

www.datasheet4u.com

OVERVIEW

The CF5037 series are 2.5V operation, LVDS output oscillator ICs. They support 80MHz to 250MHz 3rd overtone oscillation and 80MHz to 700MHz fundamental oscillation. The CF5037 series can be used to construct high-frequency LVDS output oscillators.

FEATURES

- 2.375 to 3.6V operating supply voltage range
- Operating frequency range (varies with version)
 - 80MHz to 700MHz fundamental oscillation
 - 80MHz to 250MHz 3rd overtone oscillation
- -40 to 85°C operating temperature range
- LVDS output

- Standby function
 - Outputs are high impedance when OE is LOW. (oscillator stops)
- Power-saving pull-up resistor built-in (pin OE)
- BiCMOS process
- Chip form (CF5037××)

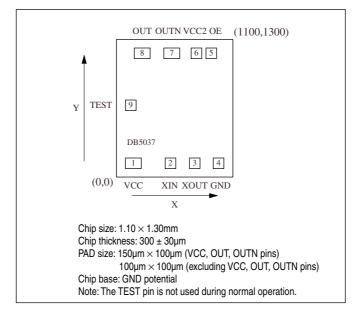
SERIES CONFIGURATION

Version	Oscillation mode	Recommended operating frequency range *1 [MHz]	Output frequency
CF5037A1		80 to 120	f _O
CF5037B1	Fundamental	100 to 180	f _O
CF5037B2*2	or	100 to 160	f _O /2
CF5037C1	3rd overtone	150 to 250	f _O
CF5037C2		150 to 250	f _O /2
CF5037D1		250 to 400	f _O
(CF5037D2)		250 10 400	f _O /2
(CF5037E1)	Fundamental	400 to 600	f _O
(CF5037E2)	Fundamental	400 10 600	f _O /2
(CF5037F1)		600 to 700	f _O
(CF5037F2)		600 to 700	f _O /2
(CF5037V1)	Oscillator constants determined		f _O
(CF5037V2)	by external components (R _f , C _{XIN} , C _{XOUT})	80 to 400	f _O /2

^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

Note. These versions in parentheses () are under development. Please ask our Sales & Marketing section for further detail.

ORDERING INFORMATION

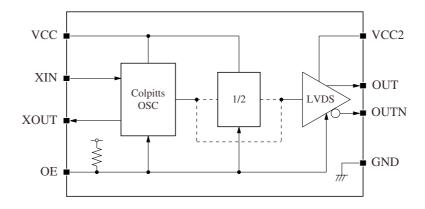

Device	Package
CF5037××-1	Chip form

^{*2.} Minimum output frequency: 80MHz

PAD LAYOUT

(Unit: µm)

www.datasheet4u.com

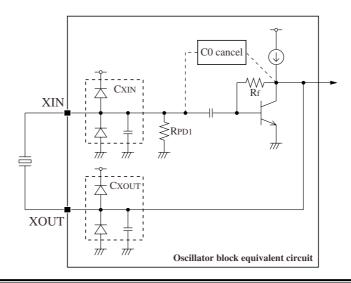


PIN DESCRIPTION and PAD DIMENSIONS

Dod No	Pad No. Name I	Name I/O Function	Eurotion	Pad dimensions [µm]		
Pau No.	Name	1/0	Function	Х	Υ	
1	VCC	-	(+) supply pin	160	130	
2	XIN	I	Oscillator input pin	511	130	
3	XOUT	0	Oscillator output pin	740	130	
4	GND	-	(–) ground pin	965	130	
5	OE	I	Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in.	896	1170	
6	VCC2	-	(+) output buffer supply pin	756	1170	
7	OUTN	0	Output pin (complementary)	523	1170	
8	OUT	0	Output pin (true)	244	1170	
9	TEST	I	IC test pin. Leave open circuit for normal operation.	136	678	

BLOCK DIAGRAM

www.datasheet4u.com


OSCILLATOR CIRCUIT CONSTANT

The CF5037 series oscillator setting varies with device version to optimize characteristics over the recommended operating frequency range.

Version	Oscillation mode	Built-in capa	citance*1 *2[pF]	Recommended operating		
version	Oscillation mode	C _{XIN}	C _{XOUT}	frequency range*2 *3 [MHz]		
CF5037A1	Fundamental	12	12	80 to 120		
CF5037B×	or	8	8	100 to 180		
CF5037C×	3rd overtone	6	6	150 to 250		
CF5037D×		5	5	250 to 400		
CF5037E×	Fundamental	(5)	(5)	(400 to 600)		
CF5037F×		(4)	(4)	(600 to 700)		

^{*1.} The oscillator internal capacitance values includes parasitic capacitance.

Oscillator Equivalent Circuit

The CF5037 series oscillator circuit has a C0 cancel circuit built-in to improve the oscillator margin. If power is applied when there is an open circuit between XIN and XOUT, self oscillation may occur, which is not abnormal. Users should confirm that the oscillator operates normally when a crystal unit is connected.

^{*2.} Values in parentheses () are provisional only.

^{*3.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

SPECIFICATIONS

Absolute Maximum Ratings

www.datash

neet4u.com Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{CC}		-0.5 to +5.0	V
Input voltage range	V _{IN}		GND – 0.5 to V _{CC} + 0.5	V
Output voltage range	V _{OUT}		GND – 0.5 to V _{CC} + 0.5	V
Storage temperature range	T _{STG}	Chip form	-65 to +150	°C

Recommended Operating Conditions

	Complete	Symbol Conditions		1114		
Parameter	Symbol		Min	Тур	Max	Unit
Operating supply voltage	V _{CC}		2.375	-	3.6	٧
Input voltage	V _{IN}		GND	-	V _{CC}	V
Operating temperature	T _{OPR}		-40	+25	+85	°C
Output load	R _L	Between OUT and OUTN	99	100	101	Ω
Output frequency	f _{OUT}		80	-	700	MHz

Electrical Characteristics

3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted. www.datasheet4u.com

Parameter	Cumbal	Conditions			Rating ^{*1}		Unit
Parameter	Symbol			Min	Тур	Max	Unit
Current concumption 1		Measurement cct. 1,	5037A1, B×, C×, D×	-	45	66	mA
Current consumption 1	I _{EE1}	OE = open	5037E×, F×	-	(53)	(73)	mA
Current consumption 2	I _{EE2}	Measurement cct. 1, OE =	LOW	-	-	30	μΑ
HIGH-level output voltage	V _{OH}	Measurement cct. 1, OE =	open, $R_1 = 100\Omega$,	-	1.43	1.6	V
LOW-level output voltage	V _{OL}	OUT, OUTN pins, f = 100MHz		0.9	1.1	-	V
Differential output voltage	V _{OD}	Measurement cct. 1, OE = open, R_L = 100 Ω , OUT-OUTN differential voltage, f = 100MHz		247	330	454	mV
Differential output error	ΔV_{OD}			-	-	50	mV
Offset voltage	V _{OS}	Measurement cct. 1, OE = open, $R_1 = 100\Omega$,		1.125	1.25	1.375	V
Offset error	ΔV _{OS}	OUT-OUTN mid-level pote	ntial, f = 100MHz	-	-	50	mV
Output leakage current	Iz	Measurement cct. 2, OE =	LOW, OUT, OUTN pins	-	-	10	μΑ
HIGH-level input voltage	V _{IH}	Measurement cct. 1, OE pir	า	0.7V _{CC}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, OE pin		-	-	0.3V _{CC}	V
LOW-level input current 1	I _{IL1}	Measurement cct. 1, V _{IL} = 0V, OE pin		-2	_	-20	μΑ
LOW-level input current 2	I _{IL2}	Measurement cct. 1, V _{IL} = 0.7V _{CC} , OE pin		-20	_	-200	μΑ
Pull-down resistance 1	R _{PD1}	Measurement cct. 2, XIN pi	n	12	24	48	kΩ

^{*1.} Values in parentheses () are provisional only.

2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal	Conditions		Rating*1			Unit
Parameter	Symbol			Min	Тур	Max	Unit
Current concumption 1		Measurement cct. 1,	5037A1, B×, C×, D×	-	43	63	mA
Current consumption 1	I _{EE1}	OE = open	5037E×, F×	-	(51)	(70)	mA
Current consumption 2	I _{EE2}	Measurement cct. 1, OE =	LOW	-	-	30	μA
HIGH-level output voltage	V _{OH}	Measurement cct. 1, OE =	open, $R_1 = 100\Omega$,	-	1.43	1.6	V
LOW-level output voltage	V _{OL}	OUT, OUTN pins, f = 100MHz		0.9	1.1	-	V
Differential output voltage	V _{OD}	Measurement cct. 1, OE = open, R_L = 100 Ω , OUT-OUTN differential voltage, f = 100MHz		247	330	454	mV
Differential output error	ΔV_{OD}			-	-	50	mV
Offset voltage	V _{OS}	Measurement cct. 1, OE = open, R_L = 100 Ω , OUT-OUTN mid-level potential, f = 100MHz		1.125	1.25	1.375	V
Offset error	ΔV_{OS}			-	-	50	mV
Output leakage current	IZ	Measurement cct. 2, OE =	LOW, OUT, OUTN pins	-	-	10	μΑ
HIGH-level input voltage	V _{IH}	Measurement cct. 1, OE pir	n	0.7V _{CC}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, OE pin		-	-	0.3V _{CC}	V
LOW-level input current 1	I _{IL1}	Measurement cct. 1, V _{IL} = 0V, OE pin		-2	_	-20	μΑ
LOW-level input current 2	I _{IL2}	Measurement cct. 1, V _{IL} = 0.7V _{CC} , OE pin		-10	_	-150	μΑ
Pull-down resistance 1	R _{PD1}	Measurement cct. 2, XIN pi	'n	12	24	48	kΩ

^{*1.} Values in parentheses () are provisional only.

Switching Characteristics

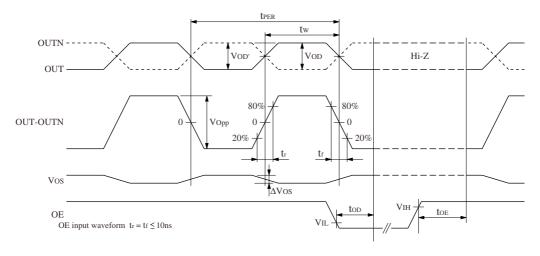
3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted. www.datasheet4u.com

Rating*1 Conditions Parameter Symbol Unit Min Тур Max % Measurement cct. 3, measured at f < 350MHz 45 55 Output duty cycle Duty 0V differential output (crossing $f \ge 350MHz$ 40 60 % point), Ta = 25° C, $V_{CC} = 3.3$ V 5037A1: f = 120MHz 0.35 ٧ $5037B \times : f = 180MHz$ 0.35 Measurement cct. 3, Ta = T_{OPR}, 5037C×: f = 250MHz ٧ 0.35 Output swing*2 V_{Opp} differential output waveform peak- $5037D \times : f = 400MHz$ 0.35 ٧ to-peak $5037E \times : f = 600MHz$ ٧ (0.35)٧ $5037F \times : f = 700MHz$ (0.35)Output rise time t_{r} Measurement cct. 3, 20 to 80% differential output swing ns Output fall time t_f Measurement cct. 3, 80 to 20% differential output swing 0.3 0.7 Output enable time*3 2 Measurement cct. 1, Ta = 25°C toE ms Output disable time Measurement cct. 1, Ta = 25°C 200 t_{OD} ns

^{*1.} Values in parentheses () are provisional only.

^{*2.} The said values are measured by using the NPC standard jig.


^{*3.} The built-in oscillator stop function does not operate with normal output immediately when OE goes HIGH. Instead, normal output occurs after the oscillator startup time has elapsed.

2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

www.datasheet4u parameter	Comple at	Conditions			Rating*1		11
Parameter	Symbol	Conditions	Conditions		Тур	Max	Unit
Out and distribution	Dut	Measurement cct. 3, measured at	f < 350MHz	45	-	55	%
Output duty cycle	Duty	OV differential output (crossing point), Ta = 25°C, V _{CC} = 2.5V	f ≥ 350MHz	40	-	60	%
			5037A1: f = 120MHz	0.25	-	-	٧
		Measurement cct. 3, Ta = T _{OPR} ,	5037B×: f = 180MHz	0.25	-	-	٧
Output swing ^{*2}	\ \ \		5037C×: f = 250MHz	0.25	-	-	٧
Output swing	V _{Opp}	differential output waveform peak- to-peak	5037D×: f = 400MHz	0.25	-	-	٧
			5037E×: f = 600MHz	(0.25)	-	-	٧
			5037F×: f = 700MHz	(0.25)	-	-	٧
Output rise time	t _r	Measurement cct. 3, 20 to 80% differential output swing		-	0.3	0.7	ns
Output fall time	t _f	Measurement cct. 3, 80 to 20% differential output swing		-	0.3	0.7	ns
Output enable time*3	t _{OE}	Measurement cct. 1, Ta = 25°C		-	-	2	ms
Output disable time	t _{OD}	Measurement cct. 1, Ta = 25°C		-	-	200	ns

^{*3.} The built-in oscillator stop function does not operate with normal output immediately when OE goes HIGH. Instead, normal output occurs after the oscillator startup time has elapsed.

$$\begin{split} \text{DUTY} = 100 \text{t}_{\text{W}} / \text{t}_{\text{PER}} \ (\%) \ @ \ \text{crossing point} \\ \Delta \text{V}_{\text{OD}} = |\text{V}_{\text{OD}} ' - \text{V}_{\text{OD}}| \end{split}$$

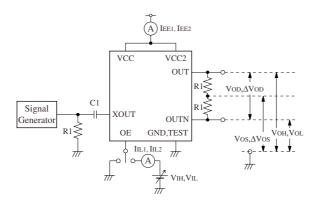
Timing chart

^{*1.} Values in parentheses () are provisional only.
*2. The said values are measured by using the NPC standard jig.

FUNCTIONAL DESCRIPTION

Standby Function

OE	OUT, OUTN	Oscillator
HIGH (or open)	Either f _O or f _O /2	Normal operation
LOW	High impedance	Stopped

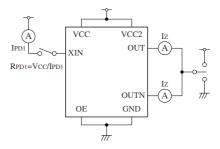

Power-saving Pull-up Resistor

The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby state), the pull-up resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

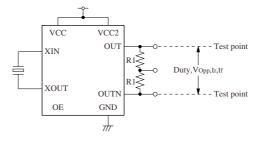
MEASUREMENT CIRCUITS

Measurement Circuit 1

www.datasheet4u.com


500mVp-p, sine wave

C1: 0.01µF


R1: 49.9Ω

Note. Connect $0.01\mu F$ and approximately $10\mu F$ bypass capacitors between supply (V_{CC}, V_{CC2}) and GND. Note that the $0.01\mu F$ capacitor should have circuit wiring as short as possible.

Measurement Circuit 2

Measurement Circuit 3

R1: 49.9Ω

Note 1. Connect 0.01µF and approximately 10µF bypass capacitors between supply (V_{CC}, V_{CC2}) and GND. Note that the 0.01µF capacitor should have circuit wiring as short as possible.

Note 2. The recommended differential probe used for measurement should have 5GHz analog bandwidth, $\geq 50 k\Omega$ impedance, and < 1pF capacitive load.

Note 3. If common-mode noise becomes a problem, a DC decoupling capacitor (approximately 1000pF) and terminating resistor matching the common-mode signal should be connected to the output center tap.

www.datasheet4u.com

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0309CE 2006.04