

CGHV14800F1

DC-1.4 GHz, 800 W GaN Transistor

Description

Wolfspeed's CGHV14800F1 is an 800W packaged, partially-matched transistor utilizing Wolfspeed's high performance, 0.4um GaN on SiC production process. The CGHV14800F1 operates up to 1.4 GHz and supports both defense and commercial-related avionics and radar applications. The CGHV14800F1 typically achieves 800 W of saturated output power with 14 dB of large signal gain and 65% drain efficiency via a 1.2-1.4 GHz reference design.

Packaged in a thermally-enhanced, flange package, the CGHV14800F1 provides superior performance under long pulse operation allowing customers to improve SWaP-C benchmarks in their next-generation systems.

Figure 1. CGHV14800F1

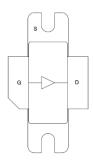


Figure 2. Functional Block Diagram

Features

Psat: 800 W
DE: 65 %
LSG: 14 dB
S21: 18 dB
S11: -12 dB
S22: -5 dB

• Long pulse operation

Note: Features are typical performance via a 1.2-1.4 GHz reference design under 25C, pulsed operation (CGHV14800F1-AMP). Please reference performance charts for additional information.

Applications

- Avionics TACAN, DME, IFF
- L-band Radar
- General purpose amplification

Absolute Maximum Ratings

Parameter	Symbol	Units	Value	Conditions
Drain Voltage	V_d	V	50	
Gate Voltage	V_{g}	V	-10 to +2	
Drain Current	I_d	Α	24	
Gate Current	I_g	mA	133	
Input Power	P_{in}	dBm	47	
Dissipated Power	P_{diss}	W	545	85°C, 2ms/20%
Storage Temperature	T_{stg}	°C	-65, +150	
Mounting Temperature	T_J	°C	260	30 seconds
Junction Temperature	T_J	°C	225	MTTF > 1E6
Output Mismatch Stress	VSWR	Ψ	5:1	
Pulse Width/Duty Cycle		us/%	2000/20	85C

Recommended Operating Conditions

Parameter	Symbol	Units	Typical Value	Conditions
Drain Voltage	Vd	V	50	Pulsed only
Gate Voltage	Vg	V	-2.95	
Drain Current	Idq	mA	800	
Input Power	Pin	dBm	45	
Case Temperature	Tcase	°C	-40 to 85	

RF Specifications (CGHV14800F1-AMP)

Test conditions unless otherwise noted: Vd=50V, Idq= 800mA, PW=2ms, DC=20%, T_{base}=25 °C

Parameter	Units	Min	Typical	Max	Conditions
Frequency	GHz	1.2		1.4	
Output Power	dBm		59		Pin = 45 dBm
Drain Efficiency	%		65		Pin = 45 dBm
LSG	dB		14		Pin = 45 dBm
Small-Signal Gain (S21)	dB		18		
Input Return Loss (S11)	dB		-12		
Output Return Loss (S22)	dB		-5		

Note: Final testing and screening for all transistor sales is performed using the CGHV14800F1-AMP at 1.2-1.4 GHz.

Figure 3: Pout v. Frequency v. Temperature

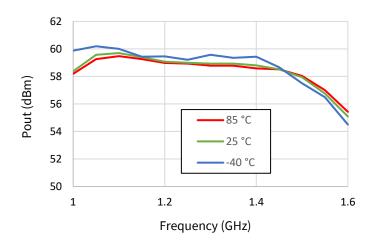


Figure 4: DE v. Frequency v. Temperature

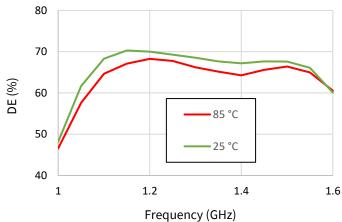


Figure 5: Id v. Frequency v. Temperature

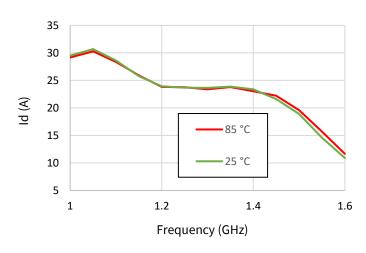


Figure 6: Ig v. Frequency v. Temperature

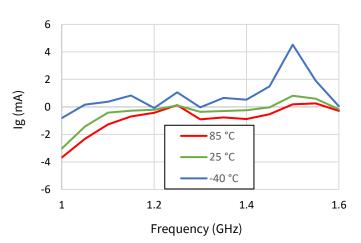


Figure 7: LSG v. Frequency v. Temperature

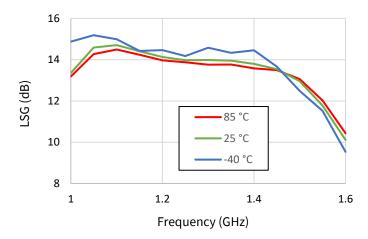


Figure 8: Pout v. Frequency v. Vd

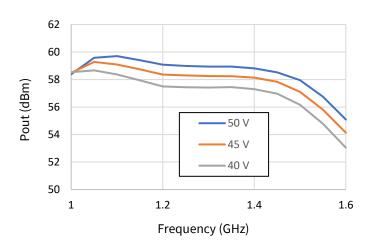


Figure 9: DE v. Frequency v. Vd

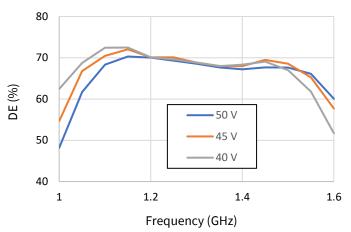


Figure 10: Id v. Frequency v. Vd

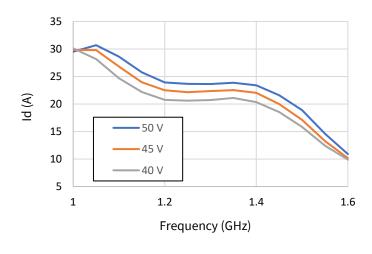


Figure 11: Ig v. Frequency v. Vd

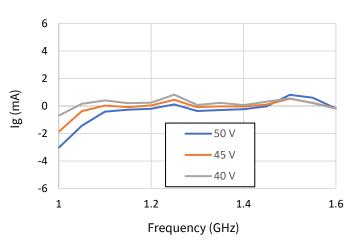


Figure 12: LSG v. Frequency v. Vd

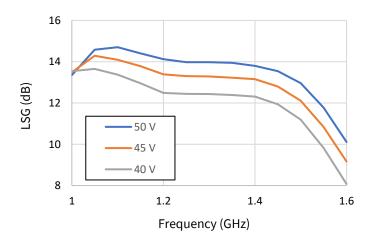


Figure 13: Pout v. Frequency v. Idq

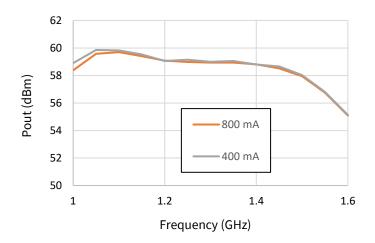


Figure 14: DE v. Frequency v. Idq

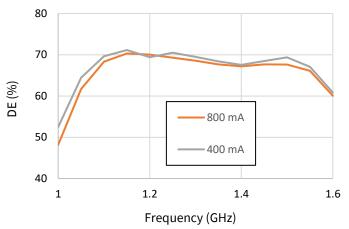


Figure 15: Id v. Frequency v. Idq

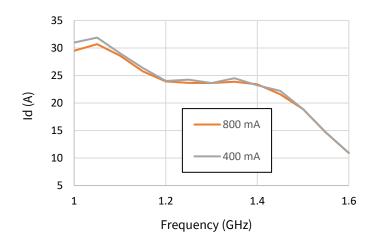


Figure 16: Ig v. Frequency v. Idq

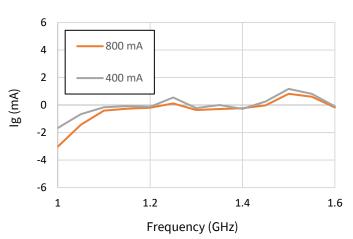


Figure 17: LSG v. Frequency v. Idq

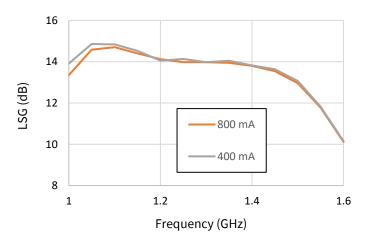


Figure 18: Pout v. Pin v. Frequency

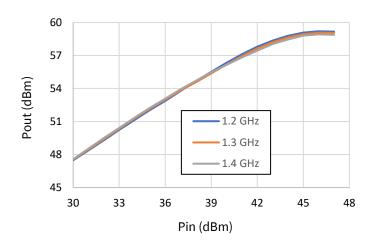


Figure 19: DE v. Pin v. Frequency

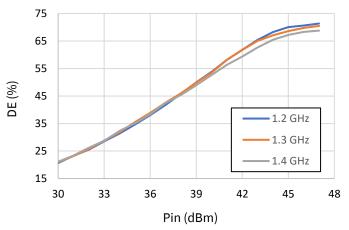


Figure 20: Id v. Pin v. Frequency

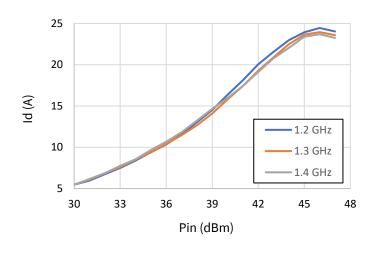


Figure 21: Ig v. Pin v. Frequency

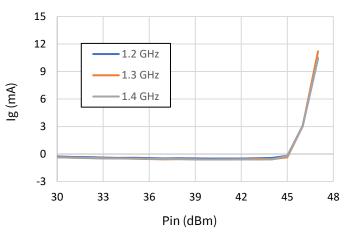


Figure 22: Gain v. Pin v. Frequency

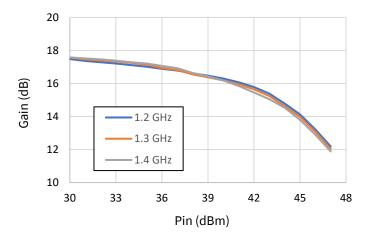


Figure 23: Pout v. Pin v. Temperature

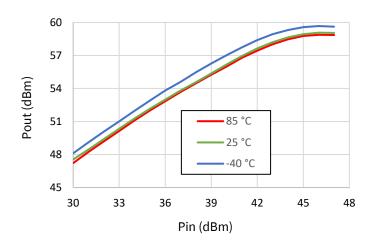


Figure 24: DE v. Pin v. Temperature



Figure 25: Id v. Pin v. Temperature

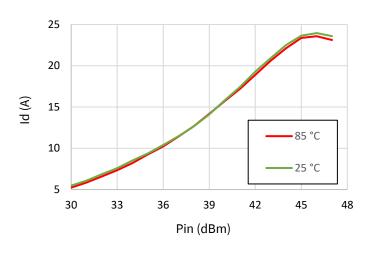


Figure 26: Ig v. Pin v. Temperature

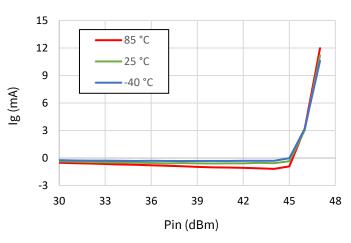


Figure 27: Gain v. Pin v. Temperature

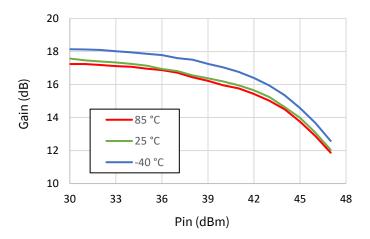


Figure 28: Pout v. Pin v. Vd

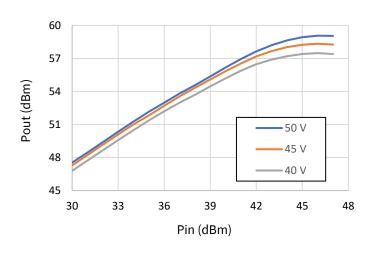


Figure 29: DE v. Pin v. Vd

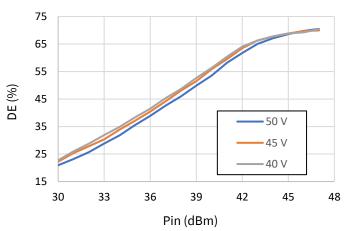


Figure 30: Id v. Pin v. Vd

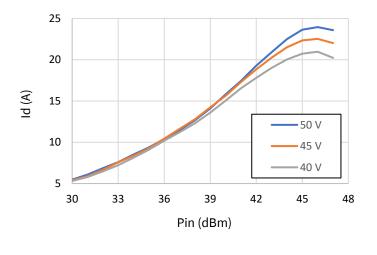


Figure 31: Ig v. Pin v. Vd

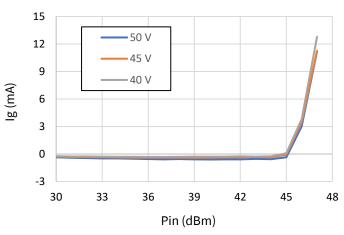


Figure 32: Gain v. Pin v. Vd

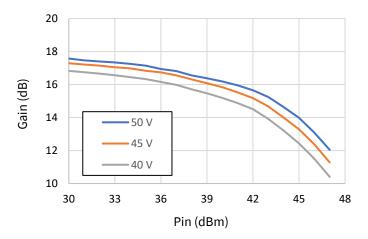


Figure 33: Pout v. Pin v. Idq

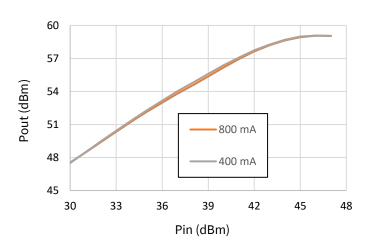


Figure 34: DE v. Pin v. Idq

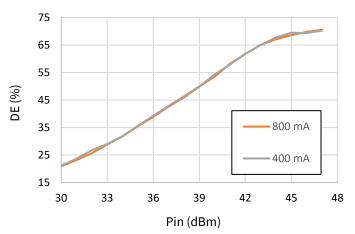


Figure 35: Id v. Pin v. Idq

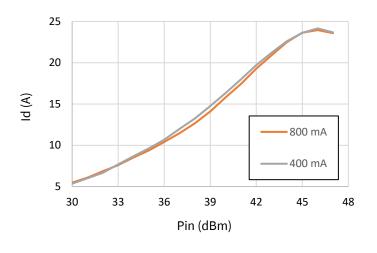


Figure 36: Ig v. Pin v. Idq

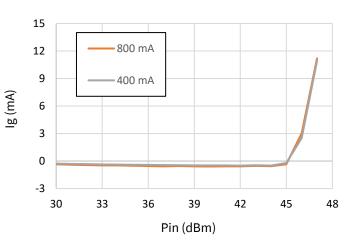
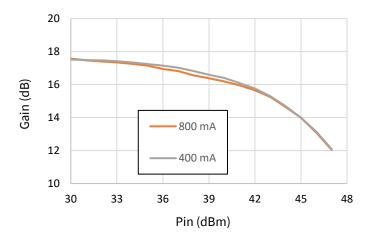



Figure 37: Gain v. Pin v. Idq

Test conditions unless otherwise noted: Vd=50V, Idq= 800mA, Pin = -20 dBm, T_{base}=25 °C

Figure 38: S21 v. Frequency v. Temperature

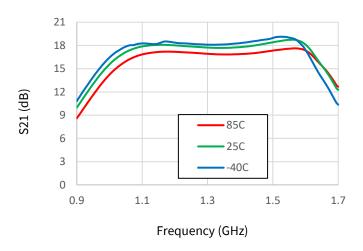


Figure 39: S21 v. Frequency v. Vd

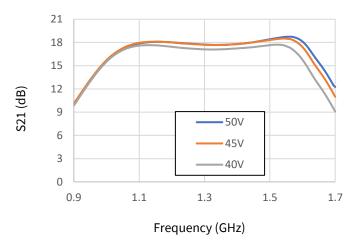


Figure 40: S11 v. Frequency v. Temperature

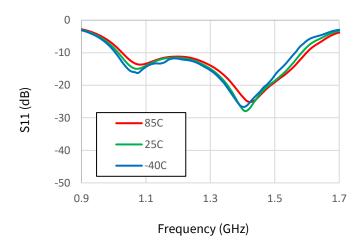


Figure 41: S11 v. Frequency v. Vd

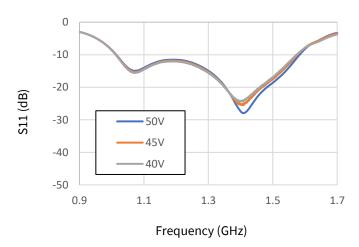


Figure 42: S22 v. Frequency v. Temperature

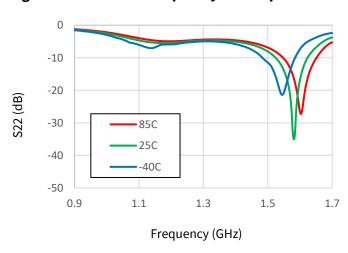
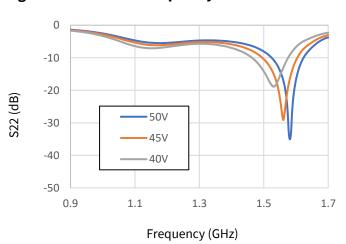



Figure 43: S22 v. Frequency v. Vd

Test conditions unless otherwise noted: Vd=50V, Idq= 800mA, Pin = -20 dBm, T_{base}=25 °C

Figure 44: \$21 v. Frequency v. Idq

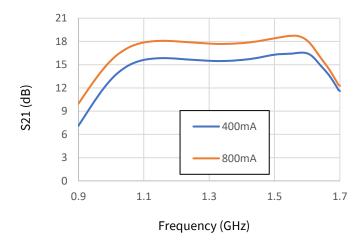


Figure 45: \$11 v. Frequency v. Idq

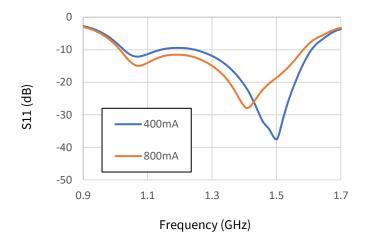
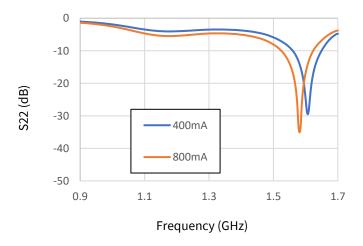



Figure 46: \$22 v. Frequency v. Idq

CGHV14800F1 – Linearity Page 12

Test conditions unless otherwise noted: Vd=50V, Idq= 800mA, PW= 2ms, DC=20%, Pin = 45dBm, Frequency 1= 1.2 GHz, Frequency 2 = 1.3 GHz, Frequency 3 = 1.4 GHz, T_{base} =25 °C

Figure 53: f/2 v. Pout v. Temperature, F1

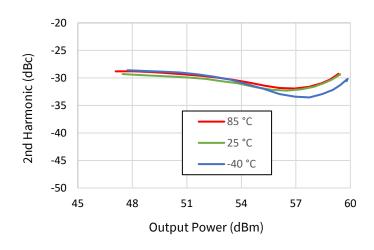


Figure 54: f/2 v. Pout v. Vd, F1

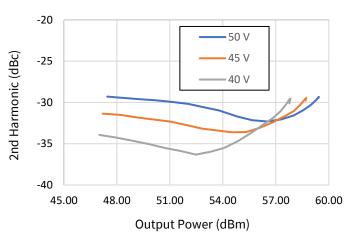


Figure 55: f/2 v. Pout v. Temperature, F2

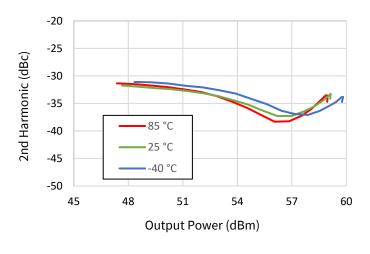


Figure 56: f/2 v. Pout v. Vd, F2

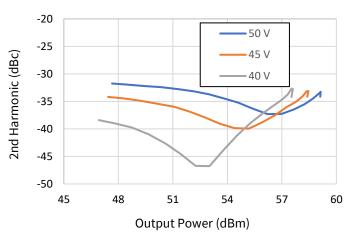
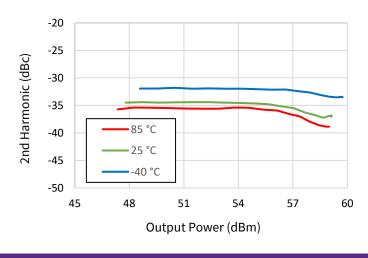
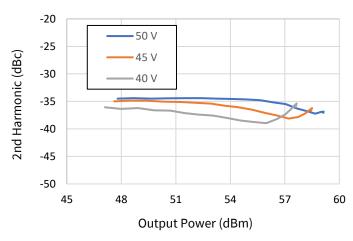
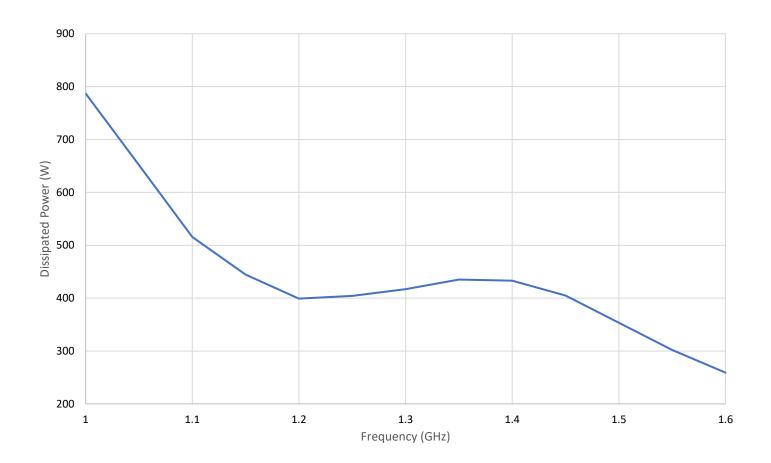
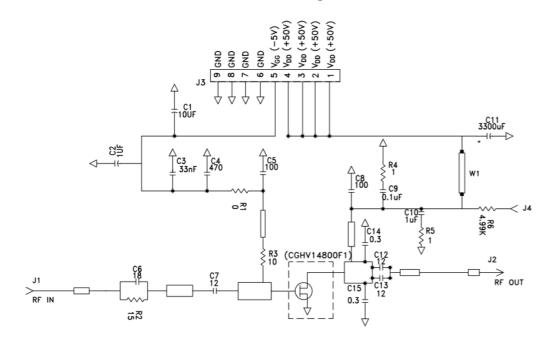


Figure 57: f/2 v. Pout v. Temperature, F3

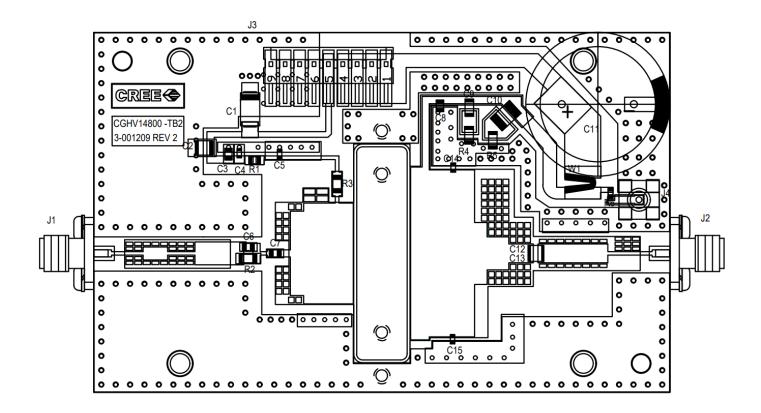




Figure 58: f/2 v. Pout v. Vd, F3


Thermal Characteristics

Parameter	Symbol	Value	Operating Conditions		
Operating Junction Temperature	T_J	198	Freq = 1.4 GHz, V_d = 50 V, I_{dq} = 800 mA, I_{drive} = 23.0 A,		
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.26	$-P_{in} = 45 \text{ dBm}, P_{out} = 58.6 \text{ dBm}, P_{diss} = 433 \text{ W}, T_{case} = 85^{\circ} \text{C}$ PW = 2ms, DC = 20%		

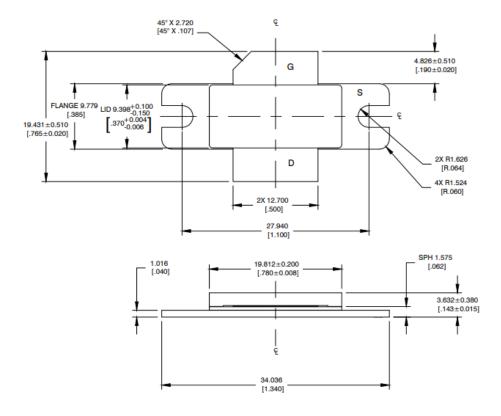
Power Dissipation v. Frequency (Tcase = 85°C)


CGHV14800F1-AMP Evaluation Board Schematic Drawing

CGHV14800F1-AMP Evaluation Board Bill of Materials

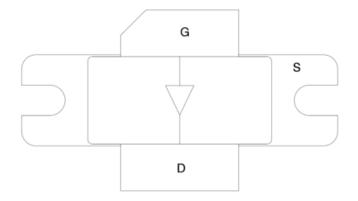
Reference Designator	Description	Qty			
R1	RES, 1/8W, 1206, 5%, 0 OHMS	1			
R2	RES, 1/8W, 1206, 5%, 15 OHMS	1			
R3	RES, 1/8W, 1206, 5%, 10 OHMS	1			
R4,R5	RES, 1/8W, 1206, 5%, 1 OHMS				
R6	RES,1/16W,0603,1%,4.99K OHMS	1			
C1	CAP 10UF 16V TANTALUM	1			
C2, C10	CAP, 1.0UF, 100V, 10%, X7R, 1210	2			
C3	CAP,33000PF, 0805,100V, X7R	1			
C4	CAP, 470pF, 0805, 100V, C0G	1			
C5, C8	CAP, 100PF, +/-5%, 250V, 0805, ATC 600F	2			
C6	CAP, 18pF, +/-5%, 250V, 0603, ATC 600S				
C7	CAP, 12 PF, +/- 5%, 250V, 0805, ATC 600F				
C9	CAP, 0.1uF, +/- 10%, 100V, 1206, 1206				
C11	CAP, 3300 UF, +/-20%, 100V, ELECTROLYTIC				
C12, C13	CAP, 12PF, +/- 2%,500V, ATC800B				
C14, C15	CAP, 0.3PF, +/- 0.05pF, 0603, ATC				
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2			
J3	HEADER RT>PLZ .1CEN LK 9POS	1			
J4	CONNECTOR; SMB, Straight, JACK, SMD	1			
W1	CABLE ,18 AWG, 4.2"	1			
	PCB, Rogers 3010, 0.025" THK, CGHV14800 1.2-1.4GHZ	1			
	BASEPLATE, COPPER, 4.00 X 2.50 X 0.49, ALTERNATE HOLE PATTERN	1			
	2-56 SOC HD SCREW 1/4 SS	4			
	#2 SPLIT LOCKWASHER SS	4			
	Indium Foil in channel (0.0002" thick)				

CGHV14800F1-AMP Evaluation Board Assembly Drawing


Bias On Sequence

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (Vg)
- 3. Apply nominal drain voltage (Vd)
- 4. Adjust Vg to obtain desired quiescent drain current (Idq)
- 5. Apply RF

Bias Off Sequence


- 1. Turn RF off
- 2. Apply pinch-off to the gate (Vg=-5V)
- 3. Turn off drain voltage (Vd)
- 4. Turn off gate voltage (Vg)

Product Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. PINS: D=DRAIN S=SOURCE (FLANGE) G=GATE
- 3. LEAD THICKNESS: 0.10 +0.051 [.004 +.002]
- 4. PLATING (GOLD TOP LAYER): 1.14 \pm 0.38 MICRON [45 \pm 15 MICROINCH].
- THE CONTENTS OF THIS DRAWING ARE INTENDED TO REPRESENT THE PRODUCT IN MARKETING GRAPHICS ONLY, AND NOT INTENDED TO BE USED FOR ANY PRODUCTION OR INTERNAL QUALIFICATION PURPOSE.

- Pin Description
- D Drain Device
- G Gate Device
- S Source (Flange)

CGHV14800F1 – Quality Page 17

Electrostatic Discharge (ESD) Classification

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	HBM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Product Ordering Information

Part Number	Description	MOQ Increment	Image
CGHV14800F1	DC – 1.4 GHz, 800W GaN Transistor	1 Each	OBJECTION OF THE PARTY OF THE P
CGHV14800F1-AMP	1.2-1.4 GHz Evaluation Board	1 Each	

For more information, please contact:

Mailing Address

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact

RFSales@wolfspeed.com

RF Product Marketing Contact

RFMarketing@wolfspeed.com

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2017-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.