

CGHV1F006S 6 W, DC - 15 GHz, 40V, GaN HEMT

Cree's CGHV1F006S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities. The device can be deployed for L, S, C, X and Ku-Band amplifier applications. The datasheet specifications are based on a C-Band (5.5 - 6.5 GHz) amplifier. Additional application circuits are available for C-Band at 5.8 GHz - 7.2 GHz and X-Band at 7.9 - 8.4 GHz and 8.5 - 9.6 GHz. The CGHV1F006S operates on a 40 volt rail circuit while housed in a 3mm x 4mm, surface mount, dual-flat-no-lead (DFN) package. Under reduced power, the transistor can operate below 40V to as low as 20V V_{pp} maintaining high gain and efficiency.

Package Type: 3x4 DFN PN: CGHV1F006S

Typical Performance 5.5-6.5 GHz (T_c = 25°C), 40 V

Parameter	5.5 GHz	6.0 GHz	6.5 GHz	Units
Small Signal Gain	15.4	16.5	17.8	dB
Output Power @ P _{IN} = 28 dBm	38.6	39.3	39.0	dBm
Drain Efficiency @ P _{IN} = 28 dBm	55	57	52	%

Note:

Measured in the CGHV1F006S-AMP application circuit. Pulsed 100 μs 10% duty.

Features for 40 V in CGHV1F006S-AMP

- Up to 15 GHz Operation
- 8 W Typical Output Power
- 17 dB Gain at 6.0 GHz
- 15 dB Gain at 9.0 GHz
- Application circuits for 5.8 7.2 GHz, 7.9 8.4 GHz, and 8.5 9.6 GHz.
- High degree of APD and DPD correction can be applied

Large Signal Models Available for ADS and MWO

Listing of Available Hardware Application Circuits / Demonstration Circuits

Application Circuit	Operating Frequency	Amplifier Class	Operating Voltage
CGHV1F006S-AMP1	5.85 - 7.2 GHz	Class A/B	40 V
CGHV1F006S-AMP2	7.9 - 8.4 GHz	Class A/B	40 V
CGHV1F006S-AMP3	8.5 - 9.6 GHz	Class A/B	40 V
CGHV1F006S-AMP4	4.9 - 5.9 GHz	Class A/B	20 V

Subject to change without notice. www.cree.com/rf

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Notes
Drain-Source Voltage	V _{DSS}	100	Volts	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25°C
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	Tj	225	°C	
Maximum Forward Gate Current	I _{gmax}	1.2	mA	25°C
Maximum Drain Current ¹	I _{dmax}	0.95	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Case Operating Temperature ^{3,4}	Τ _c	-40, +150	°C	
Thermal Resistance, Junction to Case⁵	$R_{_{ ext{ heta}JC}}$	14.5	°C/W	85°C

Note:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at <u>www.cree.com/rf/document-library</u>

³ Simulated at $P_{DISS} = 2.4 \text{ W}$

 ${}^{4}T_{c}$ = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance.

⁵The R_{TH} for Cree's application circuit, CGHV1F006S-AMP, with 31 (Ø11 mil) via holes designed on a 20 mil thick Rogers 5880 PCB, is 3.9°C/W. The total R_{TH} from the heat sink to the junction is 14.5°C/W + 3.9°C/W = 18.4°C/W.

Electrical Characteristics ($T_c = 25^{\circ}C$) - 40 V Typical

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{_{GS(th)}}$	-3.6	-3.0	-2.4	V _{DC}	$V_{_{DS}}$ = 10 V, I $_{_{D}}$ = 1.2 mA
Gate Quiescent Voltage	$V_{_{GS(Q)}}$	-	-2.7	-	V _{DC}	$V_{_{DS}}$ = 40 V, I $_{_{D}}$ = 60 mA
Saturated Drain Current ²	I _{DS}	-	-1.0	-	А	$V_{_{ m DS}}$ = 6.0 V, $V_{_{ m GS}}$ = 2.0 V
Drain-Source Breakdown Voltage	V _{(BR)DSS}	100	-	-	V _{DC}	$V_{_{GS}}$ = -8 V, I $_{_{D}}$ = 1.2 mA
RF Characteristics ³ ($T_c = 25^{\circ}C$, $F_0 = 5.925$ GHz	unless otherv	vise noted)				
Small Signal Gain ^{3,4}	G	15.15	16.8	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{IN}}$ = 10 dBm
Output Power ^{3,4}	P _{out}	37.5	38.7	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{IN}}$ = 26 dBm
Drain Efficiency ^{3,4}	η	35	45	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{IN}}$ = 26 dBm
Output Mismatch Stress ⁴	VSWR	-	10:1	-	Ψ	No damage at all phase angles, $V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 26 dBm
Dynamic Characteristics						
Input Capacitance ⁵	C _{gs}	-	1.3	_	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Output Capacitance ⁵	C _{DS}	-	0.31	-	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Feedback Capacitance	C _{gd}	-	0.04	-	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz

Notes:

2

¹ Measured on wafer prior to packaging

² Scaled from PCM data

³ Measured in Cree's production test fixture. This fixture is designed for high volume testing at 5.925 GHz

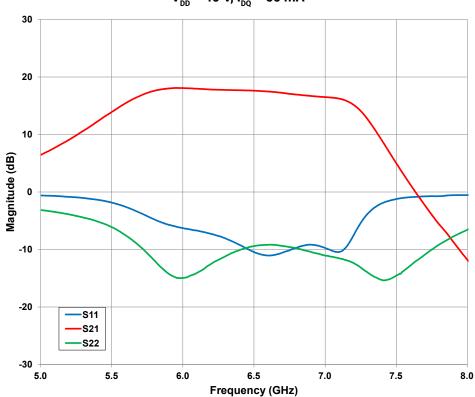
⁴ Unmodulated Pulsed Signal 100 µs, 10% duty cycle

⁵ Includes package

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Electrical Characteristics When Tested in CGHV1F006S-AMP1 at C-Band Under OQPSK

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ¹ ($T_c = 25^{\circ}C$, $F_0 = 5.8 - 7.2$ GHz unless otherwise noted)						
Gain	G	-	17.5	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 0 dBm
Output Power ²	P _{OUT}	-	39	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 27 dBm
Drain Efficiency ²	η	-	55	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 27 dBm
OQPSK ³	ACLR	-	-36	-	dBc	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{OUT}}$ = 33 dBm
Output Mismatch Stress ²	VSWR	-	10:1	-	Ψ	No damage at all phase angles, $V_{DS} = 40 \text{ V}, I_{DQ} = 60 \text{ mA}$


Notes:

¹ Measured in CGHV1F006S-AMP1 Application Circuit

 2 Pulsed 100 $\mu s,$ 10% duty cycle

³ OQPSK modulated signal, 1.6 msps, PN23, Alpha Filter = 0.2 Offset = 1.6 MHz

Typical Performance - CGHV1F006S-AMP1 at C-Band Under OQPSK

Figure 1. - Typical Small Signal Response of CGHV1F006S-AMP1 Application Circuit $V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 60 mA

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

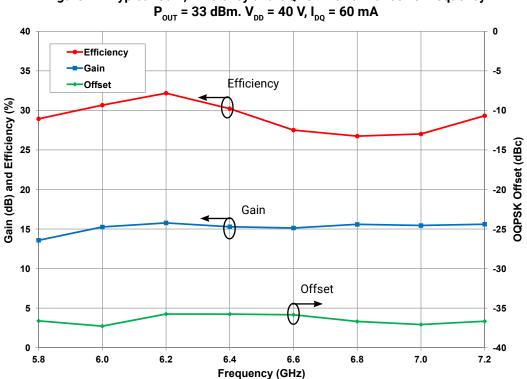
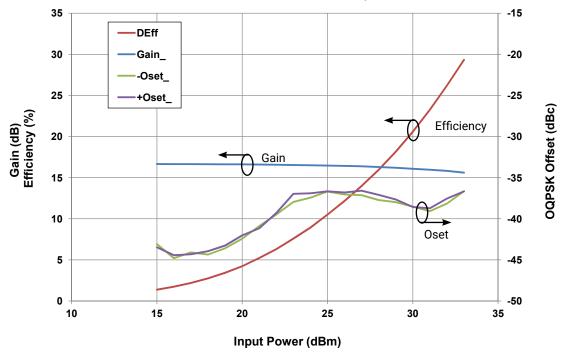
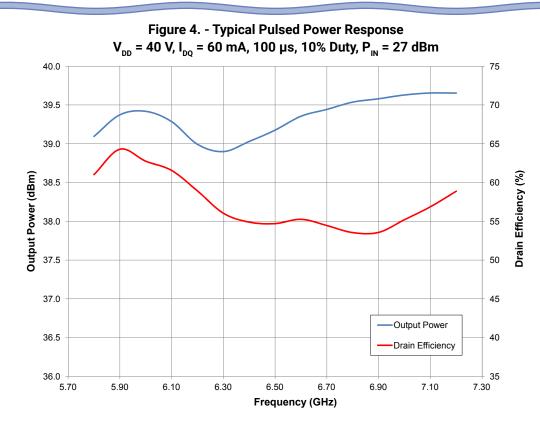
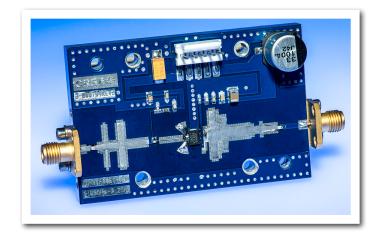



Figure 2. - Typical Gain, Efficiency and OQPSK Performance vs Frequency



Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

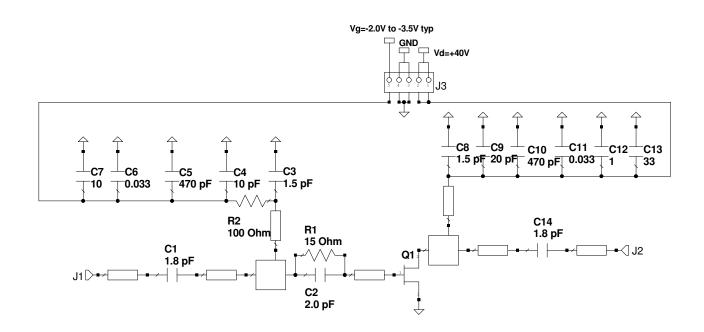
Cree, Inc 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf



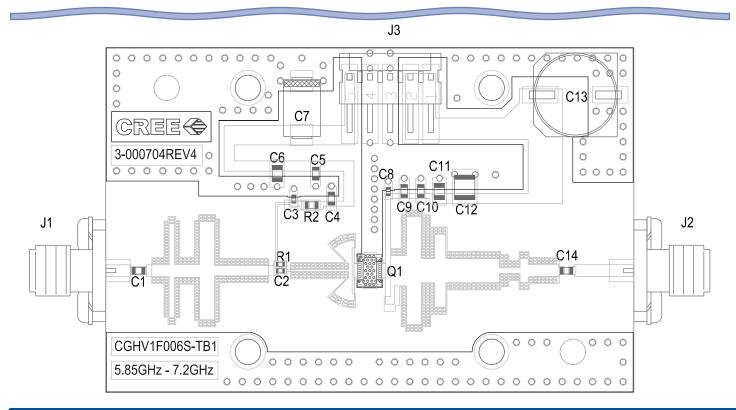
CGHV1F006S-AMP1 Application Circuit Bill of Materials, OQPSK

Designator	Description	Qty
R1	RES, 15, OHM, +1/-1%, 1/16 W, 0402	1
R2	RES, 100, OHM, +1/-1%, 1/16 W, 0603	1
C1, C14	CAP, 1.8 pF, ±0.1 pF, 0603, ATC	2
C2	CAP, 2.0 pF, ±0.1 pF, 0402, ATC	1
C3, C8	CAP, 1.5 pF, ±0.1 pF, 0402, ATC	2
C4	CAP, 10 pF, ±5%, 0603, ATC	1
C5, C10	CAP, 470 pF, 5%, 100 V, 0603, X	2
C6, C11	CAP, 33000 pF, 0805, 100V, X7R	2
C7	CAP, 10 UF, 16 V, TANTALUM	1
C9	CAP, 20 pF, ±5%, 0603, ATC	1
C12	CAP, 1.0 UF, 100V, 10% X7R, 1210	1
C13	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
	PCB, RT5880, 0.020" THK, CGHV1F006S	1
J3	HEADER RT>PLZ .1CEN LK 5POS	1
Q1	QFN TRANSISTOR CGHV1F006S	1

CGHV1F006S-AMP1 Application Circuit



Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV1F006S-AMP1 Application Circuit Schematic, OQPSK

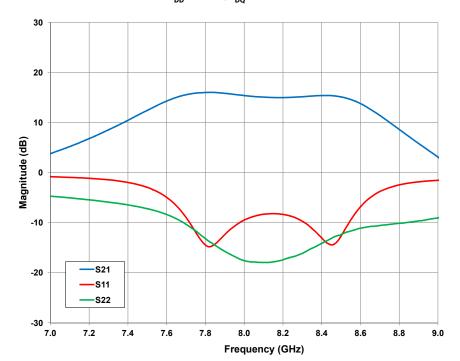
CGHV1F006S-AMP1 Application Circuit Outline, OQPSK

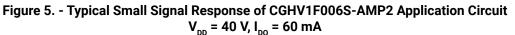
Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Electrical Characteristics When Tested in CGHV1F006S-AMP2 at X-Band, SATCOM

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
RF Characteristics ¹ (T _c = 25°C, F_0 = 7.9 - 8.4 GHz unless otherwise noted)							
Gain	G	-	15	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 0 dBm	
Output Power ²	P _{out}	-	39	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{IN}}$ = 28 dBm	
Drain Efficiency ²	η	-	55	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{IN}}$ = 28 dBm	
OQPSK ³	ACLR	-	-37	-	dBc	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{OUT}}$ = 33 dBm	
Output Mismatch Stress ²	VSWR	-	10:1	-	Y	No damage at all phase angles, $V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, P $_{_{\rm IN}}$ = 28 dBm	

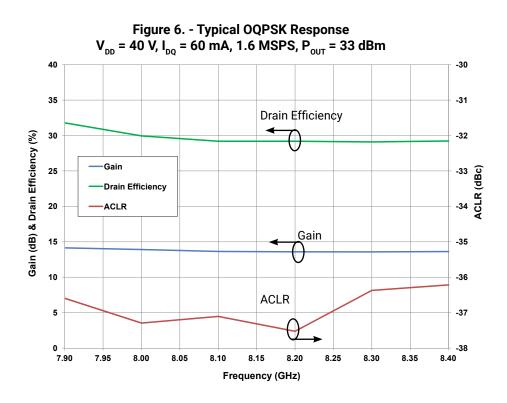

Notes:

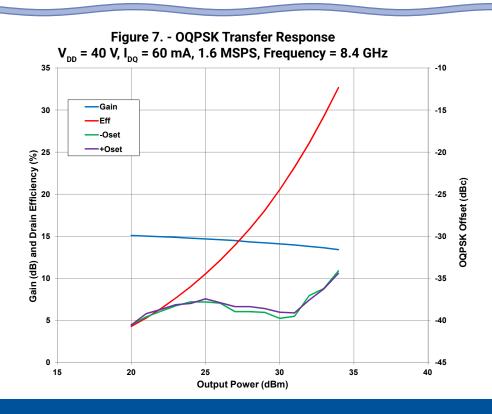

¹ Measured in CGHV1F006S-AMP2 Application Circuit

 2 Pulsed 100 μs , 10% duty cycle

³ OQPSK modulated signal, 1.6 msps, PN23, Alpha Filter = 0.2 Offset = 1.6 MHz

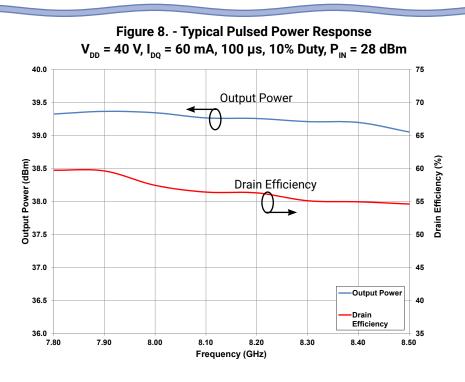
Typical Performance in Application Circuit CGHV1F006S-AMP2 at X-Band, SATCOM




Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

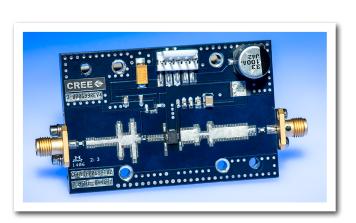
Typical Performance in Application Circuit CGHV1F006S-AMP2



Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

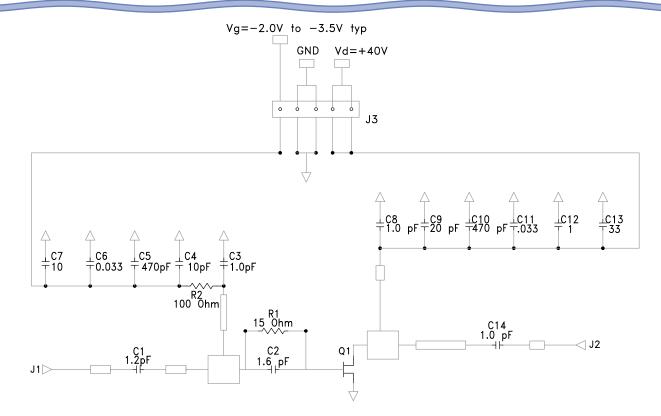
CGHV1F006S Rev 4.0



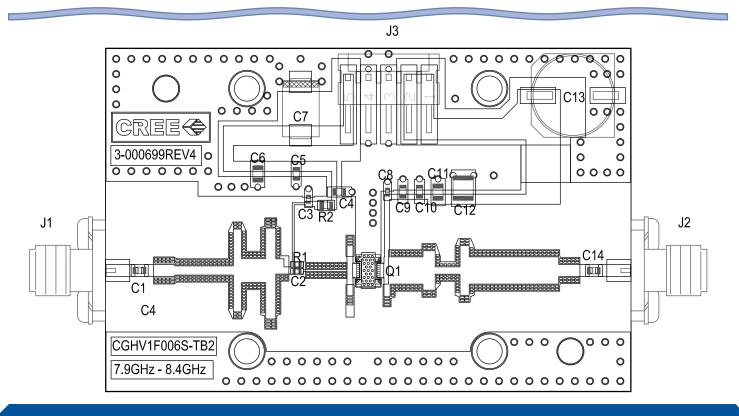
CGHV1F006S-AMP2 Application Circuit Bill of Materials, SATCOM

Designator	Description	Qty
R1	RES, 15, OHM, +1/-1%, 1/16 W, 0402	1
R2	RES, 100, OHM, +1/-1%, 1/16 W, 0603	1
C3, C8	CAP, 1.0pF, ±0.05 pF, 0402, ATC	2
C14	CAP, 1.0pF, ±5%, 0603, ATC	1
C1	CAP, 1.2pF, ±5%, 0603, ATC	1
C2	CAP, 1.6pF, ±5%, 0402, ATC	1
C4	CAP, 10pF, ±5%, 0603, ATC	1
C5, C10	CAP, 470pF, 5%, 100V, 0603, X	2
C6,C11	CAP, 33000pF, 0805, 100V, X7R	2
C7	CAP, 10 UF, 16 V, TANTALUM	1
C9	CAP, 20 pF, ±5%, 0603, ATC	1
C12	CAP, 1.0 UF, 100V, 10% X7R, 1210	1
C13	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
	PCB, RT5880, 0.020" THK, CGHV1F006S	1
	BASEPLATE, AL, 2.60 X 1.70 X 2.50	1
J3	HEADER RT>PLZ .1CEN LK 5POS	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	QFN TRANSISTOR CGHV1F006S	1

CGHV1F006S-AMP2 Application Circuit



Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV1F006S-AMP2 Application Circuit Schematic, SATCOM

CGHV1F006S-AMP2 Application Circuit Outline, SATCOM

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Electrical Characteristics When Tested in CGHV1F006S-AMP3 at X-Band, RADAR

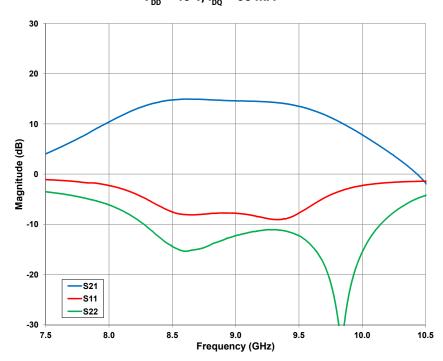
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ¹ (T _c = 25°C, F ₀ = 8.5 - 9.6 GHz unless otherwise noted)						
Gain	G	-	14.5	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 0 dBm
Output Power ²	P _{out}	-	38.5	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 28 dBm
Drain Efficiency ²	η	-	52	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 28 dBm
Output Mismatch Stress ²	VSWR	-	10 : 1	-	Y	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 60 mA, $P_{_{IN}}$ = 28 dBm

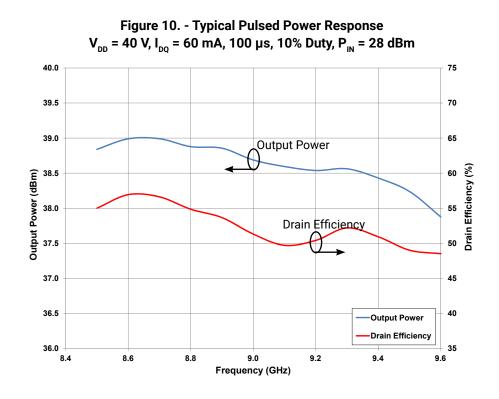
Notes:

¹ Measured in CGHV1F006S-AMP3 Application Circuit

² Pulsed 100 µs, 10% duty cycle

Typical Performance in Application Circuit CGHV1F006S-AMP3 at X-Band, RADAR

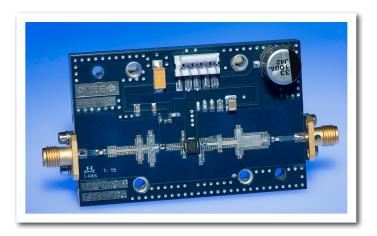



Figure 9. - Typical Small Signal Response V_{DD} = 40 V, I_{DQ} = 60 mA

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 ______ www.cree.com/rf

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

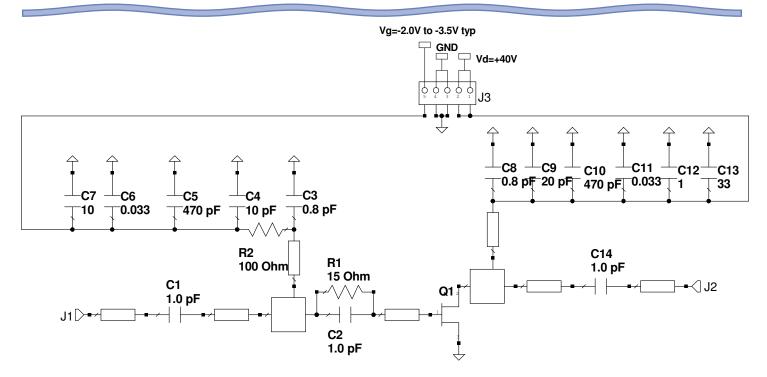
11 CGHV1F006S Rev 4.0



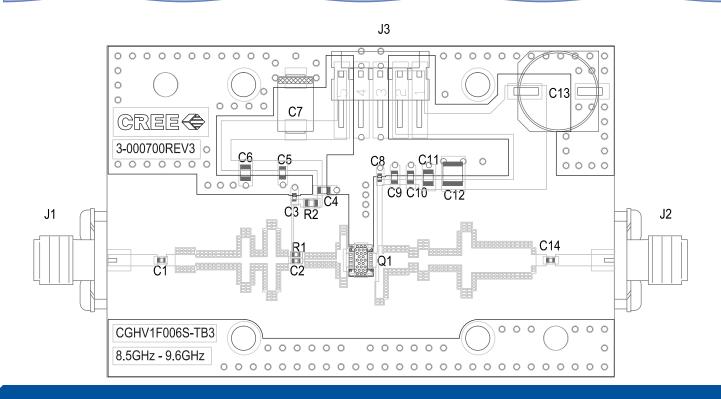
CGHV1F006S-AMP3 Application Circuit Bill of Materials, RADAR

Designator	Description	Qty
R1	RES, 15, OHM, +1/-1%, 1/16 W, 0402	1
R2	RES, 100, OHM, +1/-1%, 1/16 W, 0603	1
C1, C14	CAP, 1.0 pF, ±0.05 pF, 0603, ATC	2
C2	CAP, 1.0 pF, ±0.05 pF, 0402, ATC	1
C3, C8	CAP, 0.8 pF, ±0.05 pF, 0402, ATC	2
C4	CAP, 10 pF, ±5%, 0603, ATC	1
C5, C10	CAP, 470 pF, 5%, 100 V, 0603, X	2
C6, C11	CAP, 33000 pF, 0805, 100V, X7R	2
C7	CAP, 10 UF, 16 V, TANTALUM	1
C9	CAP, 20 pF, ±5%, 0603, ATC	1
C12	CAP, 1.0 UF, 100V, 10% X7R, 1210	1
C13	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
Q1	QFN TRANSISTOR CGHV1F006S	1

CGHV1F006S-AMP3 Application Circuit


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.8669.2733 www.cree.com/rf

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


12 CGHV1F006S Rev 4.0

CGHV1F006S-AMP3 Application Circuit Schematic, RADAR

CGHV1F006S-AMP3 Application Circuit Outline, RADAR

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Electrical Characteristics When Tested in CGHV1F006S-AMP4 at 802.11

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ¹ ($T_c = 25^{\circ}C$, $F_0 = 4.9 - 5.9$ GHz unless otherwise noted)						
Gain	G	-	13	-	dB	$V_{_{DD}}$ = 20 V, I $_{_{DQ}}$ = 30 mA, P $_{_{IN}}$ = 27 dBm
Drain Efficiency ²	η	-	27	-	%	$V_{_{DD}}$ = 20 V, $I_{_{DQ}}$ = 30 mA, $P_{_{IN}}$ = 27 dBm
OQPSK ³	ACLR	-	-43	-	dBc	$V_{_{DD}}$ = 20 V, I $_{_{DQ}}$ = 30 mA, $P_{_{OUT}}$ = 27 dBm
Output Mismatch Stress ²	VSWR	-	10 : 1	-	Y	No damage at all phase angles, V _{DD} = 20 V, I _{DD} = 30 mA, P _{IN} = 27 dBm

Notes:

¹ Measured in CGHV1F006S-AMP4 Application Circuit

² Single carrier WCDMA, 3GPP Test Model 1, G4 DPCH, 45% clipping, PAR = 7.5 dB @ 0.01% probability on CCDF

Typical Performance - CGHV1F006S-AMP4 at 802.11

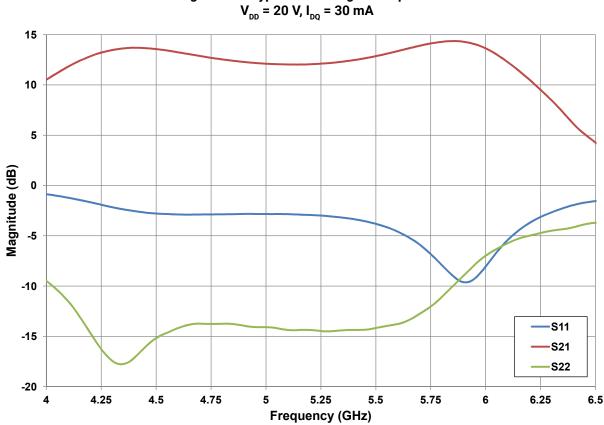
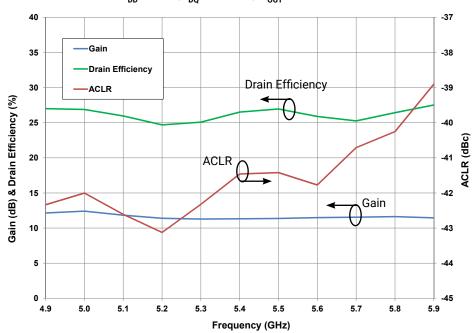
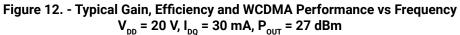




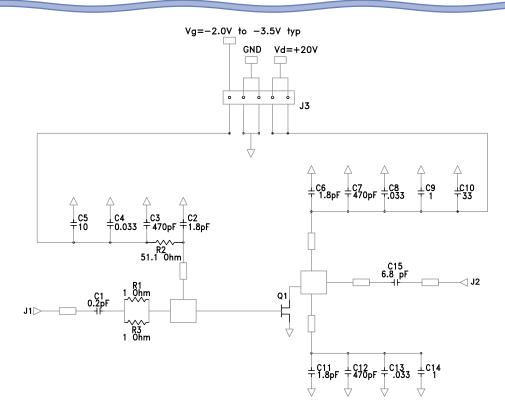
Figure 11. - Typical Small Signal Response $V_{re} = 20 V. I_{re} = 30 mA$

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

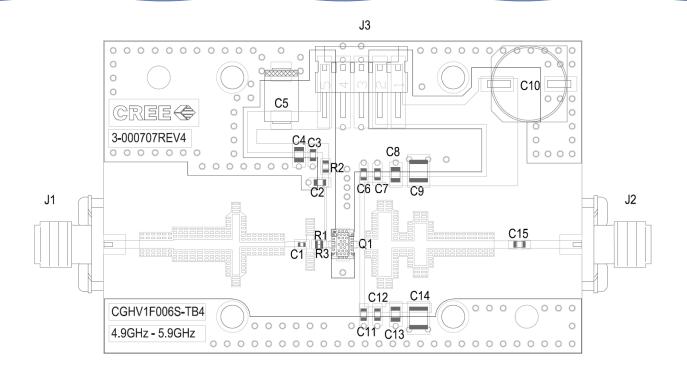
CGHV1F006S-AMP4 Application Circuit Bill of Materials at 802.11

Designator	Description	Qty
R1, R3	RES, 1, OHM, +/-1%, 1/16 W, 0402	2
R2	RES, 51.1, OHM, +/-1%, 1/16W, 0603	1
C2, C6, C11	CAP, 1.8 pF, +/-0.1 pF, 0603, ATC	3
C1	CAP, 0.2 pF, +/-0.05 pF, 0402, ATC	1
C3, C7, C12	CAP, 470 pF, 5%, 100 V, 0603, X	3
C4, C8, C13	CAP, 33000 pF, 0805, 100 V, X7R	3
C5	CAP, 10 UF, 16 V, TANTALUM	1
C15	CAP, 6.8 pF, ±0.25 pF, 100 V, 0603	1
C9, C14	CAP, 1.0 UF, 100V, 10% X7R, 1210	2
C10	CAP, 33 UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
	PCB, RT5880, 0.020" THK, CGHV1F006S	1
	BASEPLATE, CGH35015, 2.60 X 1.7	1
J3	HEADER RT>PLZ .1CEN LK 5POS	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	QFN TRANSISTOR CGHV1F006S	1

CGHV1F006S-AMP4 Application Circuit



Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV1F006S-AMP4 Application Circuit Schematic

CGHV1F006S-AMP4 Application Circuit Outline

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV1F006S Power Dissipation De-rating Curve

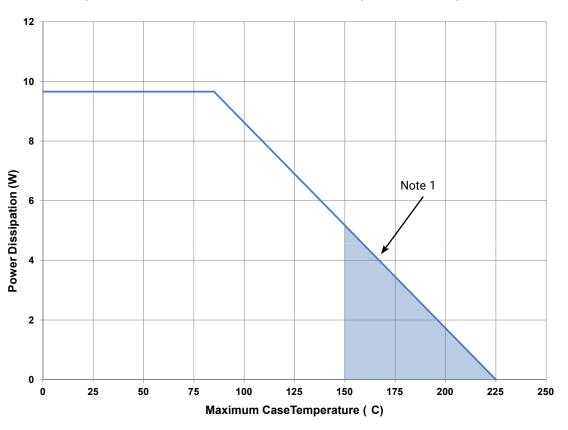
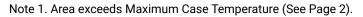
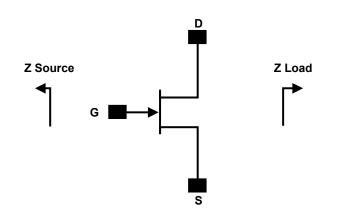



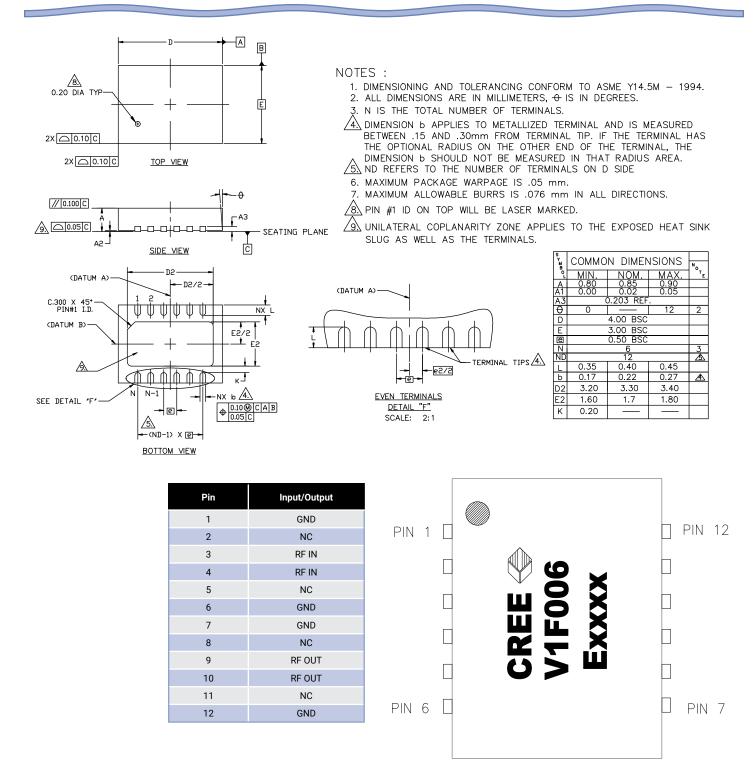
Figure 13. - CGHV1F006S Transient Power Dissipation De-Rating Curve



Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	2 (125 V to 250 V)	JEDEC JESD22 C101-C

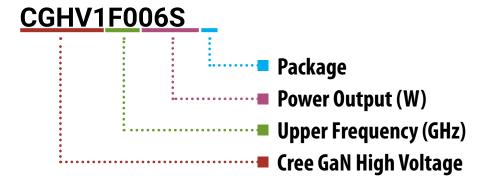
Source and Load Impedances


Frequency (GHz)	Z Source	Z Load
1	49.67 + j32.81	184.11 + j6.66
3	11.54 + j3.96	38.83 + j56.37
6	5.94 - j17.97	13.03 + j16.16
10	11.87 - j77.62	11.79 - j17.43
12	47.42 - j205.35	16.39 - j46.22
15	33.78 + j251.03	163.61 - j268.44

Note¹: V_{DD} = 40 V, I_{DQ} = 60 mA Note²: Impedances are extracted from source and load pull data derived from the transistor.

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Product Dimensions CGHV1F006S (Package 3 x 4 DFN)


Note: Leadframe finish for 3x4 DFN package is Nickel/Palladium/Gold. Gold is the outer layer.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Part Number System

Value	Units
15.0	GHz
6	W
Surface Mount	-
	15.0 6

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value	
А	0	
В	1	
С	2	
D	3	
E	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

Table 2.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV1F006S	GaN HEMT	Each	OREE 000
CGHV1F006S-AMP1	Test board with GaN HEMT installed, 5.85 - 7.2 GHz, 50 V C-Band under OQPSK	Each	
CGHV1F006S-AMP2	Test board with GaN HEMT installed, 7.9 - 8.4 GHz, 28 V X-Band SATCOM	Each	
CGHV1F006S-AMP3	Test board with GaN HEMT installed, 8.5 - 9.6 GHz, 28 V X-Band RADAR	Each	
CGHV1F006S-AMP4	Test board with GaN HEMT installed, 4.9 - 5.9 GHz, 50 V 802.11	Each	
CGHV1F006S-TR	Delivered in Tape and Reel	250 parts / reel	

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.313.5639

> Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2013 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.