CE9910

■ INTRODUCTION

The CE9910 is a 1.5MHz constant frequency, slope compensated current mode PWM synchronous step-down converter that delivers a regulated output current. The internal synchronous switch increases efficiency and eliminates the need for an external Schottky diode.

The CE9910 is targeted to be used for driving loads up to 1A from a single cell Lithium-Ion battery. The LED current can be programmed by the external current sense resistor. A low 100mV feedback voltage reduces the power loss for better efficiency.

■ FEATURES

High efficiency: Up to 90%

• Output Current: 1A (Typ.)

• 1.5MHz Constant Switching Frequency

No Schottky Diode Required

• Input Voltage: 2.5V to 6.0V

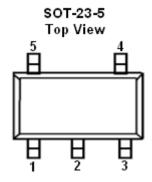
Low Dropout: 100% duty Cycle

Low Quiescent Current: 300μA

● Shutdown Current: <1µA

Built-in Thermal Protection

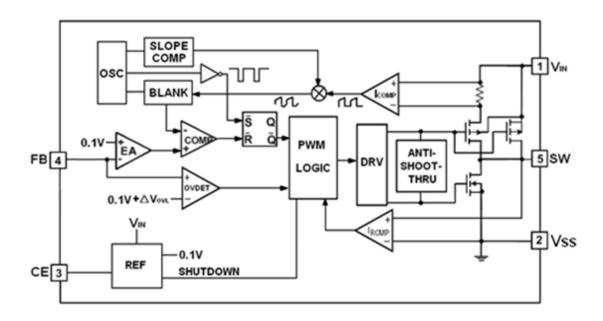
Short Circuit Protection


Package: SOT-23-5

RoHS Compliant and Lead (Pb)-Free

■ APPLICATIONS

- White LED Torch (Flashlight)
- Digital Still Camera Flash
- Camcorder Flashlight Lamp
- White LED Camera Flash
- Cellular Camera Phone Flash
- PDA Camera Flash


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NUMBER	PIN NAME	FUNCTION		
1	V _{IN}	Power Input		
2	V _{SS}	Ground		
3	CE	Chip Enable Pin		
4	FB	Feedback Pin		
5	SW	External Inductor Connection Pin		

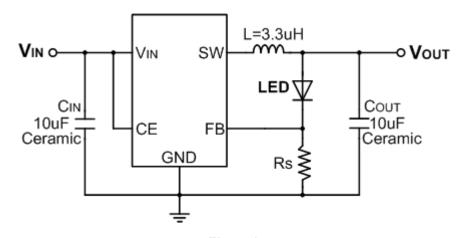
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Unless otherwise specified, Ta=25°C)

PA	RAMETER	SYMBOL	RATINGS	UNITS
Inp	out Voltage	V_{IN}	V_{SS} -0.3~ V_{SS} +7	V
CE,SW,	FB/V _{OUT} Voltage		V_{SS} -0.3~ V_{IN} +0.3	V
	Sink and Source Current	I _{SWMAX}	1500	mA
Power Dissipation	SOT-23-5	Pd	250	mW
Operation	ng Temperature	T_{Opr}	-40~+85	${\mathbb C}$
Junctio	n Temperature	T_j	125	${\mathbb C}$
Storag	e Temperature	T _{stg}	-40~+125	$^{\circ}$
Soldering T	emperature & Time	T _{solder}	260℃, 10s	

■ ELECTRICAL CHARACTERISTICS

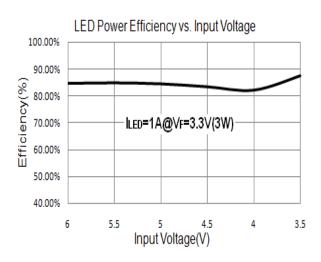

(V_{IN}=CE=3.6V, Ta=25℃, Test Circuit Figure1, unless otherwise specified)

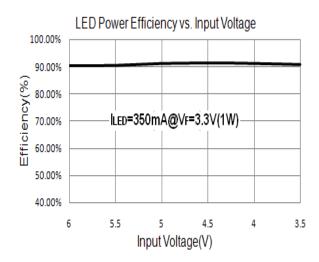
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Feedback Voltage	V_{FB}	T _A =25℃	90	100	110	mV
Input Voltage	V_{IN}		2.5		6.0	V
Supply Current	I _{SS}	V _{FB} =80mV		300	400	μA
Shutdown Current	I _{SHDN}	V _{CE} =V _{SS}		0.1	1	μA
Feedback Current	I _{FB}	V _{FB} =0.2V			±30	nA
Maximum Output	1	V _{IN} =4.2V	1.0			А
Current	I _{OUT}	V _{IN} -4.2 V	1.0			A
Oscillator Frequency	f _{osc}	$V_{FB}=0.2V$	1.2	1.5	1.8	MHz
SW Leakage	I _{LSW}	CE=0, V_{SW} =0 or 5V,	±0.01		±1	
SVV Leakage		V _{IN} =5V		±0.01	I II	μA
CE "High" Voltage ⁽¹⁾	V _{CE} "H"		1.5		V_{IN}	V
CE "Low" Voltage ⁽²⁾	V _{CE} "L"				0.3	V
CE Leakage Current	I _{CE}			±0.1	±1	μA

NOTE:

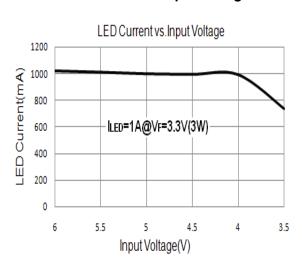
- 1. High Voltage: Forcing CE above 1.5V enables the part.
- 2. Low Voltage: Forcing CE below 0.3V shuts down the device. In shutdown, all functions are disabled drawing <1µA supply current. Do not leave CE floating.

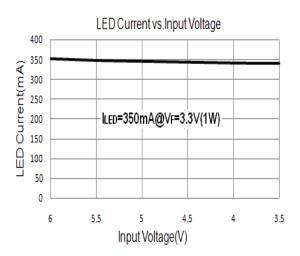
■ TYPICAL APPLICATION CIRCUIT

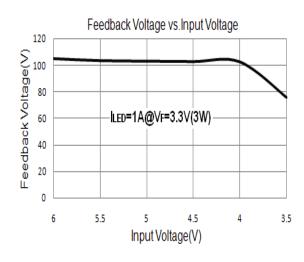

 $\label{eq:figure1} \mbox{NOTE:} \quad \mbox{I_{LED}=$100mV/$R_S$,} \qquad \mbox{$I_{LED}$=$1A, R_S=0.1} \mbox{Ω}$

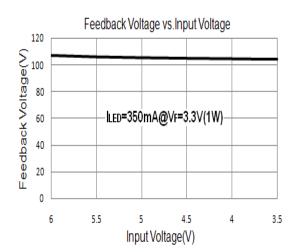

CHIPOWER TECHNOLOGY

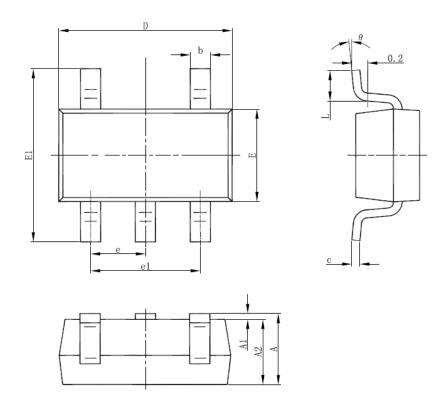
■ TYPICAL PERFORMANCE CHARACTERISTICS


(Ta=25℃, Test Figure1 above unless otherwise specified)


1. LED Power Efficiency vs. Input Voltage




2. LED Current vs. Input Voltage


3. Feedback Voltage vs. Input Voltage

■ PACKAGING INFORMATION

• SOT-23-5 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	Millimeters	Dimensions	In Inches	
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(50(BSC) 0.0		7(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

© Nanjing Chipower Electronics Inc.

Chipower cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Chipower product. No circuit patent license, copyrights or other intellectual property rights are implied. Chipower reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

