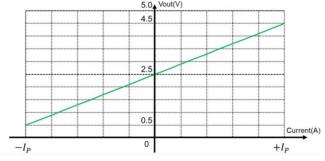



### General Description

The Littelfuse CH1S01xB current sensor family utilizes open loop Hall Effect technology to provide dual channel, ratio-metric output signals proportional to the magnetic flux density generated by internal C-core concentrators.


### Typical Application Diagram



 $C_L \ge 1.0$ nF,  $C_L \le 10.0$ nF for EMC protection

 $R_L \ge 10$ kΩ,  $R_L \le 200$ kΩ pull-down resistor on signal line

## **Output Characteristics**



\*  $I_P$ : Primary current range

#### **Features**

- Open Loop Hall effect current sensor
- Unipolar +5V DC power supply
- Analog ratio-metric output
- Operating temperature range:

- Single or dual channel measurement
  - Channel 1: up to ±100A
  - o Channel 2: up to ±1100A

### **Benefits**

- High sensing accuracy
- Low thermal offset drift
- Low thermal sensitivity drift
- Non-intrusive solution
- Dual channel measurement

### **Applications**

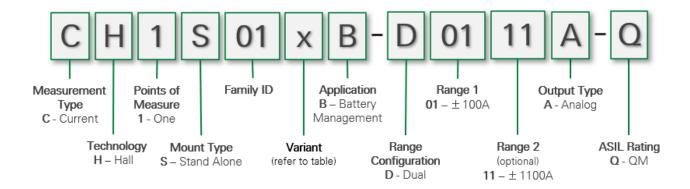
- Battery Management System
- Hybrid Vehicles
- EV and Utility Vehicles

### **Mechanical Characteristics**

Plastic: PBT-GF25 (UL94-V0)

Pins: CuSn6, Sn plating

■ Mass: ~ 93g


Protection degree: IP41

### **Mating Connector**

TE 1-1456426-5



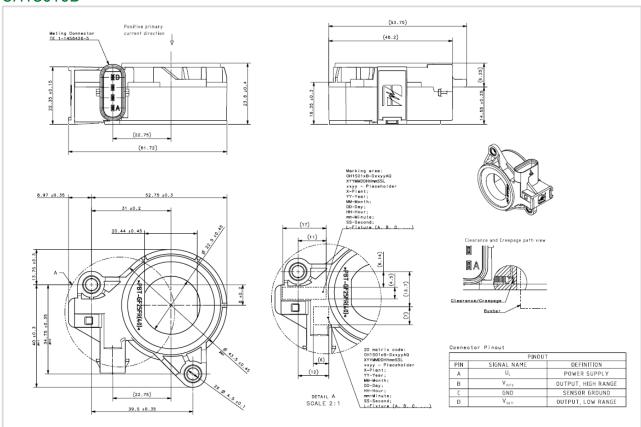
### Littelfuse Current Sensor Naming Convention



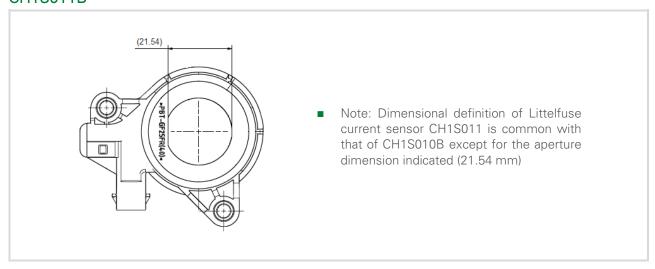
#### **Product Variants**

| Part Name | Config                            | Ref. Image |
|-----------|-----------------------------------|------------|
| CH1S010B  | Standard                          | 8          |
| CH1S011B  | Aperture<br>variant<br>(one flat) | 8          |

### **Current Range Definition**


Littelfuse offers customized calibration ranges.

### Naming Examples:


| Type Name         | Current Range<br>Chanel 1 | Current Range<br>Chanel 2 |
|-------------------|---------------------------|---------------------------|
| CH1S01xB-D0106A-Q | ±100 A                    | ±600 A                    |
| CH1B01xB-D0108A-Q | ±100 A                    | ±800 A                    |
| CH1B01xB-D0110A-Q | ±100 A                    | ±1000 A                   |
| CH1B01xB-D0111A-Q | ±100 A                    | ±1100 A                   |

### Current Sensor Dimensions (in mm)

### CH1S010B



### CH1S011B





## Absolute Maximum Ratings (non-operating)

| Parameter                  | Symbol             | Min  | Тур.      | Max  | Units | Comments                 |
|----------------------------|--------------------|------|-----------|------|-------|--------------------------|
| Maximum Supply Voltage     | $U_{CMAX}$         | -0.3 |           | 10   | V     |                          |
| Peak Primary Current RMS   | $\hat{I}_{P\_RMS}$ |      |           |      | А     | limited by busbar temp.1 |
| Maximum Output Current     | $I_{CMAX}$         | -10  |           | 10   | mA    |                          |
| Storage Temperature        | $T_{ST}$           | -40  |           | +125 | °C    |                          |
| Insulation Resistance      | $R_{INS}$          | 500  |           |      | ΜΩ    | 500V DC, 60s             |
| Dielectric voltage         | $I_{LEAK}$         |      |           | 1    | mA    | 2.5 kV AC, 50Hz, 1min    |
| Creepage distance          | $D_{CREE}$         |      | 3.5       |      | mm    |                          |
| Clearance                  | $D_{CLEA}$         |      | 3.1       |      | mm    |                          |
| Comparative tracking index | CTI                | Р    | LC0 (≥600 | V)   | V     | UL746A (IEC 60112)       |

## **Mechanical Product Properties**

| Parameter          | Symbol | Level | Standard  | Comments |
|--------------------|--------|-------|-----------|----------|
| Flammability Class |        | V0    | UL94      |          |
| Protection Degree  |        | IP 41 | IEC 60529 |          |

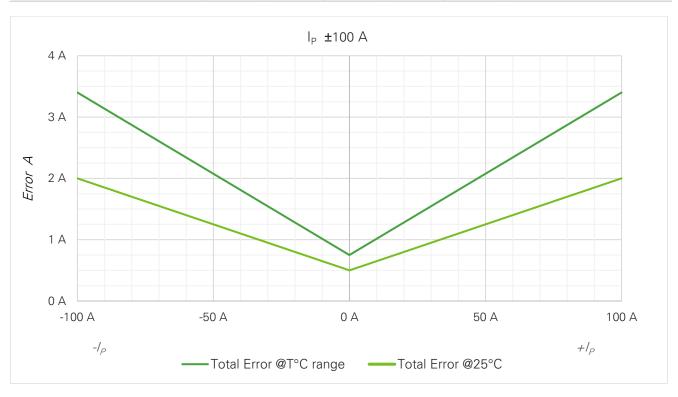
<sup>&</sup>lt;sup>1</sup> Maximum RMS primary current is limited by the busbar surface temperature.



## Common Characteristics in Normal Range

| Parameter                        | Symbol    | Min  | Тур. | Max               | Units | Comments                                  |
|----------------------------------|-----------|------|------|-------------------|-------|-------------------------------------------|
| Supply Voltage                   | $U_C$     | 4.75 | 5    | 5.25              | V     |                                           |
| Current Consumption              | $I_C$     | 16   | 25   | 30                | mA    | $Uc = 5V, I_p = 0A;$                      |
| Operating Ambient<br>Temperature | $T_A$     | -40  |      | +125 <sup>2</sup> | °C    |                                           |
| Output Voltage                   | $V_{out}$ | 0.5  |      | 4.5               | V     | See page                                  |
| Output Offset Voltage            | $V_o$     |      | 2.5  |                   | V     | $Uc = 5V$ , $I_p = 0A$                    |
| Clamping Voltage Lower           | $V_{CL}$  |      | 0.3  |                   | V     |                                           |
| Clamping Voltage Upper           | $V_{CU}$  |      | 4.7  |                   | V     |                                           |
| Supply Capacitance               | $C_{SUP}$ | 47   | 100  |                   | nF    | Capacitors to be located near supply pins |
| Load Capacitance                 | $C_L$     |      | 2.2  | 10                | nF    |                                           |
| Load Resistance                  | $R_L$     | 10   | 25   | 200               | kΩ    |                                           |
| Power-on Time                    | $t_{po}$  |      | 1    |                   | ms    |                                           |
| Response Time                    | $t_r$     |      | 20   |                   | μs    | C <sub>L</sub> = 2.2 nF                   |

 $<sup>^2</sup>$  Busbar surface temperature shall not exceed 150  $^{\circ}$ C - Primary current frequencies can cause heating of the busbar and magnetic core.



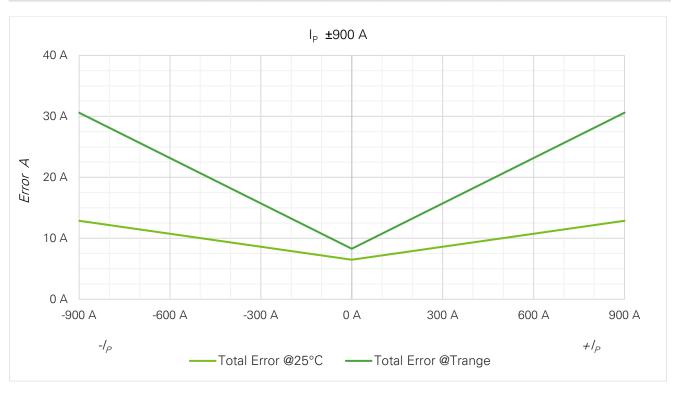

©2024 Littelfuse Inc. Specifications are subject to change without notice. Revised: Rev. 1.2 7/29/24

### Primary Current Range - Channel 1-Low Range: up to ±100A

Littelfuse offers customized low range calibrations. Performance data below is applicable for a ±100A calibration.

| Parameter             | Symbol                               | Min  | Тур. | Max  | Units | Comments            |
|-----------------------|--------------------------------------|------|------|------|-------|---------------------|
| Primary Current       | $I_p$                                | -100 |      | +100 | А     |                     |
| Sensitivity for ±100A | S                                    |      | 20   |      | mV/A  | UC = 5V             |
| Linearity Error       | $\mathcal{E}_L$                      |      | ±0.5 |      | %FS   | UC = 5V, over temp. |
| Offset Error          | $\mathcal{E}_{o}$                    | ±0.5 |      | ±0.5 | %FS   | UC = 5V, over temp. |
| Sensitivity Error     | $\mathcal{E}_{\scriptscriptstyle S}$ |      | ±1.2 |      | %FS   | UC = 5V, over temp. |




| Primary Current           | Total Erro | or <b>@2</b> 5°C | Total Error @T°C range |         |  |
|---------------------------|------------|------------------|------------------------|---------|--|
| А                         | %          | А                | %                      | Α       |  |
| - I <sub>p</sub> (-100 A) | ±2%        | ±2.00 A          | ±3.4%                  | ±3.4 A  |  |
| 0                         | ±0.5%      | ±0.50 A          | ±0.75%                 | ±0.75 A |  |
| + I <sub>p</sub> (+100 A) | ±2%        | ±2.00 A          | ±3.4%                  | ±3.4 A  |  |

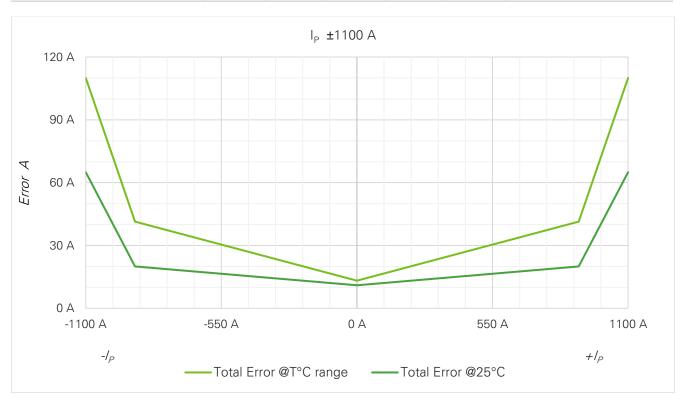


### Primary Current Range - Channel 2-High Range (Standard): up to ±900 A

Littelfuse offers customized high range calibration ranges up to  $\pm 1100$  A. Performance data below is applicable for a  $\pm 900$  A calibration.

| Parameter             | Symbol                      | Min  | Тур. | Max  | Units | Comments            |
|-----------------------|-----------------------------|------|------|------|-------|---------------------|
| Primary Current       | $I_p$                       | -900 |      | +900 | А     |                     |
| Sensitivity for ±900A | S                           |      | 2.22 |      | mV/A  | Uc = 5V             |
| Linearity Error       | $\mathcal{E}_L$             |      | ±0.5 |      | %FS   | Uc = 5V, over temp. |
| Offset Error          | $\mathcal{E}_{o}$           | ±0.9 |      | ±0.9 | %FS   | Uc = 5V, over temp. |
| Sensitivity Error     | $\mathcal{E}_{\mathcal{S}}$ |      | ±1.2 |      | %FS   | Uc = 5V, over temp. |




| Primary Current           | Total Erro | or <b>@</b> 25°C | Total Error | @T°C range |
|---------------------------|------------|------------------|-------------|------------|
| А                         | %          | А                | %           | Α          |
| - I <sub>p</sub> (-900 A) | ±1.7%      | ±12.9 A          | ±3.4%       | ±30.6 A    |
| 0                         | ±0.7%      | ±6.48 A          | ±0.9%       | ±8.28 A    |
| + I <sub>p</sub> (+900 A) | ±1.7%      | ±12.9 A          | ±3.4%       | ±30.6 A    |



### Primary Current Range - Channel 2-High Range (Extended): up to ±1100 A

Littelfuse offers customized high range calibration ranges up to  $\pm 1100$  A. Performance data below is applicable for a  $\pm 1100$  A calibration.

| Parameter              | Symbol                               | Min   | Тур. | Max   | Units | Comments            |
|------------------------|--------------------------------------|-------|------|-------|-------|---------------------|
| Primary Current        | $I_p$                                | -1100 |      | +1100 | А     |                     |
| Sensitivity for ±1100A | S                                    |       | 1.82 |       | mV/A  | Uc = 5V             |
| Linearity Error        | $\mathcal{E}_L$                      |       | ±0.5 |       | %FS   | Uc = 5V, over temp. |
| Offset Error           | $\mathcal{E}_{o}$                    | ±1.2  |      | ±1.2  | %FS   | Uc = 5V, over temp. |
| Sensitivity Error      | $\mathcal{E}_{\scriptscriptstyle S}$ |       | ±1.2 |       | %FS   | Uc = 5V, over temp. |



| Primary Current            | Total Erro | or @25°C | Total Erro | r @Trange |
|----------------------------|------------|----------|------------|-----------|
| А                          | %          | Α        | %          | Α         |
| - I <sub>p</sub> (-1100 A) | ±5.9%      | ±65.0 A  | ±10%       | ±110 A    |
| 0                          | ±1.0%      | ±11.0 A  | ±1.2%      | ±13.2 A   |
| + I <sub>p</sub> (+1100 A) | ±5.9%      | ±65.0 A  | ±10%       | ±110 A    |



#### Recommendations for Use

### Setup Recommendation

#### Mounting:



- M4 screw mounted with flat/spring washer or serrated flanged screw is recommended.
- Assembly torque: 1.5 N·m ± 10%
- Preferred busbar orientation is parallel with connector.

### Adjacent Busbar Spacing:



- The distance between the primary conductor through the sensor aperture (cable/busbar) and adjacent cable/busbar(s) is recommended to be more than 50mm @1100A
- Adjacent busbar should not pass directly above or below current sensor housing.
- Busbar layout should be reviewed with Littelfuse for compatibility.

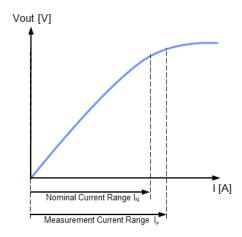
### Handling

- Handling of sensors should be minimized by maintaining parts within packaging until point of assembly.
- Contact with sensor terminals should be avoided.
- To avoid potential damage, adherence to ESD handling best practices is recommended.
- Dropped parts should be scrapped regardless of evidence of external damage.



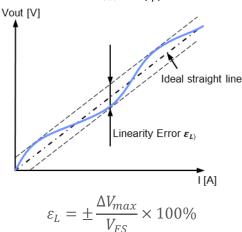
## Validation Test Specification

| Group / Test                                     | Reference                             | Test Condition                      |
|--------------------------------------------------|---------------------------------------|-------------------------------------|
| Environmental                                    |                                       |                                     |
| Low temperature storage test                     | ISO 16750-4                           |                                     |
| Low temperature operation test                   | ISO 16750-4                           |                                     |
| High temperature operating endurance test (HTOE) | ISO 16750-4                           |                                     |
| Powered thermal cycle endurance                  | IEC 60068-2-14 Nb                     |                                     |
| Thermal shock                                    | EN 60068-2-14<br>ISO16750-4 §5.3.2    |                                     |
| High temperature and humidity endurance          | JESD22-A101                           |                                     |
| Salt mist                                        | IEC 60068-2-11                        |                                     |
| Mechanical                                       |                                       |                                     |
| Temperature Vibration Test                       | ISO 16750-3 § 4.1.2.4                 |                                     |
| Mechanical Shock                                 | ISO 16750-3 §4.2.2.2                  |                                     |
| Free-Fall                                        | ISO 16750-3 § 4.3                     |                                     |
| Dust proof                                       | IEC 60529                             |                                     |
| Waterproof                                       | IEC 60529                             |                                     |
| Electrical                                       |                                       |                                     |
| Single line interruption                         | ISO 16750-2 §4.9.1                    |                                     |
| Reverse supply voltage                           | -0.3 V for 60 s                       |                                     |
| Overvoltage                                      | 10 V for 60 s                         |                                     |
| Power-on time test                               | Littelfuse VS                         | Vdd min to 90% Vout                 |
| Response time test                               | Littelfuse VS                         | 90% Primary current to 90% Vout     |
| Output short circuit to supply                   | ISO16750-2 §4.10                      |                                     |
| Electrical heat rise                             |                                       | 100A DC per step for heat rise step |
| DC insulation resistance                         | ISO 16750-2 §4.1.2.2                  |                                     |
| AC insulation test (Dielectric voltage)          | IEC 60664                             |                                     |
| EMC                                              |                                       |                                     |
| BCI test                                         | ISO 11452-4<br>Annex E.1.1, Table E.1 |                                     |
| Radiated electromagnetic immunity                | ISO 11452-2                           |                                     |
| Radiated emissions                               | CISPR 25                              |                                     |
| ESD handling Test                                | ISO 10605 §7                          |                                     |
| Connector                                        |                                       |                                     |
| Terminal push-out force test                     | GMW3191:2012 §4.5.2                   |                                     |
| Connector to connector engagement force test     | GMW3191:2012 §4.2.8/<br>USCAR25       |                                     |
| Locked connector disengagement force test        | GMW3191:2012 §4.2.18                  |                                     |
| Unlocked connector disengagement force test      | GMW3191:2012 §4.2.19                  |                                     |




#### Performance Parameter Definitions

### Output voltage definition ( $V_{out}$ )


$$V_{out} = (U_C/5) \times (V_O + I_p \times S)$$

### Primary current definition $(I_N, I_p)$



#### Linearity error $(\varepsilon_L)$

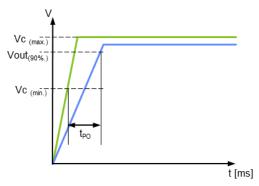
The maximum positive or negative discrepancy with a reference straight line  $V_{out} = f(I_p)$ .



#### Offset error $(\varepsilon_0)$

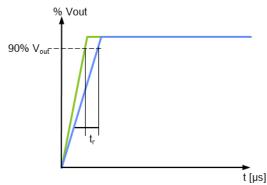
The voltage drift of the measured sensor output  $V_{out}$  at 0A compared to the ideal value 2.5V (@ $V_c = 5$ V) is called the total offset voltage error. This offset error can be attributed to the electrical offset, magnetic offset and related drift over temperature.

$$\varepsilon_O = \pm \frac{V_{out} - V_O}{V_{FS}} \times 100\%$$


#### Sensitivity error ( $\varepsilon_s$ )

The sensor sensitivity error is the drift of sensor's ideal sensitivity.

$$\varepsilon_S = \pm \frac{G - G_{th}}{G_{th}} \times 100\%$$


### Power-on time $(t_{po})$

The Power-on time is the duration from VDD(min.) to 90% of Vout.



#### Response time $(t_r)$

The time between the primary current signal and the output signal reaching at 90% of its final value.



#### Typical minimum and maximum values

Typical minimum, and maximum values are determined during initial product characterization. Typical values representing the normal of statistical  $\pm 1\sigma$  interval (68.27% probability).

Minimum and maximum values representing the Gaussian distribution boundaries of the  $\pm 3\sigma$  interval (99.73% probability).

#### Contact

Custom electrical and environmental specifications can be designed to meet any need, please contact Littelfuse Engineering for details.

Website: <u>www.littelfuse.com</u>

Sales Support: <u>ALL\_Autosensors\_Sales@littelfuse.com</u>
Technical Support: <u>ALL\_Autosensors\_Tech@littelfuse.com</u>

**Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/legal/disclaimers/product-disclaimers/">https://www.littelfuse.com/legal/disclaimers/product-disclaimers/</a>.

Information provided by Littelfuse is believed to be accurate and reliable.

All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Littlefuse products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive applications) not expressly set forth in applicable Littlefuse product documentation. Warranties granted by Littlefuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littlefuse product documentation. Littlefuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littlefuse as set forth in applicable Littlefuse product documentation.

Document version: Rev. 1.2 Date of print: 31JUL2024

