

High-Frequency, 3rd Overtone Crystal Oscillator Module ICs

www.datasheet4u.com

OVERVIEW

The CF5019 series are high-frequency, 3rd overtone crystal oscillator module ICs. They incorporate an oscillator circuit and an output buffer that operate at high frequency on a single chip. The oscillator circuit employs CMOS inverters and a built-in damping resistor R_D , reducing the crystal current compared with existing devices. The damping resistor R_D is fabricated using NPC's unique high-precision thin-film resistor technology, which suppresses oscillator characteristic variations due to changes in temperature and voltage to a minimum. The CF5019 series can be utilized to construct stable, high-frequency, 3rd overtone crystal oscillators.

FEATURES

- R_D built-in to reduce crystal current in the oscillator circuit
- 2.25 to 3.6V operating supply voltage range
- Recommended operating frequency range (varies with version)
 - 2.5V operation: 60 to 155MHz3.0V operation: 60 to 170MHz
- -40 to 85°C operating temperature range
- Oscillator capacitors with excellent frequency response built-in
- Feedback resistors with good temperature characteristics built-in

- Standby function
 - High impedance in standby mode, oscillator stops
- Low standby current
 - Power-saving pull-up resistor built-in
- Oscillation detector function
- CMOS output duty level (1/2VDD)
- $50 \pm 5\%$ output duty (at 1/2VDD)
- 30pF output load (3.3V operation)
- Molybdenum-gate CMOS process
- Chip form (CF5019AL×)

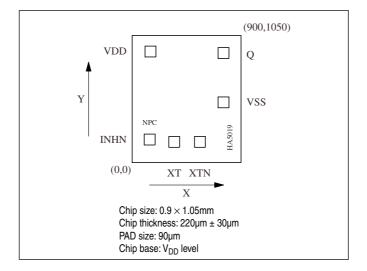
APPLICATIONS

■ Crystal oscillator modules (3rd overtone oscillation)

SERIES CONFIGURATION

	Recommend	Recommended operating		Oscilla	tor circuit o	INHN	Standby mode			
Version	frequency ra	ange ^{*1} [MHz]		Built-in ca	pacitance	l	Damping	input	Oscillator	Output
	2.5V operation	3.0V operation	gm ratio	C _G [pF]	C _D [pF]	resistance Rf [kΩ]	resistance $R_D[\Omega]$	level	stop function	state
CF5019ALA	60 to 80	60 to 90	0.6	4	7	2.5	200			
CF5019ALB	70 to 115	80 to 125	0.8	3	3	4.5	57			
CF5019ALC	105 to 135	115 to 145	1.0	1	3	3.3	57	CMOS	Yes	High impedance
CF5019ALD	110 to 155	135 to 170	1.0	1	5	2.2	57			
CF5019ALE	90 to 125	95 to 135	0.8	2	7	3.3	57			

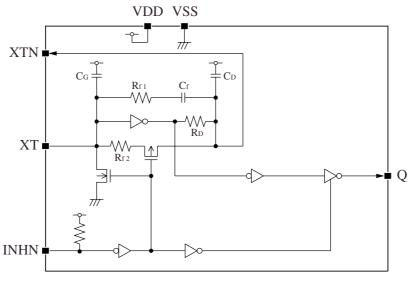
^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.


ORDERING INFORMATION

Device	Package
CF5019AL×-2	Chip form

PAD LAYOUT

(Unit: µm)


www.datasheet4u.com

PIN DESCRIPTION and PAD DIMENSIONS

Nome	Name I/O		Pad dimen	sions [µm]		
Name	1/0		Description	Х	Y	
INHN	I	Output state control input Power-saving pull-up res	t. High impedance when LOW (oscillator stops). istor built-in.	144.6	190.6	
XT	I	Amplifier input	Crystal connection pins.	347.8	171	
XTN	0	Amplifier output	Crystal is connected between XT and XTN.	560.6	171	
VSS	-	(–) ground		755.4	497.8	
Q	0	Output	Dutput Control of the			
VDD	-	(+) supply voltage		151.4	918.2	

BLOCK DIAGRAM

INHN = LOW active

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$ www.datasheet4u.com

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to +7.0	V
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	V
Operating temperature range	T _{opr}		-40 to +85	°C
Storage temperature range	T _{STG}		-65 to +150	°C
Output current	I _{OUT}		25	mA

Recommended Operating Conditions

CF5019ALA, CF5019ALB

3V Operation

$$V_{SS} = 0V$$

Parameter	Symbol	Con	Condition		Rating			
Parameter	Syllibol	Condition		min	typ	max	Unit	
Operating supply voltage	V _{DD}	f ≤ 125MHz	C _L ≤ 15pF	2.7	-	3.6	V	
			C _L ≤ 30pF	3.0	-	3.6	V	
				2.7 ^{*1}	-	3.6 ^{*1}	V	
Input voltage	V _{IN}			V _{SS}	-	V _{DD}	V	
Operating temperature	T _{OPR}			-40	-	+85	°C	

 $^{{}^{\}star}\mathbf{1}.$ The output duty cycle variability increases than other conditions.

2.5V Operation

$$V_{SS} = 0V$$

Parameter	Cumbal	Con	Condition		Rating			
raianietei	Symbol	Con			typ	max	Unit	
Operating supply voltage	V _{DD}	f≤106MHz	C _L ≤ 15pF	2.25	-	2.75	V	
		f ≤ 70MHz	C _L ≤ 30pF	2.25	-	2.75	V	
		f ≤ 125MHz	C _L ≤ 15pF	2.25 ^{*1}	-	2.75 ^{*1}	V	
Input voltage	V _{IN}			V _{SS}	-	V _{DD}	V	
Operating temperature	T _{OPR}			-40	-	+85	°C	

 $^{^{\}star} 1.$ The output duty cycle variability increases than other conditions.

CF5019ALC, CF5019ALD, CF5019ALE

3V Operation

 $\begin{aligned} V_{SS} &= 0V \\ \text{www.datasheet4u.com} \end{aligned}$

Parameter	Symbol	Cons	Condition		Rating			
Parameter	Syllibol	Condition		min	typ	max	Unit	
Operating cumply voltage	V _{DD}	f≤170MHz	C _L ≤ 15pF	2.7	-	3.6	V	
Operating supply voltage		f≤125MHz	C _L ≤ 30pF	2.7	-	3.6	V	
Input voltage	V _{IN}			V _{SS}	-	V _{DD}	V	
Operating temperature	T _{OPR}			-40	-	+85	°C	

2.5V Operation

$$V_{SS} = 0V$$

Parameter	Symbol	Cone	dition		Unit		
raiametei	Symbol	Condition		min	typ	max	Oilit
Operating supply voltage	V _{DD}	f≤155MHz	C _L ≤ 15pF	2.25	-	2.75	V
Input voltage	V _{IN}			V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}			-40	-	+85	°C

Electrical Characteristics

2.5V operation

 V_{DD} = 2.25 to 2.75V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted. www.datasheet4u.com

Parameter	Symbol		Condition			Rating		Unit
Parameter	Syllibol		Condition		min	typ	max	Onit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1,	V _{DD} = 2.25V, I _{OH} =	8mA	1.75	1.95	-	٧
LOW-level output voltage	V _{OL}	Q: Measurement cct 2,	V _{DD} = 2.25V, I _{OL} =	8mA	-	0.3	0.4	V
HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	_	-	٧
LOW-level input voltage	V _{IL}	INHN			_	_	0.3V _{DD}	>
Output leakage current	l _Z	Q: Measurement cct 2,	INHN – I OW	$V_{OH} = V_{DD}$	_	-	10	μΑ
Output leakage current	12	Q. Wedsdrenient cet 2,	, IIVI IIV – LOVV	$V_{OL} = V_{SS}$	_	-	10	μΑ
			CF5019ALA	C _L = 15pF f = 80MHz	-	15	40	mA
			CISCIBALA	C _L = 30pF f = 70MHz	-	20	50	mA
			CF5019ALB	C _L = 15pF f = 106MHz	_	20	50	mA
Current consumption	I _{DD}	Measurement cct 3, load cct 1, INHN = open	CF3019ALB	C _L = 30pF f = 70MHz	-	20	50	mA
		intint = opon	CF5019ALC	C _L = 15pF f = 135MHz	-	25	60	mA
			CF5019ALD	C _L = 15pF f = 155MHz	_	30	70	mA
			CF5019ALE	C _L = 15pF f = 125MHz	-	22	55	mA
Standby current	I _{ST}	Measurement cct 3, IN	easurement cct 3, INHN = LOW			-	3	μΑ
INHN pull-up resistance	R _{UP1}	Management act 4			2	6	12	MΩ
IIVITIN pull-up resistance	R _{UP2}	Measurement cct 4			50	100	150	kΩ
		Design value. A monitor pattern on a wafer is tested. CF5019ALA CF5019ALB CF5019ALC CF5019ALC		2.12	2.5	2.88	kΩ	
	R _{f1}			CF5019ALB	3.82	4.5	5.18	kΩ
AC feedback resistance				CF5019ALC	2.80	3.3	3.80	kΩ
				CF5019ALD	1.87	2.2	2.53	kΩ
				CF5019ALE	2.80	3.3	3.80	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5		•	50	100	150	kΩ
				CF5019ALA	170	200	230	Ω
.				CF5019ALB	48.4	57	65.6	Ω
Oscillator amplifier output resistance	R _D	Design value. A monitor pattern on a	wafer is tested	CF5019ALC	48.4	57	65.6	Ω
rodictarios		7 mormor pattorn on a	water to tooled.	CF5019ALD	48.4	57	65.6	Ω
				CF5019ALE	48.4	57	65.6	Ω
AC feedback capacitance	C _f	Design value. A monito	or pattern on a wafe	r is tested.	8.5	10	11.5	pF
				CF5019ALA	3.40	4	4.60	pF
				CF5019ALB	2.55	3	3.45	pF
	C _G	Design value. A monitor pattern on a	wafer is tested	CF5019ALC	0.85	1	1.15	pF
				CF5019ALD	0.85	1	1.15	pF
Duilt in annual area				CF5019ALE	1.70	2	2.30	pF
Built-in capacitance				CF5019ALA	5.95	7	8.05	pF
				CF5019ALB	2.55	3	3.45	pF
	C _D	Design value. CE5019ALC		CF5019ALC	2.55	3	3.45	pF
		A monitor pattern on a	A monitor pattern on a wafer is tested. CF5019ALD		4.25	5	5.75	pF
				CF5019ALE	5.95	7	8.05	pF

3V operation

 $V_{\rm DD}$ = 2.7 to 3.6V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

R_{UP1}

 R_{UP2}

 R_{f1}

 $R_{f2} \\$

 R_D

 C_{f}

 C_G

 C_D

Measurement cct 4

Design value.

Measurement cct 5

Design value.

Design value.

Design value.

A monitor pattern on a wafer is tested.

Design value. A monitor pattern on a wafer is tested.

INHN pull-up resistance

AC feedback resistance

DC feedback resistance

Oscillator amplifier output

AC feedback capacitance

Built-in capacitance

resistance

HIGH-level output voltage		Complete		O a m aliki a m			Rating		Unit
LOW-level output voltage VoL O: Measurement cct 2, VoD = 2.7V, IoL = 8mA - 0.3 0.4 V	tasheet4u.cParameter	Symbol		Condition		min	typ	max	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HIGH-level output voltage	V _{OH}	Q: Measurement cct 1,	, V _{DD} = 2.7V, I _{OH} =	8mA	2.2	2.4	-	٧
	LOW-level output voltage	V _{OL}	Q: Measurement cct 2,	, V _{DD} = 2.7V, I _{OL} =	8mA	_	0.3	0.4	V
	HIGH-level input voltage	V _{IH}	INHN			0.7V _{DD}	-	-	٧
Current consumption Comparison Compar	LOW-level input voltage	V _{IL}	INHN			-	_	0.3V _{DD}	V
Current consumption I_DD Measurement cct 3, load cct 1, lNHN = open CF5019ALD CF	Output lookage ouwent		O. Massurament ast 0	INILINI LOW	$V_{OH} = V_{DD}$	-	-	10	μΑ
$ \text{Current consumption} \\ \text{I}_{DD} \\ \text{I}_{DD} \\ \text{Measurement cct 3, load cct 1, lNHN = open} \\ \text{CF5019ALB} \\ \text{CF5019ALB} \\ \text{CF5019ALB} \\ \text{CF5019ALB} \\ \text{CF5019ALB} \\ \text{C}_{L} = 30pF \\ f = 125MHz \\ \text{C}_{L} = 30pF \\ f = 125MHz \\ \text{C}_{L} = 30pF \\ f = 135MHz \\ \text{C}_{L} = 30pF \\ f = 125MHz \\ \text{C}_{L} = 30pF \\ f $	Output leakage current	^I Z	Q: ivieasurement cct 2,	, IINTIN = LOW	V _{OL} = V _{SS}	-	_	10	μΑ
				CEE010ALA	C _L = 15pF f = 90MHz	-	20	50	mA
				CF5019ALA		-	25	60	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				OFFORM		-	25	60	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comment commention			CF5019ALB		-	40	100	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Current consumption	IDD		CEE010ALC		-	30	70	mA
CF5019ALE C _L = 15pF				CFOUISALC		-	40	100	mA
GF3019ALE				CF5019ALD	C _L = 15pF f = 170MHz	-	40	100	mA
Standby current I _{ST} Measurement cct 3, INHN = LOW 5 µA				CF5019ALE		-	30	70	mA
	Standby current	I _{ST}	Measurement cct 3, IN	IHN = LOW	•	_	_	5	μΑ

2

50

2.12

3.82

2.80

1.87

2.80

50

170

48.4

48.4

48.4

48.4

8.5

3.40

2.55

0.85

0.85

1.70

5.95

2.55

2.55

4.25

5.95

CF5019ALA

CF5019ALB

CF5019ALC

CF5019ALD

CF5019ALE

4

100

2.5

4.5

3.3

2.2

3.3

100

200

57

57

57

57

10

4

3

1

1

2

7

3

3

5

7

8

150

2.88

5.18

3.80

2.53

3.80

150

230

65.6

65.6

65.6

65.6

11.5

4.60

3.45

1.15

1.15

2.30

8.05

3.45

3.45

5.75

8.05

 $M\Omega$

 $k\Omega$

kΩ

 $k\Omega$

 $\mathsf{k}\Omega$

 $k\Omega$

 $k\Omega$

 $k\Omega$

Ω

Ω

Ω

Ω

Ω

pF pF

pF

рF

pF

рF

рF

pF

pF

pF

pF

Switching Characteristics

CF5019ALA, CF5019ALB

2.5V operation www.datasheet4u com

 $V_{\rm DD}$ = 2.25 to 2.75V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition			Unit		
raiametei	Syllibol	Condition		min	typ	max	UIIIL
Output rise time	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	3	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	C _L = 30pF	-	2	5.5	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	3	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}	C _L = 30pF	-	2	5.5	ns
	Duty1	Measurement cct 3, load cct 1, V _{DD} = 2.5V, Ta = 25°C	C _L = 15pF, f = 106MHz	45	-	55	%
Output duty cycle*1	Duty		C _L = 15pF, f = 125MHz	40	-	60	%
	Duty2	,	C _L = 30pF, f = 70MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD}	-	-	100	ns	
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

3V operation

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Unit			
raiailletei	Syllibol	Condition		min	typ	max	Offic
	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	2.5	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	V _{DD} = 3.0 to 3.6V C _L = 30pF	-	1.5	3	ns
	t _{f1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1	2.5	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}	V _{DD} = 3.0 to 3.6V C _L = 30pF	-	1.5	3	ns
Output duty cycle*1	Duty2	Measurement cct 3, load cct 1, V _{DD} : C _L = 30pF, f = 125MHz	Measurement cct 3, load cct 1, $V_{DD} = 3.0V$, $Ta = 25$ °C, $C_L = 30pF$, $f = 125MHz$				%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD}	-	-	100	ns	
Output enable delay time*2	t _{PZL}	C _L = 15pF		_	_	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

CF5019ALC, CF5019ALD, CF5019ALE

2.5V operation

 V_{DD} = 2.25 to 2.75V, V_{SS} = 0V, Ta = –40 to +85°C unless otherwise noted. www.datasheet4u.com

Parameter	Symbol	Condition	Rating			Unit
		Condition	min	typ	max	Ollit
Output rise time	t _{r1}	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD} , C _L = 15pF	-	1	3	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD} , C _L = 15pF	-	1	3	ns
Output duty cycle*1	Duty1	Measurement cct 3, load cct 1, V_{DD} = 2.5V, Ta = 25°C, C_L = 15pF, f = 155MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 2.5V, Ta = 25°C,	-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF	-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

3V operation

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition		Rating			Unit
	Symbol			min	typ	max	Uill
Output rise time	t _{r1}	Measurement cct 3, load cct 1, 0.1V _{DD} to 0.9V _{DD}	C _L = 15pF	-	1	2.5	ns
	t _{r2}		C _L = 30pF	-	1.5	4	ns
Output fall time	t _{f1}	Measurement cct 3, load cct 1, 0.9V _{DD} to 0.1V _{DD}	C _L = 15pF	-	1	2.5	ns
	t _{f2}		C _L = 30pF	-	1.5	4	ns
Output duty cycle*1	Duty1	Measurement cct 3, load cct 1, V _{DD} = 3.0V, Ta = 25°C	C _L = 15pF, f = 170MHz	45	-	55	%
	Duty2		C _L = 30pF, f = 125MHz	45	-	55	%
Output disable delay time*2	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 3.0V, Ta = 25°C,		-	-	100	ns
Output enable delay time*2	t _{PZL}	C _L = 15pF		-	-	100	ns

^{*1.} The duty cycle characteristic is checked the sample chips of each production lot.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

^{*2.} Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When INHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

FUNCTIONAL DESCRIPTION

Standby Function

When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes high impedance. www.datasheet4u.com

INHN	Q	Oscillator		
HIGH (or open)	f _O output frequency	Normal operation		
LOW	High impedance	Stopped		

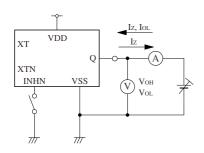
Power-saving Pull-up Resistor

The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

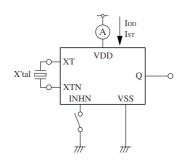
MEASUREMENT CIRCUITS

Measurement cct 1

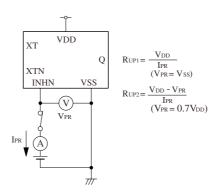
Www.datasheet4u.com Signal Generator R1 XT VDD XTN INHN VSS R2 Q output Von OV

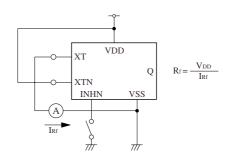

2Vp-p, 10MHz sine wave input signal

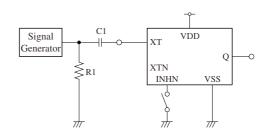
C1: 0.001µF


R1: 50Ω

R2: 219 Ω (2.5V operation)


275Ω (3.0V operation) Measurement cct 2


Measurement cct 3


Measurement cct 4

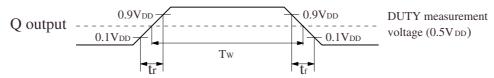
Measurement cct 5

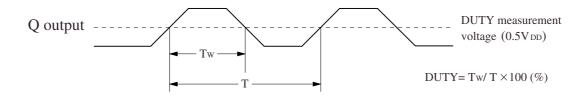
Measurement cct 6

2Vp-p, 10MHz sine wave input signal

C1: 0.001µF

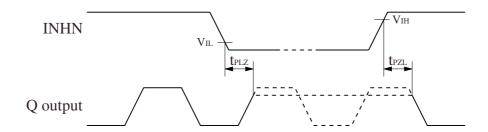
R1: 50Ω


Load cct 1


Switching Time Measurement Waveform

Output duty level, t_r, t_f

www.datasheet4u.com



Output duty cycle

Output Enable/Disable Delay

when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

INHN input waveform $tr = tf \le 10ns$

www.datasheet4u.com

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0601AE 2006.05