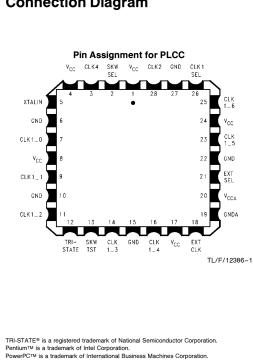
National Semiconductor

CGS702V Commercial Low Skew PLL 1 to 9 CMOS Clock Driver with Improved EMI

General Description

The CGS702 is an off-the-shelf clock driver specifically designed for today's high speed processors. It provides low skew outputs which are produced at different frequencies from three fixed input references. The CGS702 is a reduced EMI version of the CGS700. The XTALIN input pin is designed to be driven from three distinct crystal oscillators running at 25 MHz, 33 MHz or 40 MHz.

The PLL, using a charge pump and an internal loop filter, multiplies this input frequency to create a maximum output frequency of four times the input.


The device includes a TRI-STATE® control pin to disable the outputs while the PLL is still in lock. This function allows testing the board without having to wait to acquire the lock once the testing is complete. (Continued)

Features

Reduced EMI compared to CGS700 (refer to EMI characteristics)

- Guaranteed and tested: 500 ps pin-to-pin skew (T_{OSHL} and T_{OSLH}) on 1x outputs
- PentiumTM and PowerPCTM compatible
- Output buffer of nine drivers for large fanout
- 25 MHz-160 MHz output frequency range
- Outputs operating at 4x, 2x, 1x of the reference frequency for multi-frequency bus applications
- Selectable output frequency
- Internal loop filter to reduce noise and jitter
- Separate Analog and digital V_{CC} and Ground pins
- Low frequency test mode by disabling the PLL
- Implemented on National's Core CMOS process
- Symmetric output current drive: $+30 \text{ mA}/-30 \text{ mA } I_{OL}/I_{OH}$
- 28-pin PCC for optimum skew performance
- Guaranteed 2 kV ESD protection

Description data

Pin	Name	Description			
1	V _{CC}	Digital V _{CC}			
2	SKWSEL	Skew Test Selector Pin			
3	CLK4	4x Clock Output			
4	V _{CC}	Digital V _{CC}			
5	XTALIN	Crystal Oscillator Input			
6	GND	Digital Ground			
7	CLK1_0	1x Clock Output			
8	V _{CC}	Digital V _{CC}			
9	CLK1_1	1x Clock Output			
10	GND	Digital Ground			
11	CLK1_2	1x Clock Output			
12	TRI-STATE	Output TRI-STATE Control			
13	SKWTST	Skew Testing Pin			
14	CLK1_3	1x Clock Output			
15	GND	Digital Ground			
16	CLK1_4	1x Clock Output			
17	V _{CC}	Digital V _{CC}			
18	EXTCLK	External Test Clock			
19	GNDA	Analog Ground			
20	V _{CCA}	Analog V _{CC}			
21	EXTSEL	External Clock MUX Selector			
22	GND	Digital Ground			
23	CLK1_5	1x Clock Output			
24	V _{CC}	Digital V _{CC}			
25	CLK1_6	1x Clock Output			
26	CLK1SEL	CLK1 Multiplier Selector			
27	GND	Digital Ground			
28	CLK2	2x Clock Output			

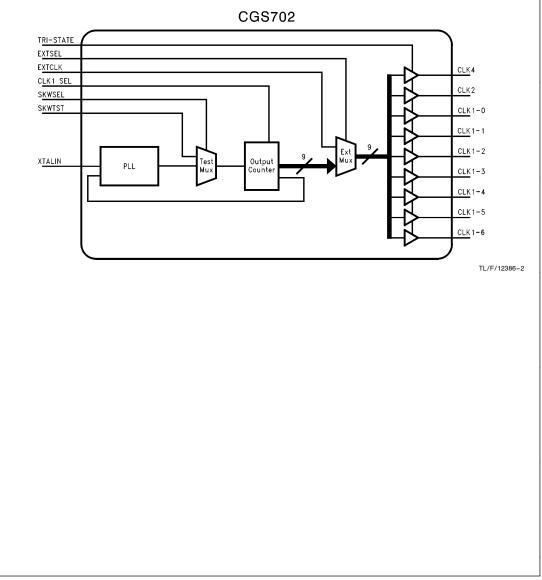
Connection Diagram

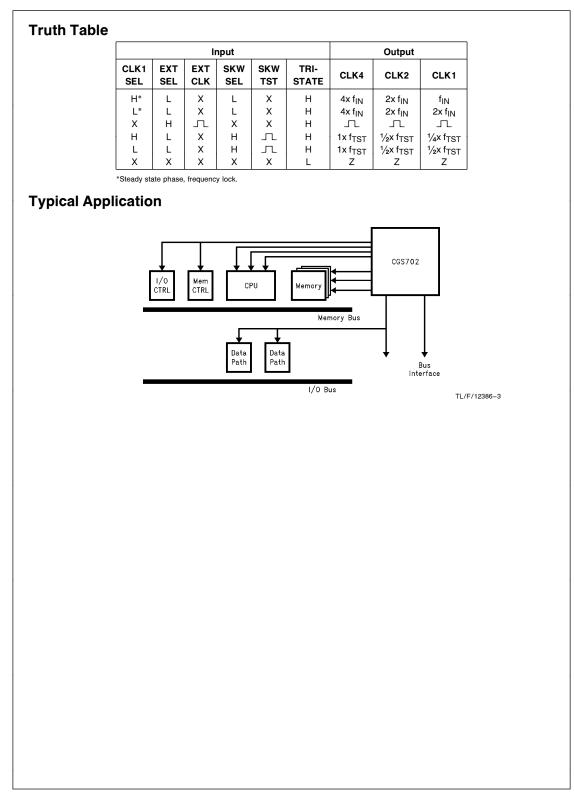
RRD-B30M105/Printed in U. S. A.

CGS702V Commercial Low Skew PLL 1 to 9 CMOS Clock Driver with Improved EM

September 1995

© 1995 National Semiconductor Corporation TL/F/12386


General Description (Continued)


Also included, are two EXTSEL and EXTCLK pins to allow testing the chip via an external source. The EXTSEL pin, once set to high, causes the External-Clock_Mux to change its input from the output of the VCO and Counter to the external clock signal provided via EXTCLK input pin. CLK1SEL pin changes the output frequency of the CLK1_

0,6 outputs. During normal operation, when CLK1SEL pin is high, these outputs are at the same frequency as the input crystal oscillator, while CLK2 and CLK4 outputs are at twice and four times the input frequency respectively. Once CLK1SEL pin is set to a low logic level, the CLK1 outputs will be at twice the input frequency, the same as the CLK2 output, with CLK4 output still being at four times the input frequency.

In addition two other pins are added for increasing the test capability. SKWSEL and SKWTST pins allow testing of the counter's output and skew of the output drivers by bypassing the VCO. In this test mode CLK4 frequency is the same as SKWTST input frequency, while CLK2 is $\frac{1}{2}$ and CLK1 frequencies are $\frac{1}{4}$ respectively (refer to the truth table). In addition CLK1SEL functionality is also true under this test condition.

Block Diagram

Absolute Maximum Ratings (Note 1)

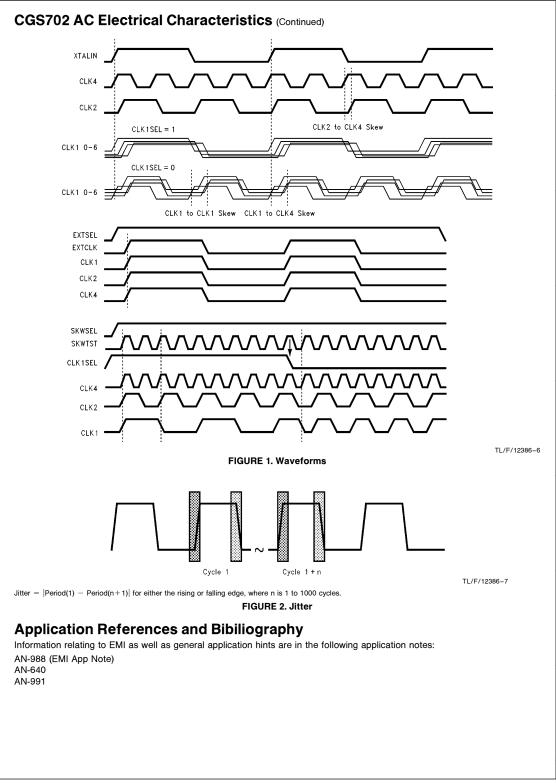
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to 7.0V					
DC Input Voltage Diode Current (I _{IK})	00 4					
V = -0.5V	-20 mA					
$V = V_{CC} + 0.5V$	+ 20 mA					
DC Input Voltage (VI)	$-0.5V$ to $V_{\mbox{CC}}$ $+$ 0.5V					
DC Output Diode Current (I _O)						
V = -0.5V	-20 mA					
$V = V_{CC} + 0.5V$	+20 mA					
DC Output Voltage (V _O)	$-0.5V$ to $V_{\mbox{CC}}$ $+$ 0.5V					
DC Output Source						
or Sink Current (I _O)	\pm 60 mA					
DC V _{CC} or Ground Current						
per Output Pin (I _{CO} or I _{GND})	\pm 60 mA					
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$					
Junction Temperature	150°C					
Power Dissipation (Static and Dynami	c) (Note 2) 1400 mW					
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the						

DC and AC Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The Recommended Operating Conditions will define the conditions for actual device operation.

Note 2: Power dissipation is calculated using 49°/W as the thermal coefficient for the PCC package at 225 LFM airflow. The input frequency is assumed at 33 MHz with CLK4 at 132 MHz and CLK2 and CLK1's being at 66 MHz. In addition the ambient temperature is assumed 70° with power supply at 5.0V.

Recommended Operating Conditions


Supply Voltage (V	4.5V to 5.5V			
Input Voltage (VI)			0V to V_{CC}	
Output Voltage (\	0V to V_{CC}			
Input Crystal Free	25 MHz-40 MH			
Operating Tempe	0°C to +70°C			
External Clock Fr	1 MHz-10 MHz			
XTALIN Duty Cyc	25/75 (75/25)%			
Input Rise and Fa Crystal Input All Other Inputs	5 ns max. 10 ns max.			
Typical θ_{JA}	LFM	°C/W		
	0	54		
	225	45		
	500	38		
	900	34		

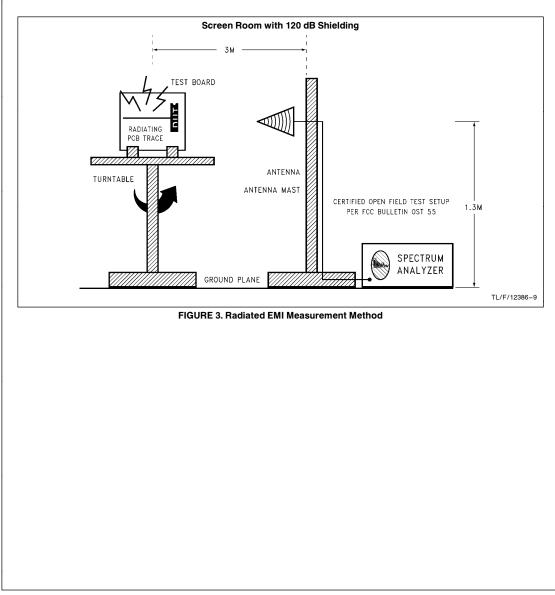
DC Electrical Characteristics

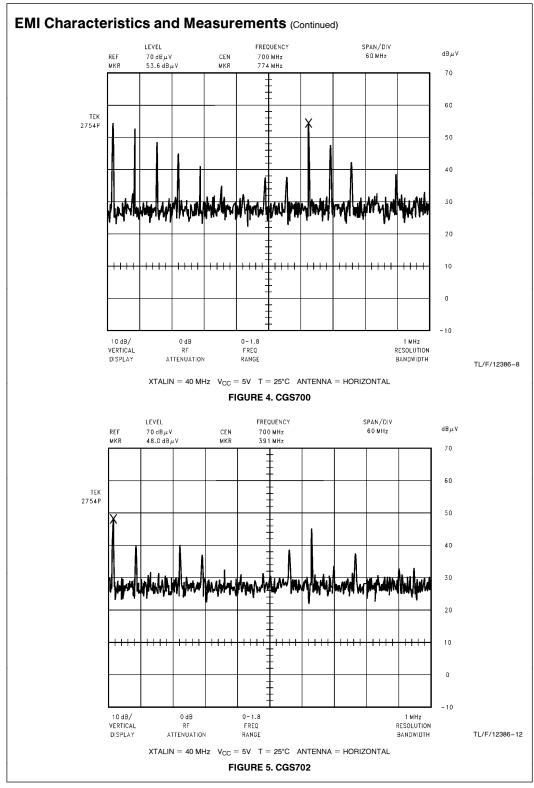
over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C

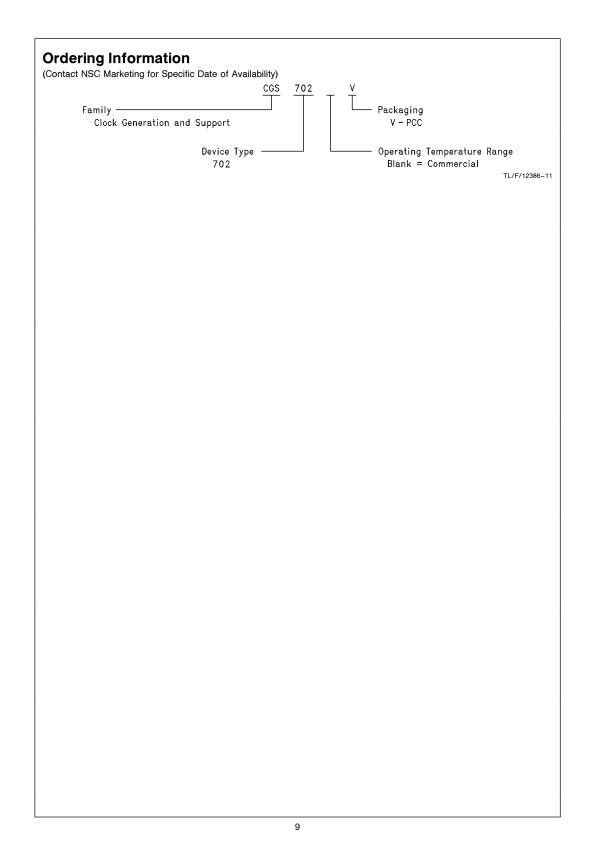
Symbol	Parameter	Conditions	v _{cc}	$V_{CC}=$ 4.5V to 5.5V T = 0°C to 70°C			Units	
				Min	Тур	Max]	
V _{IH}	Minimum Input High Level Voltage		4.5 5.5	2.0 2.0			v	
V _{IL}	Maximum Input Low Level Voltage		4.5 5.5			0.8 0.8	v	
V _{OH}	Minimum Output High Level Voltage	$I_{OH} = -50 \ \mu A$	4.5 5.5	4.4 5.4	4.4 5.4		- v	
		$I_{OH} = -30 \text{ mA}$	4.5 5.5	$\begin{array}{c} V_{CC}-0.6\\ V_{CC}-0.6\end{array}$				
V _{OL}	Maximum Output Low Level Voltage	I _{OL} = 50 μA	4.5 5.5			0.1 0.1	- v	
		I _{OL} = 30 mA	4.5 5.5			0.6 0.6		
I _{OH}	High Level Output Current	$V_{OH} = V_{CC} - 1.0V$	4.5	50	110	170	mA	
I _{OL}	Low Level Output Current	$V_{OL} = 1.0V$	4.5	50	110	170	mA	
I _{IN}	Leakage Current	$V_{IN} = 0.4V \text{ or } 4.6V$	4.5 5.5	-50		50.0	μA	
I _{OZL/H}	Output Leakage Current	$V_{IN} = GND$ $V_{OUT} = V_{CC} \text{ or } GND$	5.5	-5.0		+5.0	μΑ	
C _{IN}	Input Capacitance		4.5 5.0			10.0	pF	
Icc	Quiescent Analog + Digital Current (No Load)	$V_{IN} = V_{CC} \text{ or } GND$	5.5		3	5.0		
ICCT	I _{CC} per TTL Input	$V_{IN} = V_{CC} - 2.1 \text{ or GND}$	5.5			2.5	— mA 5	

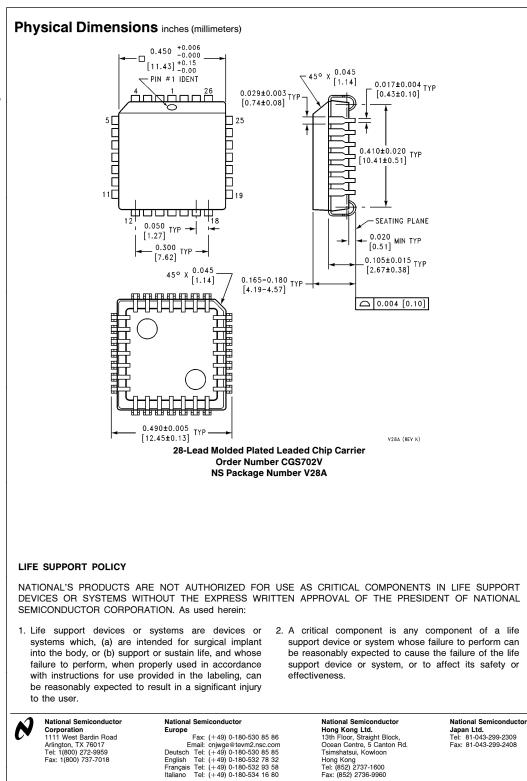
Symbol	Parameter			$\label{eq:VCC} \begin{array}{l} V_{CC} = 4.5V \mbox{ to } 5.5V \\ f_{IN} = 25 \mbox{ MHz to } 40 \mbox{ MHz} \\ T = 0^{\circ} \mbox{C to } 70^{\circ} \mbox{C} \\ C_L = \mbox{ Circuit 1 and 2} \\ R_L = \mbox{ Circuit 1 and 2} \end{array}$			Units	Notes	
						Тур	Max	1	
t _{RISE}	Output Rise	CLK4 0.8V to 2 CLK2 1.0V to 1 CLK1 1.0V to 1		c – 1.0V			2.0	ns	(Note 1)
^t FALL	Output Fall	CLK4 CLK2 CLK1	2.6V to 0.8V $V_{CC} - 1.0V$ to 1.0V $V_{CC} - 1.0V$ to 1.0V				2.0	ns	(Note 1)
t _{SKEW}	Maximum Edge-to-Edge Output Skew	+ t	o + Edges CLK1_CLK1 o + Edges CLK1_CLK4 o + Edges CLK2_CLK4				500 1000 1500	ps	(Note 2)
t _{LOCK}	Time to Lock the	Output to the	e XTALIN Inpu	ıt			100	μs	
^t CYCLE	Output Duty Cycle)	CLK1 Outputs CLK2 Output CLK4 Output				51 51 65	%	(Note 3)
J _{LT}	Output Jitter (Lon	g Term)					300	ps	(Notes 4, 5)
JCC	Output Jitter	CLK1			-75		+ 75	ps	(Notes 4, 5,
	(Cycle to Cycle)	CLK2				±250		ps	(Notes 4, 5,
		CLK4				±250		ps	(Notes 4, 5,
F _{MIN}	Minimum XTALIN	Frequency					15	MHz	
F _{MAX}	Maximum XTALIN Frequency						43	MHz	
Note 4: Jitt It is also m Note 5: Th Also the V _C Note 6: Cy	Z ₀ = 75Ω,	zed and is guar, ff V _{CC} /2 . Refe nust be as free ring to further r urred at V _{CC/2} . 2 and CLK4 is 8 Inches	anteed by design r to <i>Figure 2</i> for 1 of noise as poss educe noise. Fer only for 25°C, 5V V_{CC} 150Ω	only. It measures the further explanation. sible for minimum jitte rite beads for filtering ' measured @ V _{CC/2} .	uncertainty of r. Separate a	f either the pc nalog ground capacitors ar	l plane is rec	commended	for the PCB.
C	Circuit 1. Test Circu	it for CLK1	GND GND TL/F/12	2386-4	C	Circuit 2. 1	Test Circu	iit for CLM	TL/F/12386-

EMI Characteristics and Measurements for CGS702


MEASURING THE SPECTRAL CONTENT OF A LOGIC IC


In order to analyze the frequency, or spectral content of logic ICs, two measurement techniques have been developed. One method, *The Radiated Measurement Method*, is based on the system-level FCC certification test methodology, FCC Open Site Test (OST) 55. The radiated method utilizes a multilayer PCB with the IC-under-test is mounted on a grounded, adjustable table placed 3 meters from an antenna mast (see *Figure 3*). The IC's input is stimulated by a known periodic waveform and its output drives a typical PCB microstrip. The 75 Ω microstrip is properly terminated to prevent reflections from affecting the IC's spectral content tent results.


The FCC certification test method is an *open field* measurement procedure. Therefore, the spectral content of the device-under-test (in this case, an IC) cannot be detected below the ambient level of radiation. The test-site is permanent and the average ambient noise level remains relatively constant.


The CGS700 and CGS702 were tested for EMI using the above method. A comparison of the EMI results in the form of spectral content is shown in *Figures 4* and *5*.

For more details on EMI, see Application Note AN-831.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.