin     |
| 1   | 0   | The state of the I/O pin is read                                         |
| 1   | 1   | The I/O pin is in an output mode. The output data latch is read          |

313

#### SELF-CHECK

The **CDP6805F2** self-check is performed using the circuit in Figure 10 Self-check is initiated by tying NUM and TIMER pins to a logic "1" then executing a reset. After reset, the following five tests are executed automatically

I/O - Functionally Exercise Ports A, B, C

RAM - Walking Bit Test

ROM - Exclusive OR with ODD "1s" Parity Result

Timer - Functionally Exercise Timer

Interrupts - Functionally Exercise External and Timer Interrupts

Self-check results are shown in Table 3 The following subroutines are available to user programs and do not reguire any external hardware

TABLE 3 - SELF-CHECK RESULTS

| ſ | PB3 | PB2   | PB1    | PB0 | Remarks                       |  |  |  |  |  |  |
|---|-----|-------|--------|-----|-------------------------------|--|--|--|--|--|--|
| Γ | 1   | 0     | 1      | 1   | Bad Timer                     |  |  |  |  |  |  |
| Γ | 1   | 1     | 0      | 0   | Bad RAM                       |  |  |  |  |  |  |
| Γ | 1   | 1     | 0      | 1   | Bad ROM                       |  |  |  |  |  |  |
| Γ | 1   | 1     | 1      | 0   | Bad Interrupt or Request Flag |  |  |  |  |  |  |
| Γ |     | All C | ycling |     | Good Part                     |  |  |  |  |  |  |
|   |     | All C | thers  |     | Bad Part                      |  |  |  |  |  |  |

#### RAM SELF-CHECK SUBROUTINE

Returns with the Z bit clear if any error is detected, otherwise, the Z bit is set

The RAM test must be called with the stack pointer at \$7F and the accumulator zeroed When run, the test checks every RAM cell except for \$7F and \$7E which are assumed to contain the return address.

A and X are modified. All RAM locations except the top 2 are modified. (Enter at location \$78B.)

#### ROM CHECKSUM SUBROUTINE

Returns with Z bit cleared if any error was found; otherwise Z = 1, X = 0 on return, and A is zero if the test passed. RAM locations 41-44 are overwritten (Enter at location 7A4)

#### TIMER TEST SUBROUTINE

Return with Z bit cleared if any error was found; otherwise Z = 1

This routine runs a simple test on the timer. In order to work correctly as a user subroutine, the internal clock must be the clocking source and interrupts must be disabled. Also, on exit, the clock will be running and the interrupt mask will not be set, so the caller must protect himself from interrupts if necessary.

A and X register contents are lost, this routine counts how many times the clock counts in 128 cycles. The number of counts should be a power of two since the prescaler is a power of two lf not, the timer probably is not counting correctly The routine also detects if the timer is running at all. (Enter at location \$7BE)



Fig. 10 - Self-check pinout configuration.

#### MEMORY

The **CDP6805F2** has a total address space of 2048 bytes of memory and I/O registers. The address space is shown in Figure 11.

The first 128 bytes of memory (first half of page zero) is comprised of the I/O port locations, timer locations, and 64 bytes of RAM. The next 1079 bytes comprise the user ROM. The 10 highest address bytes contain the reset and interrupt vectors The stack pointer is used to address data stored on the stack. Data is stored on the stack during interrupts and subroutine calls. At power-up, the stack pointer is set to \$7F and it is decremented as data is pushed on the stack. When data is removed from the stack, the stack pointer is incremented. A maximum of 32 bytes of RAM are available for stack usage. Since most programs use only a small part of the allocated stack locations for interrupts and/or subroutine stacking purposes, the unused bytes are available for program data storage



Fig. 11 - Address map.

#### REGISTERS

The **CDP6805F2** contains five registers as shown in the programming model (Figure 12) The interrupt stacking order is shown in Figure 13

#### ACCUMULATOR (A)

This accumulator is an 8-bit general purpose register used to hold operands and results of the arithmetic calculations and data manipulations

#### INDEX REGISTER (X)

The X register is an 8-bit register which is used during the indexed modes of addressing. It provides the 8-bit operand which is used to create an effective address. The index register is also used for data manipulations with the read-modify-write type of instructions and as a temporary storage register when not performing addressing operations.

#### PROGRAM COUNTER (PC)

The program counter is an 11-bit register that contains the address of the next instruction to be executed by the processor.

#### STACK POINTER (SP)

The stack pointer is an 11-bit register containing the address of the next free location on the stack. When accessing memory, the six most-significant bits are appended to the five least-significant register bits to produce an address within the range of \$7F to \$60. The stack area of RAM is used to store the return address on subroutine calls and the machine state during interrupts. During external or power-on reset, and during a "reset stack pointer" instruction, the stack pointer is set to its upper limit (\$7F). Nested interrupts and/or subroutines may use up to 32 (decimal) locations beyond which the stack pointer "wraps around" and points to its upper limit thereby losing the previously stored information. A subroutine call occupies two RAM bytes on the stack, while an interrupt uses five bytes.



Fig. 13 - Stacking order.

#### CONDITION CODE REGISTER (CC)

The condition code register is a 5-bit register which indicates the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each bit is explained in the following paragraphs.

HALF CARRY BIT (H) — The H bit is set to a "1" when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. The H bit is useful in binary coded decimal subroutines.

**INTERRUPT MASK BIT (I)** — When the I bit is set, both the external interrupt and the timer interrupt are disabled Clearing this bit enables the above interrupts If an interrupt occurs while the I bit is set, the interrupt is latched and is processed when the I bit is next cleared

**NEGATIVE (N)** – Indicates that the result of the last arithmetic, logical, or data manipulation is negative (bit 7 in the result is a logical "1")

**ZERO** (Z) – Indicates that the result of the last arithmetic, logical, or data manipulation is zero

**CARRY/BORROW (C)** – Indicates that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions, shifts, and rotates

#### RESETS

The **CDP6805F2** has two reset modes an active low external reset pin ( $\overrightarrow{RESET}$ ) and a power-on reset function, refer to Figure 5

#### RESET

The RESET input pin is used to reset the MCU to provide an orderly software start-up procedure. When using the external reset mode, the RESET pin must stay low for a minimum of one tRL. The RESET pin is provided with a Schmitt Trigger input to improve its noise immunity.

#### POWER-ON RESET

The power-on reset occurs when a positive transition is detected on VDD. The power-on reset is used strictly for power turn-on conditions and should not be used to detect any drops in the power supply voltage. There is no provision for a power-down reset. The power-on circuitry provides for a 1920  $t_{CVC}$  delay from the time of the first oscillator operation. If the external RESET pin is low at the end of the 1920 time out, the processor remains in the reset condition.

CDP6805F2, CDP6805F2C

Either of the two types of reset conditions causes the following to occur

- Timer control register interrupt request bit (TCR7) is cleared to a "0"
- Timer control register interrupt mask bit (TCR6) is set to a "1"
- All data direction register bits are cleared to a "0" All ports are defined as inputs
- Stack pointer is set to \$7F
- The internal address bus is forced to the reset vector (\$7FE, \$7FF).
- Condition code register interrupt mask bit (I) is set to a "1"
- STOP and WAIT latches are reset
- External interrupt latch is reset

All other functions, such as other registers (including output ports), the timer, etc., are not cleared by the reset conditions

#### INTERRUPTS

Systems often require that normal processing be interrupted so that some external event may be serviced The CDP6805F2 may be interrupted by one of three different methods, either one of two maskable interrupts (external input or timer) or a non-maskable software interrupt (SWI)

Interrupts cause the processor registers to be saved on the stack and the interrupt mask set to prevent additional interrupts. The RTI instruction causes the register contents to be recovered from the stack and return to normal processing. The stacking order is shown in Figure 13.

Unlike RESET, hardware interrupts do not cause the current instruction execution to be halted, but are considered pending until the current instruction execution is complete

When the current instruction is complete, the processor checks all pending hardware interrupts and if unmasked, proceeds with interrupt processing, otherwise, the next instruction is fetched and executed. Note that masked interrupts are latched for later interrupt service

If both an external interrupt and a timer interrupt are pending at the end of an instruction execution, the external interrupt is serviced first. The SWI is executed as any other instruction. Refer to Figure 14 for the interrupt and instruction processing sequence.

#### TIMER INTERRUPT

Each time the timer decrements to zero (transitions from \$01 to \$00), the timer interrupt request bit (TCR7) is set The processor is interrupted only if the timer mask bit (TCR6) and interrupt mask bit (1 bit) are both cleared. When the interrupt is recognized, the current state of the machine is pushed onto the stack and the interrupt mask bit in the condition code register is set. This mask prevents further interrupts until the present one is serviced. The processor now vectors to the

timer interrupt service routine. The address for this service routine is specified by the contents of \$7F8 and \$7F9 unless the processor is in a WAIT mode, in which case the contents of \$7F6 and \$7F7 specify the timer service routine address. Software must be used to clear the timer interrupt request bit (TCR7). At the end of the timer interrupt service routine, the software normally executes an RTI instruction which restores the machine state and starts executing the interrupt request.



Fig. 14 - RESET and INTERRUPT processing flowchart.

struction; refer to Figure 15 The second configuration shows many interrupt lines "wire ORed" to form the interrupts at the processor. Thus, if after servicing an interrupt the IRO remains low, then the next interrupt is jeconized

#### SOFTWARE INTERRUPT (SWI)

The software interrupt is an executable instruction. The action of the SWI instruction is similar to the hardware interrupts. The SWI is executed regardless of the state of the interrupt mask in the condition code register. The service routine address is specified by the contents of memory locations \$7FC and \$7FD.

The following three functions are not strictly interrupts, however, they are tied very closely to the interrupts. These functions are RESET, STOP, and WAIT

**RESET** — The RESET input pin and the internal power-on reset function each cause the program to vector to an initialization program. This vector is specified by the contents



EXTERNAL INTERRUPT

Either level- and edge-sensitive or edge-sensitive only in-

puts are available as mask options. If the interrupt mask bit

of the condition code register is cleared and the external interrupt pin ( $\overline{IRQ}$ ) is "low" or a negative edge has set the in-

ternal interrupt flip-flop, then the external interrupt occurs

The action of the external interrupt is identical to the timer except that the service routine address is specified by the

contents of \$7FA and \$7FB. Figure 15 shows both a func-

tional diagram and timing for the interrupt line. The timing diagram shows two different treatments of the interrupt line

(IRQ) to the processor The first method is single pulses on

the interrupt line spaced far enough apart to be serviced. The

minimum time between pulses is a function of the length of

the interrupt service routine. Once a pulse occurs, the next

pulse should not occur until the MPU software has exited the routine (an RTI occurs) This time (till) is obtained by ad-

ding 20 instruction cycles (t<sub>cyc</sub>) to the total number of cycles

it takes to complete the service routine including the RTI in-



Fig. 15 – External interrupt.

of memory locations \$7FE and \$7FF. The interrupt mask of the condition code register is also set. See preceding section on Reset for details.

During the STOP mode, timer control register (TCR) bits 6 and 7 are altered to remove any pending timer interrupt requests and to disable any further timing interrupts. External interrupts are enabled in the condition code register. All other registers and memory remain unaltered All I/O lines remain unchanged The processor can only be brought out of the STOP mode by an external IRQ or RESET.



92CS-38008

Fig. 16 – Stop function flowchart.

WAIT — The WAIT instruction places the CDP6805F2 in a low-power consumption mode, but the WAIT mode consumes somewhat more power than the STOP mode. In the WAIT mode, the internal clock is disabled from all internal circuitry except the timer circuit; refer to Figure 17. Thus, all internal processing is halted, however, the timer continues to count normally.

During the WAIT mode, the I bit in the condition code register is cleared to enable interrupts. All other registers, memory, and I/O lines remain in their last state. The timer may be enabled by software prior to entering the WAIT mode to allow a periodic exit from the WAIT mode. If an external and a timer interrupt occur at the same time, the external interrupt is serviced first; then, if the timer interrupt request is not cleared in the external interrupt routine, the normal timer interrupt (not the timer WAIT mode.

#### TIMER

The MCU timer contains an 8-bit software programmable counter with a 7-bit software selectable prescaler. Figure 18 contains a block diagram of the timer. The counter may be preset under program control and decrements towards zero. When the counter decrements to zero, the timer interrupt request bit (i.e., bit 7 of the timer control register (TCR)) is set. Then, if the timer interrupt is not masked (i.e., bit 6 of the TCR and the 1 bit in the condition code register are both cleared) the processor receives an interrupt. After completion of the current instruction, the processor proceeds to store the appropriate registers on the stack and then fetches the timer vector address from locations \$7F8 and \$7F9 (or \$7F6 and \$7F7 if in the WAIT mode) in order to begin servicing

The counter continues to count after it reaches zero allowing the software to determine the number of internal or external input clocks since the timer interrupt request bit was set. The counter may be read at any time by the processor without disturbing the count. The contents of the counter become stable, prior to the read portion of a cycle, and do not change during the read. The timer interrupt request bit remains set until cleared by the software. TCR7 may also be used as a scanned status bit in a non-interrupt mode of operation (TCR6= 1).

The prescaler is a 7-bit divider which is used to extend the maximum length of the timer. Bit 0, bit 1, and bit 2 of the TCR are programmed to choose the appropriate prescaler output within the range of  $\pm 1$  to  $\pm 128$  which is used as the counter input. The processor cannot write into or read from the prescaler, however, its contents are cleared to all "Os" by the write operation into TCR when bit 3 of the written data equals one. This allows for truncation-free counting.

The timer input can be configured for three different operating modes plus a disable mode depending on the value written to the TCR4 and TCR5 control bits. Refer to the Timer Control Register section.

#### TIMER INPUT MODE 1

If TCR5 and TCR4 are both programmed to a "0", the input to the timer is from an internal clock and the TIMER input pin is disabled. The internal clock mode can be used for



Fig. 17 - WAIT function flowchart.

periodic interrupt generation as well as a reference in frequency and event measurement. The internal clock is the instruction cycle clock. During a WAIT instruction, the internal clock to the timer continues to run at its normal rate.

#### TIMER INPUT MODE 2

With TCR5=0 and TCR4=1, the internal clock and the TIMER input pin are ANDed to form the timer input signal. This mode can be used to measure external pulse widths The external timer input pulse simply turns on the internal clock for the duration of the pulse. The resolution of the count in this mode is ± one internal clock and therefore, accuracy improves with longer input pulse widths.

#### TIMER INPUT MODE 3

If TCR5=1 and TCR4=0, all inputs to the timer are disabled

#### TIMER INPUT MODE 4

If TCR5=1 and TCR4=1, the internal clock input to the timer is disabled and the TIMER input pin becomes the input to the timer. The timer can, in this mode, be used to count external events as well as external frequencies for generating periodic interrupts. The counter is clocked on the falling edge of the external signal.

Figure 18 shows a block diagram of the timer subsystem Power-on reset and the STOP instruction invalidate the contents of the counter



1 Prescaler and 8-bit counter are clocked falling edge of the internal clock (AS) or external

Input 2 Counter is written to during Data Strobe (DS) and counts down continuously

92CM- 38034R1

Fig. 18 - Programmable timer/counter block diagram.

#### TIMER CONTROL REGISTER (TCR)

| 7    | 6 5  |      | 4    | 3    | 2    | 1    | 00   |  |  |
|------|------|------|------|------|------|------|------|--|--|
| TCR7 | TCR6 | TCR5 | TCR4 | TCR3 | TCR2 | TCR1 | TCR0 |  |  |

All bits in this register except bit 3 are read/write bits

 $\mbox{TCR7}$  — Timer interrupt request bit bit used to indicate the timer interrupt when it is logic ''1''

- Set whenever the counter decrements to zero or under program control
- 0 Cleared on external RESET, power-on reset, STOP instruction, or program control

 $\mbox{TCR6}$  - Timer interrupt mask bit, when this bit is a logic ''1'', it inhibits the timer interrupt to the processor

- 1 Set on external RESET, power-on reset, STOP instruction, or program control
- 0 Cleared under program control

TCR5 – External or internal bit selects the input clock source to be either the external timer pin or the internal clock (Unaffected by RESET)

- 1 Select external clock source
- 0 Select internal clock source

 $\mbox{TCR4}$  — External enable bit control bit used to enable the external TIMER pin (Unaffected by  $\mbox{RESET}$ )

- 1 Enable external TIMER pin
- 0 Disable external TIMER pin

| TCR5 | TCR4 |                                                 |
|------|------|-------------------------------------------------|
| 0    | 0    | Internal Clock to Timer                         |
| 0    | 1    | AND of Internal Clock and TIMER<br>Pin to Timer |
| 1    | 0    | Inputs to Timer Disabled                        |
| 1    | 1    | TIMER Pin to Timer                              |

 $\mbox{TCR3}$  — Timer Prescaler Reset bit: writing a "1" to this bit resets the prescaler to zero. A read of this location always indicates "0" (Unaffected by  $\mbox{RESET}$ )

TCR2, TCR1, TCR0 — Prescaler select bits: decoded to select one of eight outputs on the prescaler. (Unaffected by RESET )

#### Prescaler

| TCR2 | TCR1 | TCR0 | Result        |
|------|------|------|---------------|
| 0    | 0    | 0    | <del></del> 1 |
| 0    | 0    | 1    | + 2           |
| 0    | 1    | 0    | ÷4            |
| 0    | 1    | 1    | - 8           |
| 1    | 0    | 0    | + 16          |
| 1    | 0    | 1    | - 32          |
| 1    | 1    | 0    | + 64          |
| 1    | 1    | 1    | + 128         |

#### INSTRUCTION SET

The MCU has a set of 61 basic instructions. They can be divided into five different types: register/memory, readmodify-write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

#### **REGISTER/MEMORY INSTRUCTIONS**

Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The operand for the jump unconditional (JMP) and jump to subroutine (JSR) instructions is the program counter. Refer to Table 4.

#### READ-MODIFY-WRITE INSTRUCTIONS

These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruction is an exception to the read-modify-write sequence since it does not modify the value Refer to Table 5

#### **BRANCH INSTRUCTIONS**

Most branch instructions test the state of the condition code register and, if certain criteria are met, a branch is executed. This adds an offset between -127 and +128 to the current program counter. Refer to Table 6

#### **BIT MANIPULATION INSTRUCTIONS**

The MCU is capable of setting or clearing any bit which resides in the first 128 bytes of the memory space where all port registers, port DDRs, timer, timer control, and on-chip RAM reside. An additional feature allows the software to test and branch on the state of any bit within the first 256 locations. The bit set, bit clear, and bit test and branch functions are implemented with a single instruction. For the test and branch instructions, the value of the bit tested is also placed in the carry bit of the condition code register. Refer to Table 7

#### CONTROL INSTRUCTIONS

These instructions are register reference instructions and are used to control processor operation during program execution. Refer to Table 8.

#### OPCODE MAP

Table 9 is an opcode map for the instructions used on the  $\ensuremath{\mathsf{MCU}}$ 

#### ALPHABETICAL LISTING

The complete instruction set is given in alphabetical order in Table 10

#### ADDRESSING MODES

The MCU uses ten different addressing modes to provide the programmer with an opportunity to optimize the code to all situations. The various indexed addressing modes make it possible to locate data tables, code conversion tables, and scaling tables anywhere in the memory space. Short indexed accesses are single-byte instructions while the longest instructions (three bytes) permit tables throughout memory Short and long absolute addressing is also included Twobyte direct addressing instructions access all data bytes in most applications Extended addressing permits jump instructions to reach all memory. Table 10 shows the addressing modes for each instruction code register. An opcode map is shown in Table 9

The term "Effective Address" (EA) is defined as the byte address to or from which the argument for an instruction is fetched or stored. The ten addressing modes of the processor are described below. Parentheses are used to indicate "contents of," an arrow indicates "is replaced by," and a colon indicates "concatenation of two bytes."

CDP6805F2, CDP6805F2C

#### INHERENT

In inherent instructions, all the information necessary to execute the instruction is contained in the opcode. Operations specifying only the index registers or accumulator and no other arguments are included in this mode.

#### IMMEDIATE

In immediate addressing, the operand is contained in the byte immediately following the opcode. Immediate addressing is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).

$$EA = PC + 1; PC - PC + 2$$

#### DIRECT

In the direct addressing mode, the effective address of the argument is contained in a single byte following the opcode byte. Direct addressing allows the user to directly address the lowest 256 bytes in memory with a single two-byte instruction. This includes all on-chip RAM and I/O registers and 128 bytes of on-chip ROM Direct addressing is efficient in both memory and time.

 $\mathsf{EA} = (\mathsf{PC} + 1), \ \mathsf{PC} + \mathsf{PC} + 2$ 

Address Bus High -0, Address Bus Low - (PC + 1)

#### EXTENDED

In the extended addressing mode, the effective address of the argument is contained in the two bytes following the opcode Instructions with extended addressing modes are capable of referencing arguments anywhere in memory with a single three-byte instruction

 $EA = (PC + 1) \cdot (PC + 2); PC \leftarrow PC + 3$ Address Bus High  $\leftarrow (PC + 1), Address Bus Low \leftarrow (PC + 2)$ 

#### INDEXED, NO-OFFSET

In the indexed, no-offset addressing mode, the effective address of the argument is contained in the 8-bit index register. Thus, this addressing mode can access the first 256 memory locations. These instructions are only one byte long. This mode is used to move a pointer through a table or to address a frequently referenced RAM or I/O location.

 $EA = X, PC \leftarrow PC + 1$ Address Bus High  $\leftarrow 0$ ; Address Bus Low  $\leftarrow X$ 

#### INDEXED, 8-BIT OFFSET

Here the EA is obtained by adding the contents of the byte following the opcode to that of the index register, therefore, the operand is located anywhere within the lowest 511 memory locations. For example, this mode of addressing is useful for selecting the mth element in an nelement table. All instructions are two bytes. The content of the index register

(X) is not changed. The content of (PC+1) is an unsigned 8-bit integer. One-byte offset indexing permits look-up tables to be easily accessed in either RAM or ROM.

$$EA = X + (PC + 1); PC \leftarrow PC + 2$$

Address Bus High  $\leftarrow$  K, Address Bus Low  $\leftarrow$  X + (PC + 1) where K = The carry from the addition of X + (PC + 1)

#### INDEXED, 16-BIT OFFSET

In the indexed, 16-bit offset addressing mode, the effective address is the sum of the contents of the unsigned 8-bit index register and the two unsigned bytes following the opcode. This addressing mode can be used in a manner similar to indexed 8-bit offset, except that this three-byte instruction allows tables to be anywhere in memory (e.g., jump tables in ROM). The content of the index register is not changed.

 $\begin{aligned} \mathsf{EA} &= \mathsf{X} + [(\mathsf{PC}+1) \ (\mathsf{PC}+2)]; \ \mathsf{PC} &\leftarrow \mathsf{PC}+3 \\ & \mathsf{Address} \ \mathsf{Bus} \ \mathsf{High} \leftarrow (\mathsf{PC}+1) + \mathsf{K}, \\ & \mathsf{Address} \ \mathsf{Bus} \ \mathsf{Low} \leftarrow \mathsf{X} + (\mathsf{PC}+2) \end{aligned}$ 

where K = The carry from the addition of X + (PC + 2)

#### RELATIVE

Relative addressing is only used in branch instructions. In relative addressing, the contents of the 8-bit signed byte following the opcode (the offset) is added to the PC if and only if the branch condition is true. Otherwise, control proceeds to the next instruction. The span of relative addressing is limited to the range of -126 to +129 bytes from the branch instruction opcode location.

 $EA = PC + 2 + (PC + 1); PC \leftarrow EA$  if branch taken; otherwise,  $PC \leftarrow PC + 2$ 

#### BIT SET/CLEAR

Direct addressing and bit addressing are combined in instructions which set and clear individual memory and I/O bits. In the bit set and clear instructions, the byte is specified as a direct address in the location following the opcode. The first 128 addressable locations are thus accessed. The bit to be modified within that byte is specified with three bits of the opcode. The bit set and clear instructions occupy two bytes: one for the opcode (including the bit number) and the second for addressing the byte which contains the bit of interest.

$$EA = (PC + 1); PC \leftarrow PC + 2$$

Address Bus High ← 0; Address Bus Low ← (PC + 1)

#### BIT TEST AND BRANCH

Bit test and branch is a combination of direct addressing, bit addressing, and relative addressing. The bit address and condition (set or clear) to be tested is part of the opcode. The address of the byte to be tested is in the single byte immediately following the opcode byte (EA1). The signed relative 8-bit offset is in the third byte (EA2) and is added to the PC if the specified bit is set or cleared in the specified memory location. This single three-byte instruction allows the program to branch based on the condition of any bit in the first 256 locations of memory.

EA1 = (PC + 1)  
Address Bus High 
$$\leftarrow$$
 0; Address Bus Low  $\leftarrow$  (PC + 1)  
EA2 = PC + 3 + (PC + 2); PC  $\leftarrow$  EA2 if branch taken;  
otherwise. PC  $\leftarrow$  PC + 3

|                                             |          | Addressing Modes |            |             |            |                                  |   |            |             |            |            |                     |            |            |                     |            |            |                     |      |
|---------------------------------------------|----------|------------------|------------|-------------|------------|----------------------------------|---|------------|-------------|------------|------------|---------------------|------------|------------|---------------------|------------|------------|---------------------|------|
|                                             |          | I                | mmediat    | e           |            | Direct                           |   |            | Extended    |            | ()         | Indexed<br>No Offse | t)         | (8         | Indexed<br>Bit Offs | et)        | (16        | Indexed<br>Bit Offs | set) |
| Function                                    | Mnemonic | Op<br>Code       | #<br>Bytes | #<br>Cycles | Op<br>Code | p # # Op<br>de Bytes Cycles Code |   | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles         | Op<br>Code | #<br>Bytes | /<br>Cycles         | Op<br>Code | #<br>Bytes | #<br>Cycles         |      |
| Load A from Memory                          | LDA      | A6               | 2          | 2           | B6         | 2                                | 3 | C6         | 3           | 4          | F6         | 1                   | 3          | E6         | 2                   | 4          | D6         | 3                   | 5    |
| Load X from Memory                          | LDX      | AE               | 2          | 2           | BE         | 2                                | 3 | CE         | 3           | 4          | FE         | 1                   | 3          | EE         | 2                   | 4          | DE         | 3                   | 5    |
| Store A in Memory                           | STA      | -                | -          | -           | B7         | 2                                | 4 | C7         | 3           | 5          | F7         | 1                   | 4          | E7         | 2                   | 5          | D7         | 3                   | 6    |
| Store X in Memory                           | STX      | -                | -          | -           | BF         | 2                                | 4 | CF         | 3           | 5          | FF         | 1                   | 4          | EF         | 2                   | 5          | DF         | 3                   | 6    |
| Add Memory to A                             | ADD      | AB               | 2          | 2           | BB         | 2                                | 3 | CB         | 3           | 4          | FB         | 1                   | 3          | EB         | 2                   | 4          | DB         | 3                   | 5    |
| Add Memory and<br>Carry to A                | ADC      | A9               | , 2        | 2           | В9         | 2                                | 3 | C9         | 3           | 4          | F9         | 1                   | 3          | E9         | 2                   | 4          | D9         | 3                   | 5    |
| Subtract Memory                             | SUB      | A0               | 2          | 2           | B0         | 2                                | 3 | CO         | 3           | 4          | F0         | 1                   | 3          | EO         | 2                   | 4          | D0         | 3                   | 5    |
| Subtract Memory from<br>A with Borrow       | SBC      | A2               | 2          | 2           | B2         | 2                                | 3 | C2         | 3           | 4          | F2         | 1                   | 3          | E2         | 2                   | 4          | D2         | 3                   | 5    |
| AND Memory to A                             | AND      | A4               | 2          | 2           | B4         | 2                                | 3 | C4         | 3           | 4          | F4         | 1                   | 3          | E4         | 2                   | 4          | D4         | 3                   | 5    |
| OR Memory with A                            | ORA      | AA               | 2          | 2           | BA         | 2                                | 3 | CA         | 3           | 4          | FA         | 1                   | 3          | EA         | 2                   | 4          | DA         | 3                   | 5    |
| Exclusive OR Memory<br>with A               | EOR      | A8               | 2          | 2           | B8         | 2                                | 3 | C8         | 3           | 4          | F8         | 1                   | 3          | E8         | 2                   | 4          | D8         | 3                   | 5    |
| Arithmetic Compare A<br>with Memory         | СМР      | A1               | 2          | 2           | B1         | 2                                | 3 | C1         | 3           | 4          | F1         | 1                   | 3          | E1         | 2                   | 4          | D1         | 3                   | 5    |
| Arithmetic Compare X<br>with Memory         | СРХ      | A3               | 2          | 2           | В3         | 2                                | 3 | C3         | 3           | 4          | F3         | 1                   | 3          | E3         | 2                   | 4          | D3         | 3                   | 5    |
| Bit Test Memory with<br>A (Logical Compare) | BIT      | A5               | 2          | 2           | B5         | 2                                | 3 | C5         | 3           | 4          | F5         | 1                   | 3          | E5         | 2                   | 4          | D5         | 3                   | 5    |
| Jump Unconditional                          | JMP      | -                | -          | -           | BC         | 2                                | 2 | сс         | 3           | 3          | FC         | 1                   | 2          | EC         | 2                   | 3          | DC         | 3                   | 4    |
| Jump to Subroutine                          | JSR      | -                | -          | -           | BD         | 2                                | 5 | CD         | 3           | 6          | FD         | 1                   | 5          | ED         | 2                   | 6          | DD         | 3                   | 7    |

### TABLE 4 - REGISTER/MEMORY INSTRUCTIONS

#### TABLE 5 - READ-MODIFY-WRITE INSTRUCTIONS

|                              |          |              | Addressing Modes |             |            |              |             |            |            |             |            |                     |             |            |                     |             |
|------------------------------|----------|--------------|------------------|-------------|------------|--------------|-------------|------------|------------|-------------|------------|---------------------|-------------|------------|---------------------|-------------|
|                              |          | Inherent (A) |                  |             | Ir         | Inherent (X) |             |            | Direct     |             | (          | Indexed<br>No Offse | rt)         | (8         | Indexed<br>Bit Offs | et)         |
| Function                     | Mnemonic | Op<br>Code   | #<br>Bytes       | #<br>Cycles | Op<br>Code | #<br>Bytes   | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles | Op<br>Code | #<br>Bytes          | #<br>Cycles | Op<br>Code | #<br>Bytes          | #<br>Cycles |
| Increment                    | INC      | 4C           | 1                | 3           | 5C         | 1            | 3           | 3C         | 2          | 5           | 7C         | 1                   | 5           | 6C         | 2                   | 6           |
| Decrement                    | DEC      | 4A           | 1                | 3           | 5A         | 1            | 3           | 3A         | 2          | 5           | 7A         | 1                   | 5           | 6A         | 2                   | 6           |
| Clear                        | CLR      | 4F           | 1                | 3           | 5F         | 1            | 3           | 3F         | 2          | 5           | 7F         | 1                   | 5           | 6F         | 2                   | 6           |
| Complement                   | COM      | 43           | 1                | 3           | 53         | 1            | 3           | 33         | 2          | 5           | 73         | 1                   | 5           | 63         | 2                   | 6           |
| Negate<br>(2's Complement)   | NEG      | 40           | 1                | 3           | 50         | 1            | 3           | 30         | 2          | 5           | 70         | 1                   | 5           | 60         | 2                   | 6           |
| Rotate Left Thru Carry       | ROL      | 49           | 1                | 3           | 59         | 1            | 3           | 39         | 2          | 5           | 79         | 1                   | 5           | 69         | 2                   | 6           |
| Rotate Right Thru<br>Carry   | ROR      | 46           | 1                | 3           | 56         | 1            | 3           | 36         | 2          | 5           | 76         | 1                   | 5           | 66         | 2                   | 6           |
| Logical Shift Left           | LSL      | 48           | 1                | 3           | 58         | 1            | 3           | 38         | 2          | 5           | 78         | 1                   | 5           | 68         | 2                   | 6           |
| Logical Shift Right          | LSR      | 44           | 1                | 3           | 54         | 1            | 3           | 34         | 2          | 5           | 74         | 1                   | 5           | 64         | 2                   | 6           |
| Arithmetic Shift Right       | ASR      | 47           | 1                | 3           | 57         | 1            | 3           | 37         | 2          | 5           | 17         | 1                   | 5           | 67         | 2                   | 6           |
| Test for Negative<br>or Zero | TST      | 4D           | 1                | 3           | 5D         | 1            | 3           | 3D         | 2          | 4           | 7D         | 1                   | 4           | 6D         | 2                   | 5           |

ω

325

|                                        | Relative Addressing Mode |            |            |             |  |  |  |  |  |  |  |
|----------------------------------------|--------------------------|------------|------------|-------------|--|--|--|--|--|--|--|
| Function                               | Mnemonic                 | Op<br>Code | #<br>Bytes | #<br>Cycles |  |  |  |  |  |  |  |
| Branch Always                          | BRA                      | 20         | 2          | 3           |  |  |  |  |  |  |  |
| Branch Never                           | BRN                      | 21         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Higher                      | BHI                      | 22         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Lower or Same               | BLS                      | 23         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Carry Clear                 | BCC                      | 24         | 2          | 3           |  |  |  |  |  |  |  |
| (Branch IFF Higher or Same)            | (BHS)                    | 24         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Carry Set                   | BCS                      | 25         | 2          | 3           |  |  |  |  |  |  |  |
| (Branch IFF Lower)                     | (BLO)                    | 25         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Not Equal                   | BNE                      | 26         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Equal                       | BEQ                      | 27         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Half Carry Clear            | BHCC                     | 28         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Half Carry Set              | BHCS                     | 29         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Plus                        | BPL                      | 2A         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Minus                       | BMI                      | 2B         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Interrupt Mask Bit is Clear | BMC                      | 2C         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Interrupt Mask Bit is Set   | BMS                      | 2D         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Interrupt Line is Low       | BIL                      | 2E         | 2          | 3           |  |  |  |  |  |  |  |
| Branch IFF Interrupt Line is High      | BIH                      | 2F         | 2          | 3           |  |  |  |  |  |  |  |
| Branch to Subroutine                   | BSR                      | AD         | 2          | 6           |  |  |  |  |  |  |  |

#### TABLE 6 - BRANCH INSTRUCTIONS

TABLE 7 - BIT MANIPULATION INSTRUCTIONS

|                           |                     | Addressing Modes |                                   |             |            |            |             |  |  |  |  |  |  |
|---------------------------|---------------------|------------------|-----------------------------------|-------------|------------|------------|-------------|--|--|--|--|--|--|
|                           |                     | Bi               | Bit Set/Clear Bit Test and Branch |             |            |            |             |  |  |  |  |  |  |
| Function                  | Mnemonic            | Op<br>Code       | #<br>Bytes                        | #<br>Cycles | Op<br>Code | #<br>Bytes | #<br>Cycles |  |  |  |  |  |  |
| Branch IFF Bit n is Set   | BRSET n (n = 0 7)   | -                | -                                 | -           | 2•n        | 3          | 5           |  |  |  |  |  |  |
| Branch IFF Bit n is Clear | BRCLR n (n = $0$ 7) | -                | -                                 |             | 01 + 2•n   | 3          | 5           |  |  |  |  |  |  |
| Set Bit n                 | BSET n (n = 0 7)    | 10+2•n           | 2                                 | 5           | -          | -          |             |  |  |  |  |  |  |
| Clear Bit n               | BCLR n (n = 0 7)    | 11+2•n           | 2                                 | 5           | -          | -          | -           |  |  |  |  |  |  |

#### TABLE 8 - CONTROL INSTRUCTIONS

|                          |          |            | Inherent   |             |
|--------------------------|----------|------------|------------|-------------|
| Function                 | Mnemonic | Op<br>Code | #<br>Bytes | #<br>Cycles |
| Transfer A to X          | TAX      | 97         | 1          | 2           |
| Transfer X to A          | TXA      | 9F         | 1          | 2           |
| Set Carry Bit            | SEC      | 99         | 1          | 2           |
| Clear Carry Bit          | CLC      | <b>98</b>  | 1          | 2           |
| Set Interrupt Mask Bit   | SEI      | 9B         | 1          | 2           |
| Clear Interrupt Mask Bit | CLI      | 9A         | 1          | 2           |
| Software Interrupt       | SWI      | 83         | 1          | 10          |
| Return from Subroutine   | RTS      | 81         | 1          | 6           |
| Return from Interrupt    | RTI      | 80         | 1          | 9           |
| Reset Stack Pointer      | RSP      | 9C         | 1          | 2           |
| No-Operation             | NOP      | 9D         | 1          | 2           |
| Stop                     | STOP     | 8E         | 1          | 2           |
| Wait                     | WAIT     | 8F         | 1          | 2           |

#### TABLE 9- INSTRUCTION SET OPCODE MAP

|           | Bit Ma          | niculation     | Branch         |                           | Re            | ad-Modify-V                | Vrite          |        | Cor           | ntrol          | T                 |                | Regist         | er/Memory      |                |        |           |
|-----------|-----------------|----------------|----------------|---------------------------|---------------|----------------------------|----------------|--------|---------------|----------------|-------------------|----------------|----------------|----------------|----------------|--------|-----------|
|           | BTB             | BSC            | REL            | DIR                       | INH           | INH                        | 1X1            | IX     | INH           | INH            | IMM               | DIR            | EXT            | IX2            | IX1            | IX     |           |
| Low       | 0000            | 0001           | 2              | 3                         | 4<br>0100     | 0101                       | 0110           | 0111   | 8<br>1000     | 9              | A<br>1010         | B<br>1011      | C<br>1100      | D<br>1101      | E<br>1110      | F 1111 | Hi Low    |
| 0         |                 | BSET0<br>2 BSC | BRA<br>2 REL   | NEG 2 DIR                 | NEG           | NEG 1 INH                  | 2 NEG 1×1      | NEG 1X | RTI 9         |                | 2<br>SUB<br>2 IMM | SUB<br>2 DIR   | SUB<br>3 EXT   | SUB<br>3 IX2   | SUB 2 1X1      |        | 0         |
| 1<br>0001 | BRCLR0<br>3 BTB | BCLR0<br>2 BSC | BRN 3<br>2 REL |                           |               |                            |                |        |               |                | CMP 2<br>2 IMM    | 2 CMP 2 DIR    | CMP<br>3 EXT   | CMP 5<br>3 1X2 | CMP 4<br>2 IX1 |        | 1 0001    |
| 2<br>0010 | BRSET1<br>3 BTB | BSET1<br>2 BSC | BHI<br>2 REL   |                           |               |                            |                |        |               |                | SBC 2<br>2 IMM    | SBC 3<br>2 DIR | SBC 3 EXT      | SBC 5          | SBC 1x1        |        | 2<br>0010 |
| 3<br>0011 | BRCLR1          | BCLR1<br>2 BSC | BLS<br>2 REL   | COM 2 DIR                 |               |                            |                |        | SWI<br>1 INH  |                | CPX 2<br>2 IMM    | CPX<br>2 DIR   | CPX<br>3 EXT   | CPX 3          | 2 CPX          |        | 3<br>0011 |
| 4<br>0100 | BRSET2<br>3 BTB | BSET2<br>2 BSC | BCC 3          | LSR 2 DTR                 |               | LSRX <sup>3</sup><br>1 INH | LSR 2 1X1      |        |               |                |                   | AND<br>2 DIR   | AND<br>3 EXT   |                | AND 2 1X1      |        | 4<br>0100 |
| 5<br>0101 | BRCLR2<br>3 BTB | BCLR2<br>2 BSC | BCS 2 REL      |                           |               |                            |                |        |               |                | BIT 2             | BIT 2 DIR      | BIT<br>3 EXT   | BIT 3 1X2      | BIT 4          | BIT    | 5<br>0101 |
| 6<br>0110 | BRSET3<br>3 BTB | BSET3<br>2 BSC | BNE<br>2 REL   |                           |               |                            |                |        |               |                | LDA 2<br>2IMM     | LDA<br>2 DIR   | LDA<br>3 EXT   | LDA 3 IX2      | LDA 2 1X1      |        | 6<br>0110 |
| 7<br>0111 | BRCLR3<br>3 BTB | BCLR3          | BEQ 3          |                           |               |                            | ASR 2 IX1      |        |               |                |                   | STA 2 DIR      | STA<br>3 EXT   | STA<br>3 IX2   | STA 2 1X1      |        | 7<br>0111 |
| 8<br>1000 | BRSET4<br>3 BTB | BSET4<br>2 BSC | BHCC<br>2 REL  | LSL 5<br>2 DIR            | LSLA<br>1 INH | LSLX<br>1 INH              | LSL 6<br>2 1×1 |        |               | CLC 2          | EOR 2<br>2 IMM    | EOR<br>2 DIR   | EOR<br>3 EXT   | 3 EOR 3 1X2    | EOR 2 1X1      |        | 8<br>1000 |
| 9<br>1001 | BRCLR4<br>3 BTB |                | BHCS<br>2 REL  | ROL DIR                   | ROLA          | ROLX<br>1 INH              | ROL 2 IX1      |        |               | SEC 2<br>1 INH | ADC 2<br>2 IMM    | ADC<br>2 DIR   | ADC 3 EXT      | ADC 3 1X2      | ADC 2 1X1      |        | 9<br>1001 |
| A<br>1010 | BRSET5<br>3 BTB | BSET5<br>2 BSC | BPL 2 REL      | DEC<br>2 DIR              | DECA          | DECX                       | DEC 1X1        | DEC 1  |               | CLI<br>1 INH   | ORA 2<br>2 IMM    | 0RA<br>2 DIR   | ORA<br>3 EXT   | ORA 3 1X2      |                |        | A<br>1010 |
| B<br>1011 | BRCLR5<br>3 BTB | BCLR5          | BMI<br>2 REL   |                           |               |                            |                |        |               | SEI<br>1 INH   | ADD 2<br>2 IMM    | ADD 2 DIR      | ADD<br>3 EXT   | ADD 3          | ADD 2 IX1      |        | B<br>1011 |
| C<br>1100 | BRSET6<br>3 BTB | BSET6          | 2 BMC<br>2 REL | INC 2 DIR                 |               |                            | INC 2 1X1      |        |               | RSP 1          |                   | JMP<br>2 DIR   | JMP 3<br>3 EXT | JMP 3 1X2      | JMP 2 1X1      |        | C<br>1100 |
| D<br>1101 |                 | BCLR6<br>2 BSC | BMS<br>2 REL   | TST <sup>4</sup><br>2 DIR | TSTA J        | TSTX<br>1 INH              | TST 2 1X1      | TST 1  |               | NOP 1 INH      | BSR<br>2 REL      | JSR<br>2 DIR   | JSR<br>3 EXT   | JSR<br>3 IX2   | JSR 2 1X1      |        | D<br>1101 |
| E<br>1110 | BRSET7<br>3 BTB | BSET7<br>2 BSC | BIL 2 REL      |                           |               |                            |                |        | STOP 1        |                | LDX 2<br>2 IMM    | LDX<br>2 DIR   | LDX<br>3 EXT   | LDX 3          | LDX 2          |        | E<br>1110 |
| F<br>1111 | BRCLR7<br>3 BTB | BCLR7<br>2 BSC | BIH<br>2 REL   | CLR<br>2 DIR              |               | CLRX<br>1 INH              | CLR 2 1X1      |        | WAIT<br>1 INH | TXA 1 INH      |                   | STX<br>2 DIR   | STX<br>3 EXT   | 3 STX 6        | STX 5<br>2 IX1 | STX 1  | F<br>1111 |

#### Abbreviations for Address Modes

- INH Inherent
- IMM Immediate
- DIR Direct
- EXT Extended
- REL Relative
- BSC Bit Set/Clear
- BTB Bit Test and Branch
- IX Indexed (No Offset)
- IX1 Indexed, 1 Byte (8-Bit) Offset
- IX2 Indexed, 2 Byte (16-Bit) Offset

LEGEND



92CS-38011



|          | Addressing Modes |           |        |          |          |                        |                     |                                       |                      |                         |    | ndit | ion        | Co             | des |
|----------|------------------|-----------|--------|----------|----------|------------------------|---------------------|---------------------------------------|----------------------|-------------------------|----|------|------------|----------------|-----|
| Mnemonic | Inherent         | Immediate | Direct | Extended | Relative | Indexed<br>(No Offset) | Indexed<br>(8 Bits) | Indexed<br>(16 Bits)                  | Bit<br>Set/<br>Clear | Bit<br>Test &<br>Branch | н  | I    | N          | z              | с   |
| ADC      |                  | Х         | Х      | х        |          | X                      | Х                   | X                                     |                      |                         | Λ  | •    | ٨          | ۸              | Λ   |
| ADD      |                  | X         | X      | X        |          | X                      | X                   | X                                     |                      |                         | Λ  | •    | Λ          | ۸              | Λ   |
| AND      |                  | Х         | X      | X        |          | X                      | X                   | X                                     |                      |                         | •  | •    | Λ          | ۸              | •   |
| ASL      | X                |           | X      |          |          | X                      | X                   |                                       |                      |                         | •  | •    | Λ          | ۸              | ۸   |
| ASR      | X                |           | X      |          |          | X                      | X                   |                                       |                      |                         | •  | •    | ۸          | ۸              | Λ   |
| BCC      |                  |           |        |          | X        |                        |                     |                                       |                      |                         | •  | •    | •          | •              | •   |
| BCLR     |                  |           |        |          |          |                        |                     |                                       | X                    |                         | •  | •    | •          | •              | •   |
| BCS      |                  |           |        |          | X        |                        |                     |                                       |                      |                         | •  | •    | •          | •              | •   |
| BEQ      |                  |           |        |          | X        |                        |                     |                                       |                      |                         | •  | •    | •          | •              | •   |
| внсс     |                  |           |        |          | <u>×</u> |                        |                     |                                       |                      |                         | •  | •    |            |                | •   |
| BHCS     |                  |           |        |          | <u> </u> |                        |                     |                                       |                      |                         |    | -    |            | -              | •   |
| BHI      |                  |           |        |          |          |                        |                     |                                       |                      |                         |    | -    | -          | -              | -   |
| BHS      |                  |           |        |          | ÷        |                        |                     |                                       |                      |                         |    | -    | -          | -              |     |
| ВІН      |                  |           |        |          | <u>^</u> |                        |                     |                                       |                      |                         |    | -    | -          | -              | -   |
| BIL      |                  |           | ~~~~   | v        | <u>^</u> | v                      | v                   | ~~~~                                  |                      |                         |    | -    | -          | -              | -   |
| BII      |                  | <u>^</u>  | ^      | ^        | l        | ^                      | <u>^</u>            | <u>^</u>                              |                      |                         |    |      | <u>^</u>   | A              |     |
| BLO      |                  |           |        |          | t        |                        |                     |                                       |                      |                         | -  | -    | -          | -              |     |
| BLS      |                  |           |        |          |          |                        |                     |                                       |                      |                         |    | -    | -          | -              |     |
| BIVIC    |                  |           |        |          |          |                        |                     |                                       |                      |                         |    |      | -          | -              |     |
| BMI      |                  |           |        |          | ÷        |                        |                     |                                       |                      |                         |    | -    | -          |                |     |
| BMS      |                  |           |        |          |          |                        |                     |                                       |                      |                         |    |      | -          |                |     |
| BINE     |                  |           |        |          | ÷ ÷      |                        |                     |                                       |                      |                         |    |      | -          |                |     |
| DPL      |                  |           |        |          |          |                        |                     |                                       |                      |                         |    |      | -          |                |     |
| BRA      |                  |           |        |          | ÷ ô      |                        |                     |                                       |                      |                         |    |      | -          |                |     |
| BRCLR    |                  |           |        |          | <u>^</u> | ·····                  |                     |                                       |                      |                         |    |      |            |                |     |
| BRCLH    |                  |           |        |          |          |                        |                     |                                       |                      |                         |    |      |            |                |     |
| DROET    |                  |           |        |          |          |                        |                     |                                       | - <u>v</u>           | ^                       |    |      |            |                |     |
| D SEI    |                  |           |        |          | ×        |                        |                     |                                       | <u> </u>             |                         |    |      |            |                |     |
|          | ×                |           |        |          | <u>^</u> |                        |                     |                                       |                      |                         |    |      | -          |                | 10  |
|          | Ŷ                |           |        |          |          |                        |                     |                                       |                      |                         |    | 10   |            |                | i i |
|          | Ŷ                |           |        |          |          | X                      | ×                   |                                       |                      |                         | -  | Ĭ    | 10         | 1              |     |
| CMP      | <u>^</u>         | ×         | Ŷ      | ×        |          | x                      | X                   | ×                                     |                      |                         | -  | ī    | Ň          | 1 Å            | 1   |
| COM      | ×                | <u>^</u>  | Ŷ      | <u> </u> |          | X                      | X                   | ^                                     | f                    | t                       |    | te   | 1 1        | A              | tī  |
| CPX      | <u>^</u>         | Y         | Ŷ      | ¥        |          | × ×                    | Ŷ                   | ×                                     |                      | +                       |    | tě   | 1 1        | t <del>ñ</del> | +   |
| DEC      | ×                |           | ×      | ^        |          | X                      | x                   |                                       |                      |                         | •  |      | 1 A        | 1A             | 1 i |
| FOR      | ~                | ×         | ×      | ×        |          | X                      | ×                   | X                                     | t                    |                         |    | 10   | Ā          | tä             | 10  |
| INC      | ×                |           | ×      |          |          | X                      | ×                   |                                       |                      |                         |    | te   | Δ          | Ā              | •   |
| IMP      |                  |           | ×      | X        |          | X                      | ×                   | X                                     |                      |                         |    |      |            |                | •   |
| JSR      |                  |           | X      | x .      | 1        | ×                      | X                   | X                                     | 1                    | 1                       | •  | To   |            |                | •   |
| LDA      |                  | x         | X      | ×        |          | X                      | X                   | X                                     | 1                    | 1                       |    | 1.   | Ā          | 1 A            | •   |
| LDX      |                  | X         | X      | X        | 1        | x                      | X                   | X                                     | 1                    | 1                       |    |      | A          | A              | 1.  |
| LSL      | ×                |           | X      |          | 1        | X                      | X                   |                                       | 1                    |                         |    | te   | A          | TA.            | Λ   |
| LSR      | X                |           | X      |          |          | X                      | x                   |                                       |                      | 1                       | •  | •    | 10         | A              | Λ   |
| NEG      | ×                |           | X      |          | 1        | X                      | X                   | 1                                     | 1                    | 1                       | •  | 1.   | Ι <b>Λ</b> | 1A             | A   |
| NOP      | X                |           |        | 1        |          |                        |                     |                                       | 1                    | 1                       | •  |      |            |                | 1.  |
| ORA      |                  | X         | X      | X        | <u> </u> | X                      | X                   | X                                     |                      |                         | •  | •    | Λ          | A              |     |
| ROL      | X                |           | X      |          |          | X                      | X                   |                                       |                      |                         | •  | •    | ۸          | Λ              | Λ   |
| ROR      | X                |           | X      |          |          | X                      | X                   |                                       | I                    |                         | •  | •    | Λ          | Δ              | Λ   |
| RSP      | X                |           |        |          |          |                        |                     |                                       |                      |                         | •  | •    | •          |                |     |
| RTI      | X                |           |        |          | 1        |                        | 1                   | · · · · · · · · · · · · · · · · · · · | 1                    | 1                       | 17 | 17   | 17         | 17             | 17  |
| RTS      | X                |           |        |          | [        |                        |                     |                                       |                      | 1                       | •  | •    | •          |                | •   |
| SBC      |                  | X         | X      | X        | 1        | X                      | X                   | X                                     | 1                    | [                       | •  | •    | Λ          | Λ              | Λ   |
| SEC      | X                |           |        |          |          |                        |                     |                                       |                      |                         | •  | •    | •          | •              | 1   |
| SEI      | ×                |           |        |          |          |                        |                     |                                       |                      |                         | •  | 1    | •          | •              | •   |
| STA      |                  |           | X      | X        |          | X                      | X                   | X                                     |                      |                         | •  | •    | Λ          | Λ              | •   |
| STOP     | ×                |           |        |          |          |                        |                     |                                       |                      |                         | •  | 0    | •          | •              | •   |
| STX      |                  |           | X      | X        |          | X                      | X                   | X                                     |                      |                         | •  | •    | Λ          | Λ              | •   |
| SUB      |                  | X         | X      | X        |          | X                      | X                   | X                                     |                      |                         | •  | •    | Λ          | Λ              | Λ   |
| SWI      | X                |           |        |          |          |                        |                     |                                       |                      |                         | •  | 1    | •          | •              | •   |
| TAX      | X                |           |        |          |          |                        |                     |                                       |                      |                         |    | •    | •          | •              |     |
| TST      | X                |           | X      |          |          | X                      | X                   |                                       |                      |                         | •  | •    | Λ          | Λ              | •   |
| TXA      | X                |           |        |          |          |                        |                     |                                       |                      |                         | •  | •    | •          | •              | •   |
| WAIT     | X                |           | 1      | 1        | 1        |                        |                     |                                       | 1                    |                         | •  | 10   | •          |                | •   |

TABLE 10 - INSTRUCTION SET

Condition Code Symbols

- H Half Carry (From Bit 3)
   Λ
   Test and Set if True Cleared Otherwise

   i
   Interrupt Mask
   Not Affected

   N Negative (Sign Bit)
   2
   Load CC Register From Stack

   Z Zero
   0
   Cleared

   C Carry / Borrow
   1
   Set