USB bus interface chip CH374

English DataSheet Version: 2 http://wch.cn http://wch-ic.com

1. Introduction

CH374 is a USB bus universal interface chip, supports both USB-HOST and USB-DEVICE/SLAVE mode. There are three ports of HUB internal. It supports low-speed and full-speed control transfer, bulk transfer, interrupt transfer and synchronous/isochronous transfer. At local, there are 8-bit data bus and read, write, chip select control wire and interrupt output in CH374. It is convenient to link CH374 to controller system bus of DSP/MCU/MPU/microprocessors (uPs). Besides, CH374 supplies SPI serial communication mode to save pins. CH374 connects to MCU/DSP/MPU through 3-wire or 4-wire SPI serial interface and interrupt output.

2. Features

- Supports low-speed of 1.5Mbps and full-speed of 12Mbps, conforms to USB Specification Version 2.0, only needs crystal and capacitor as peripherals.
- Supports USB host interface and USB device interface, and supports exchanging USB-HOST and USB-DEVICE mode dynamically.
- CH374U has 3 ports of ROOT-HUB internal, and supports 3 USB devices.
- Supports control transfer, bulk transfer, interrupt transfer and synchronous/isochronous transfer of USB device with common low-speed and full-speed.
- Automatically detects connection and disconnection of either low-speed or full-speed device, and gives out interrupt information.
- Sets impedance matching serial resistor of USB signal wire, pull-up resistor of USB device endpoint and pull-down resistor of USB host endpoint internal.
- Two kinds MCU interface are optional: 8-bit passive parallel interface with 6MB and SPI serial interface with 2.7MB/22MHz.
- Parallel interface contains 8-bit data bus, 1-bit address wire and 3-wire to control. The control wires are chip select input wire, write strobe wire and read strobe wire which is optional.
- Parallel interface only occupies 2-bit address: index address port and data port. After reading and writing data port, internal index address increases automatically.
- SPI serial interface contains SPI chip select, serial clock, serial input/output, and supports parallel connecting input to output of SPI.
- Interrupt output pin is optional connection, and active with low-level. Detection of interrupt flag in register can replace of interrupt output pin.
- Supplies assistant function: programmable clock output, power on reset output and optional watchdog reset.
- Supplies USB flash driver file layer subprogram congregation that supports FAT12/FAT16/FAT32 to realize MCU reads and writes file in USB flash drive.
- Supports source voltage of 5V and 3.3V.
- Supplies SOP-28, SSOP-20, SSOP-24 and SOP-16 lead free package which are compatible with RoHS, and DIP28 swap board is also supplied. The pins basically compatible with CH375 and CH372.

3. Package

Package shape	Width of plastic		Pitch of Pin		Instruction of package	Ordering type
SOP-28	7.62mm	300mil	1.27mm	50mil	Small outline package of 28-pin	CH374S
SSOP-20	5.30mm	209mil	0.65mm	25mil	Shrink small outline package of 20-pin	CH374T

The packages, HUB pins and HUB registers of CH374U and CH374G can consult the second DataSheet.

4. Pins

SOP28 Pin NO. (SSOP20 Pin)	Name	Туре	Pin Description			
28 (20)	VCC	POWER	Positive power input port, requires an external 0.1uF power decoupling capacitance			
12, 23 (18)	GND	POWER	Public ground, ground connection for USB			
9 (5)	V3	POWER	Attachment of VCC input external power while 3.3V;connects of			
13 (8)	XI	IN	Input of crystal oscillator, attachment of crystal and crystal			
			oscillator capacitance outside			
14 (9)	XO	OUT	Opposite output of crystal oscillator, attachment of crystal and			
10(6)	UD+	USB signal	USB Data Signal plus			
11 (7)	UD-	USB signal	USB Data Signal minus			
22~15 (17~10)	D7~D0	Bi-directional tri-state	8-bit bi-directional data bus, set up pull-up resistor internal, D3 also is SCS# of SPI interface, D5 also is SCK, D6 also is SDI, D7 also is SD0			
4 (3)	RD#	IN	Read Strobe Input, LOW active, with pull-up resistor			
3 (2)	WR#	IN	Write Strobe Input, LOW active, with pull-up resistor			
27 (19)	CS#	IN	LOW active CH374 chip select, with pull-up resistor			
1 (1)	INT#	Open drain OUT	Interrupter request output, low-level active, with pull-up resistor			
8 (4)	A0	IN	Address wire input to identify index port and data port, with feeble pull-up resistance, A0=1,write index address; A0=0,read/write data			
24 (no)	ACT#	Open drain OUT	Output USB transfer or active state in USB-DEVICE, output USB device connection state in USB-HOST, low-level active, with pull-up resistor			
5 (no)	UEN	IN	USB signal UD+/UD- enable output, with pull-down resistor			
6 (no)	СКО	OUT	Programmable clock output, must be left suspend when not using and cut down the connection wire as short as possible			
2 (no)	RSTI	IN	External reset input, high level active, with pull-down resistor			
25 (no)	RST	OUT	Output when power on reset and external reset, high level active			
26 (no)	RST#	OUT	Output when power on reset and external reset, low level active			
7 (no)	SLP	OUT	Output sleeping state, high level active			

5. Register

The MCU appears in this manual basically apply to DSP or SCM/MCU/MPU/CPU etc.

The internal register and buffer configuration in CH374 is from address 00H to 0FFH, and they can be access to after MCU searching address. Binary system numbers can express the default data after reset, and many character symbols can explain their characteristics. The character symbols are as following:

0: after reset is always 0;

1: after reset is always 1;

X: The bit is automatically set by internal hardware or effects by external pin state;

=: reset has no effect on data, and the initial value is uncertain.

?: reserved bit, the read data have no meaning, must be write as 1 or keep former value.

Note: effect by interpretation custom, some professional terms come from English USB specification may

Default value Address scope Register name (gray) Register note (gray) after software Hexadecimal Bit name of register Bit note of register and hardware system reset 00H-03H Reserved Forbid read and write ???????? 04H REG_SYS_INFO System information register, read only XXX?XX01 Complete state of hardware power-up reset: 04H bit 7 BIT INFO POWER RST 0/X 0=reset; 1= finish reset Chip wake up state, no effect by software 04H bit 6 BIT INFO WAKE UP reset: 0=sleep or during wake up; 1= has Х woke up Hardware 1mS timing cycle state, in HOST 04H bit 5 BIT_INFO_SOF_PRES =/X mode, 1= will generate SOF ? 04H bit 4 Reserved Read data has no meaning and uncertain 04H bit 3 BIT INFO USB DP Logical level state of USB bus UD+ Х Logical level state of USB bus UD-04H bit 2 BIT INFO USB DM Х Immobility value, usually as constant 01, used 04H bit 1 to detect hardware connection is right and Hardware identification bit 01 04H bit 0 read operation successful System control register, no effected by 05H REG_SYS_CTRL 0000000 software reset Read data has no meaning and must be 0/?05H bit 7 Reserved written as 0 USB output enable polarity of UEN: 0=high level enable, UEN is low forbids 05H bit 6 BIT_CTRL_OE_POLAR 0 UD+/- output; 1=low level enable, UEN is high forbids UD+/- output INT# interrupt output manner:0=low level 05H bit 5 interrupt until clear relevant interrupt flag; 0 BIT CTRL INT PULSE 1=low level pulse interrupt Watchdog reset enable of RST and BIT CTRL WATCH DOG 05H bit 4 0 RST#:0=forbid, supplies power-up reset only,

have many similar Chinese terms.

		no watchdog reset; 1=start, can not be			
		forbidden after start unless hardware reset			
05H bit 3	BIT_CTRL_RESET_NOW	Control chip software reset: 1=no reset; 1=reset	0		
		USB power adjustor control for V3: 0=start,			
05H bit 2	BIT_CTRL_USB_POWER	generate USB power from 5V power of VCC;	0		
		1=forbid, external input power from V3			
05U bit 1	Deserved	Read data has no meaning and must be	0/2		
	Reserved	written as 0	0/ !		
05U bit 0	DIT CTDI OSCII OFF	Control clock oscillator :0=allow oscillate;	0		
0311 011 0	BII_CIKL_OSCIL_OFF	1=stop oscillate	0		
06H	REG_USB_SETUP	USB configuration register	00000000		
06H bit 7	BIT_SETP_HOST_MODE	USB mode: 0=device mode; 1= host mode	0		
		Active event of ACT# LOW in device mode:			
06H bit 6	BIT_SETP_LED_ACT	0=receive and transfer process; 1=USB host	0		
		activity			
		In host mode, automatically generate SOF			
06H bit 6	BIT_SETP_AUTO_SOF	enable: 0=forbid; 1=allow, automatically	0		
		timing send SOF			
0.0111.45		USB bus speed:00=full speed mode 12Mbps;			
06H bit5	BIT_SETP_USB_SPEED	11=low speed mode 1.5Mbps; other value is	00		
06H bit 4		forbidden			
		Apply manner of spare buffer:00= forbid			
		using spare buffer; 01= connect to receive			
	BIT_SETP_RAM_MODE	buffer to receive 128 bytes successively and			
		the start address is			
06H bit 3		RAM_ENDP2_EXCH/RAM_HOST_EXCH;	00		
06H bit 2		10=successively transfer the second buffer,	00		
		and the synchronous flag is 1 indicates pitch			
		on; 11=successively receive the second buffer			
		and the synchronous flag is 1 indicates pitch			
		on			
		In device mode control the USB pull-up			
06H bit 1	BIT_SETP_PULLUP_EN	resistor: 0=forbid using pull-up resistor;	0		
		1=using pull-up resistor/connection			
		USB device transfer enable in device mode:			
06H bit 0	BIT_SETP_TRANS_EN	0=forbid; 1=allow, use USB device/allow	0		
		receive and transfer			
		Control USB bus state in host			
06H bit 1	BIT SETP BUS CTRI	mode;00=normal/idle;01= low UD+ low UD-	00		
06H bit 0		(bus reset); 10=forbid; 11=low UD+ high	igh		
		UD-(bus resume)			
07H	REG INTER EN	Interrupt enable register contain	11110000		
		programmable clock set			
07H bit 7 to bit	BIT_IE_CLK_OUT_DIV	Programmable clock detach frequency	1111		

6
<u>U</u>

4		devisor: output frequency = $(48 MHz/($ the data		
		+1)), e.g. 0001=24MHz; 0010=16MHz;		
		1111=3MHz		
		USB bus resume/wake up interrupt enable:0=		
07111:4.2		enable chip wake up complete interrupt	0	
07H bit 3	BII_IE_USB_KESOME	BIT_IF_WAKE_UP; 1= enable USB bus	U	
		resume interrupt BIT_IF_USB_RESUME		
07111:40	USB bus suspend interrupt enable		0	
0/H bit 2	BII_IE_USB_SUSPEND	0=forbid; 1=allow, output from INT#	0	
07111:41		USB bus reset interrupt enable in device	0	
0/H bit I	BII_IE_BUS_KESEI	mode: 0=forbid; 1= allow, output from INT#	0	
07111:4 1	DIT IE DEV DETECT	USB device detect interrupt enable in device	0	
07H bit 1	BII_IE_DEV_DETECT	mode:0=forbid; 1=allow, output from INT#	0	
0711 hit 0	DIT IE TRANCEED	USB transfer finish interrupt enable:	0	
07H bit 0	BII_IE_IKANSFER	0=forbid; 1= allow, output from INT#	0	
08H	REG_USB_ADDR	USB device address register	00000000	
08H bit 7	Reserved	Read data has no meaning and must be	0/2	
0011 011 7		written as 0	0/ !	
08H bit 6 to		In device mode, as USB device address, in		
bit 0	BIT_ADDR_USB_DEV	host mode, as current working USB device	0000000	
011 0		address		
09Н	REG_INTER_FLAG	Interrupt flag register, read only	XXX00000	
		Sampling state of full speed UD+/low speed		
09H bit 7	BIT_IF_USB_DX_IN	UD-:0=low level/speed lose match; 1=high	Х	
		level/speed match		
		USB output enable state input from		
09H bit 6	BIT_IF_USB_OE	UEN:0=UEN is low level; 1= UEN is high	Х	
		level		
		Current connection state of USB device: 0=		
09H bit 5	BIT IF DEV ATTACH	disconnect any USB device/cut/pull out;	=/X	
0,110100		1=has connected one USB device at	/21	
		least/insert		
		least/insert USB transfer pause flag, active with 1, write 1		
09H bit 4	BIT_IF_USB_PAUSE	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer	0/X	
09H bit 4	BIT_IF_USB_PAUSE	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1	0/X	
09H bit 4	BIT_IF_USB_PAUSE	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with	0/X	
09H bit 4 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after	0/X 0/X	
09H bit 4 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1	0/X 0/X	
09H bit 4 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1 USB bus resume/wake-up interrupt flag,	0/X 0/X	
09H bit 4 09H bit 3 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP BIT_IF_USB_RESUME	least/insertUSB transfer pause flag, active with 1, write 1to the bit can clear flag, after USB transferautomatically set as 1Chip wake-up finish interrupt flag, active with1, write 1 to the bit can clear the flag, afterchip waking up automatically set as 1USB bus resume/wake-up interrupt flag,active with 1, write 1 to the bit can clear the	0/X 0/X	
09H bit 4 09H bit 3 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP BIT_IF_USB_RESUME	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1 USB bus resume/wake-up interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume	0/X 0/X 0/X	
09H bit 4 09H bit 3 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP BIT_IF_USB_RESUME	least/insert USB transfer pause flag, active with 1, write 1 to the bit can clear flag, after USB transfer automatically set as 1 Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1 USB bus resume/wake-up interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume automatically set as 1	0/X 0/X 0/X	
09H bit 4 09H bit 3 09H bit 3	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP BIT_IF_USB_RESUME	least/insertUSB transfer pause flag, active with 1, write 1to the bit can clear flag, after USB transfer automatically set as 1Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1USB bus resume/wake-up interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume automatically set as 1USB bus suspend interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume automatically set as 1USB bus suspend interrupt flag, active with 1,	0/X 0/X 0/X	
09H bit 4 09H bit 3 09H bit 3 09H bit 2	BIT_IF_USB_PAUSE BIT_IF_WAKE_UP BIT_IF_USB_RESUME BIT_IF_USB_SUSPEND	least/insertUSB transfer pause flag, active with 1, write 1to the bit can clear flag, after USB transfer automatically set as 1Chip wake-up finish interrupt flag, active with 1, write 1 to the bit can clear the flag, after chip waking up automatically set as 1USB bus resume/wake-up interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume automatically set as 1USB bus suspend interrupt flag, active with 1, write 1 to the bit can clear the flag, after detecting USB bus resume automatically set as 1USB bus suspend interrupt flag, active with 1, write 1 to the bit can clear flag, after detecting	0/X 0/X 0/X 0/X	

09H bit 1	BIT_IF_BUS_RESET	USB bus reset interrupt flag in device mode, active with 1, write 1 to the bit can clear flag, after detecting USB bus reset automatically set as 1	0/X
09H bit 1	BIT_IF_DEV_DETECT	Detection of USB device insert state in host mode, active with 1, write 1 to the bit can clear flag, after detecting USB device insert or draw automatically set as 1	0/X
09H bit 0	BIT_IF_TRANSFER	USB transfer finish interrupt flag, active with 1, write 1 to the bit can clear flag, after finishing each USB transfer automatically set as 1	0/X
0AH	REG_USB_STATUS	USB state register, read only, usually query after detecting relative interrupt only	1XXXXXXX
0AH bit 7	BIT_STAT_SIE_FREE	Current SIE state: 0=busy/transferring;1=idle /wait	1/X
0AH bit 6	BIT_STAT_SUSPEND	Current USB bus suspend state:0= activity on bus;1= bus suspend	Х
0AH bit 5	BIT_STAT_BUS_RESET	On device mode, current USB bus reset state:0= USB bus is idle/normal/no reset; 1=USB bus is reset	Х
0AH bit 4	BIT_STAT_TOG_MATCH	Inform current receive data package whether synchronous or not:0= asynchronous; 1=synchronous	Х
0AH bit 3 0AH bit 2	BIT_STAT_THIS_PID	USB transfer transaction/token PID in device mode: 00= OUT transaction; 01=reserve/accident; 10= IN transaction; 11=SETUP transaction	XX
0AH bit 1 0AH bit 0	BIT_STAT_THIS_ENDP	Aim endpoint number of USB transfer in device mode: 00= endpoint 0; 01= endpoint 1; 10= endpoint 2; 11= reserved/accident	XX
0AH bit 3 to bit 0	BIT_STAT_DEV_RESP	Response PID of USB device in host mode:0010=device response to OUT/SETUP with ACK;1010=device response to IN/OUT/SETUP with NAK; 1110=device response to IN/OUT/SETUP with STALL; 0011=device response to IN with DATA0; 1011=device response to IN with DATA1; XX00=device acknowledge is error or time over without acknowledge; other value=illegal acknowledge/accident	XXXX
0BH	REG_USB_LENGTH	USB size register, read only/write only, read receive size of current USB transfer, in device mode, write endpoint 2 transfer size of USB, in host mode, write host transfer size of USB	xxxxxxx

0EH bit 1

0EH bit 0

BIT_EP2_TRAN_RESP

0CH	REG_USB_ENDP0	In device mode, control register of USB endpoint 0	00000000
0CH bit 7	BIT_EP0_RECV_TOG	Endpoint 0 receive synchronous flag: 0=DATA0; 1=DATA1	0
0CH bit 6	BIT_EP0_TRAN_TOG	Endpoint 0 transfer synchronous flag: 0=DATA0; 1=DATA1	0
0CH bit 5 0CH bit 4	BIT_EP0_RECV_RESP	Endpoint 0 receive respond to OUT transaction: 00=acknowledge ACK; 01=forbid; 10=acknowledge NAK; 11=acknowledge STALL	00
0CH bit 3 to bit 0	BIT_EP0_TRAN_RESP	Endpoint 0 transfer respond to IN: 0000 to 1000=acknowledge data length from 0 to 8; 1110=acknowledge NAK; 1111=acknowledge STALL; other value=forbid	0000
0DH	REG_USB_ENDP1	USB endpoint 1 control register in device mode	
0DH bit 7	BIT_EP1_RECV_TOG	Endpoint 1 receive synchronous flag: 0=DATA0; 1=DATA1	=
0DH bit 6	BIT_EP1_TRAN_TOG	Endpoint 1 transfer synchronous flag: 0=DATA0; 1=DATA1	=
0DH bit 5 0DH bit 4	BIT_EP1_RECV_RESP	Endpoint 1 receive respond to OUT transaction: 00=acknowledge ACK; 01=forbid; 10=acknowledge NAK; 11=acknowledge STALL	=
0DH bit 3 to bit 0	BIT_EP1_TRAN_RESP	Endpoint 1 transfer respond to IN: 0000 to 1000=acknowledge data length from 0 to 8; 1110=acknowledge NAK; 1111=acknowledge STALL; other value=forbid	
0EH	REG_USB_ENDP2	USB endpoint 2 control register in device mode	00000000
0EH bit 7	BIT_EP2_RECV_TOG	Endpoint 2 receive synchronous flag: 0=DATA0; 1=DATA1	0
0EH bit 6	BIT_EP2_TRAN_TOG	Endpoint 2 transfer synchronous flag: 0=DATA0; 1=DATA1	0
0EH bit 5 0EH bit 4	BIT_EP2_RECV_RESP	Endpoint 2 receive respond to OUT transaction: 00=acknowledge ACK; 01=synchronous/isochronous transfer; 10=acknowledge NAK; 11=acknowledge STALL	00
0EH bit 3	Reserved	Read data has no meaning and must be written as 0	0/?
0EH bit 2	Reserved	Read data has no meaning and must be	0/?

written as 0 Endpoint 2 transfer respond to IN:

00=acknowledge

00

8

		DATA0/DATA1;01=synchronous/			
		isochronous transfer; 10=acknowledge NAK;			
		11= acknowledge STALL			
0DH	REG_USB_H_TOKEN	In host mode, USB host token register			
		Appoint transaction/token PID:			
0DH bit 7 to bit	DIT LOST DID TOVEN	1101=SETUP;0001=OUT; 1001=IN;			
4	DII_HOSI_PID_IOKEN	0101=SOF; other value=forbid. Note: no			
		interrupt after finishing SOF, detects SIE state			
0DH bit 3 to bit	DIT HOST DID ENDD	Appoint be operated aim endpoint number:			
0	DII_HOSI_PID_ENDP	0000 to 1111= endpoint from 0 to 15			
0EH	REG_USB_H_CTRL	In USB host mode, USB host control register	00000000		
05111:47	DIT HOST DECV TOC	Host receive synchronous flag:0=DATA0;	0		
UEH DIL /	BIT_HOST_KECV_10G	1=DATA1	0		
	DIT HOST TRAN TOC	Host transfer synchronous flag: 0=DATA0;	0		
UEH DIL O	BII_HOSI_IKAN_IOG	1=DATA1	0		
		Read data has no meaning and must be	0/0		
OEH bit 5	Reserved	written as 0	0/?		
		Transfer type of host receive: 0=control/bulk	0		
0EH bit 4	BIT_HOST_RECV_ISO	/interrupt transfer;			
		1=synchronous/isochronous transfer			
		Control host transfer start: 0=pause; 1=start	0		
0EH bit 3	BII_HOSI_SIARI	transfer, after finishing clear as 0	0		
0511142	D	Read data has no meaning and must be	0/2		
0EH bit 2	Reserved	written as 0	0/?		
		Read data has no meaning and must be	0/0		
UEH bit I	Reserved	written as 0	0/ ?		
		Transfer type of host transfer: 0=control/bulk			
0EH bit 0	BIT_HOST_TRAN_ISO	BIT_HOST_TRAN_ISO /interrupt transfer;			
		1=synchronous/isochronous transfer			
0FH-1FH	Reserved	Forbid read and write	????????		
2011 2711	DAM ENDO TDAN	Endpoint 0 transfer buffer in USB device			
20H-27H	KAWI_ENDPU_IKAN	mode			
2011 2011	DAM ENDRO DECU	Endpoint 0 receive buffer in USB device			
28H-2FH	KAM_ENDPU_KEUV	mode			
2011 2711	DAM ENDDI TDAN	Endpoint 1 transfer buffer in USB device			
30H-37H	RAM_ENDPI_IRAN	mode			
	DAM ENDDI DECU	Endpoint 1 receive buffer in USB device			
38H-3FH	RAM_ENDPI_RECV	mode			
		Endpoint 2 transfer buffer in USB device			
40H-7FH	RAM_ENDP2_TRAN	mode			
		Endpoint 2 receive buffer in USB device			
COH-FFH	RAM_ENDP2_RECV	mode			
80H-BFH	RAM_ENDP2 EXCH	Endpoint 2 spare buffer in USB device mode			
40-7FH	RAM HOST TRAN	Transfer buffer in USB host mode			

C0-FFH	RAM_HOST_RECV	Receive buffer in USB host mode	
80H-BFH	RAM_HOST_EXCH	Spare buffer in USB host mode	

6. Function explanation

6.1. MCU interface

CH374 supplies universal 8-bit passive parallel interface and SPI synchronous serial interface at location (CH374G only support SPI interface). CH374 will sample state of CS#, WR# and RD# during power-up reset period. If WR# and RD# are low-level or connect to ground besides CS# is high-level or connect to positive power, then chooses SPI serial interface, otherwise chooses parallel interface.

The output interrupt request of INT# in CH374 active with low-level in default, and INT# can connect to interrupt input pin of MCU or common input pin. The MCU may use interrupt manner or detection manner to obtain interrupt request of CH374. To save pins, the MCU can not connect to INT# of CH374 but query interrupt flag register REG_INTER_FLAG in CH374 to obtain interrupt.

6.2. Parallel interface

Parallel interface signal wires contain: 8-bit bi-directional data bus D7 to D0, read strobe input pin RD#, write strobe input pin WR#, chip select input pin CS# and address input pin A0. CH374 is convenient to connect to various 8-bit CPU, DSP and MCU system bus besides coexists with many peripheral equipments through passive parallel interface.

CS# in CH374 is driven by address decoding circuit, be used to select peripheral equipments.

For MCU which are similar to Intel parallel time sequence, the RD# and WR# of CH374 can respectively connect to read strobe output pin and write strobe output pin in MCU. For MCU which are similar to Motorola parallel time sequence, the RD# must connect to low-level and WR# must connect to read /write direction output pin R/-W in MCU.

The following is true value table of parallel interface I/O (pay no attention to X bit, Z indicates CH374 tri-state is forbidden).

CS#	WR#	RD#	A0	D7-D0	Practical operation for CH374
1	0	0	v	$\mathbf{V}/7$	Sample when CH374 power-up reset, used to select SPI
1	0	0	Λ	Λ/L	interface mode
1	Х	Х	Х	X/Z	Not select CH374, carry out no operation
0	1	1	Х	X/Z	Select but no operation, carry out no operation
0	0	1/V	1	IN	Write index address to CH374, i.e. the start address of
0	$0 \qquad 0 \qquad 1/X \qquad 1$	1	11N	read/write operation	
0	0	1/ X	0	IN	Write data to specified address, after finishing it increase
0	0	$1/\Lambda$	0	11N	index address to successive write
0	1	0	0	OUT	Read data from specified address, after finishing it increase
0	1	0	0	001	index address to successive read
0	1	0	1	OUT	Read data from specified address, no change to index
0	1	0	1	001	address, easily to write return after modifying

CH374 occupies 2-bit of address. When A0 is high-level selects index address endpoint to write new index address or read data but keep index address no change. When A0 is low-level selects data endpoint to read and write data corresponding to index address. After reading and writing increases index address automatically to write next data easily. The process of reading from and writing to CH374 through 8-bit

10

parallel interface is as following: write index address to index address endpoint and read or write several data successively.

6.3. SPI Serial interface

SPI synchronous serial interface signal wires contain: SPI chip select pin SCS#, serial clock input pin SCK, serial data input pin SDI and serial data output pin SDO. Through SPI serial interface, CH374 is convenient to connect to SPI serial bus of various MPU, DSP and MCU while using lesser connections. It can also links point-to-point for further distance.

The SCS# is driven by SPI chip select pin or common output pin of MCU. SCK in CH374 is driven by SPI clock output pin SCK of MCU. SDI is driven by SPI data output pin SDO. SDO pin connects to SPI data input pin SDI of MCU. The recommend to set hardware SPI interface is CPOL=CPHA=0 or CPOL=CPHA=1.

The SPI interface in CH374 supports MCU to use common I/O pin to simulate SPI interface to communicate. SDO in CH374 is tri-state output pin, and only to output after receiving read operation. The SDO and SDI in CH374 can parallel connect to link to bi-direction I/O pin of MCU to save pins. One recommendation is serial connecting several hundreds ohmic resistor to SDO in CH374 then parallel connects to SDI pin.

SPI in CH374 supports SPI mode 0 and mode 3. CH374 is always input data in rising edge of the SPI clock SCK, and output data in falling edge of SCK when allowing output. The list of data is high bit is before and count 8 bit as one byte.

The operation process of SPI is following:

- ① MCU generates SPI chip select signal of CH374, active with low;
- 2 MCU sends one byte address code according to SPI output mode to appoint the initiative address of read and write operation.
- ③ MCU sends one byte command code to appoint operation direction. The read command code is C0H and the write command code is 80H;
- ④ If the operation is Write, MCU sends one byte waited data, address automatically increase after CH374 receiving data and saving it to appointed address. Then MCU continues to send one byte waited data and CH374 to deal with until MCU forbidding SPI chip select;
- (5) If the operation is Read, CH374 read one byte data from appointed address and output then increases address automatically. MCU receives data and saves. CH374 continues to read data from next address and output until MCU forbidding SPI chip select.

⁽⁶⁾ MCU forbids SPI chip selects in CH374 to finish current SPI operation.

The following is SPI logic time sequence image. The former is writing 34H to address12H, and the later is reading 78H from address 56H.

11

6.4. Other hardware

The unused pin can be left suspend of CH374 in actual circuit.

ACT# in CH374 appoints state. In USB device mode, BIT_SETP_LED_ACT selects active ACT# pin output low-level. The USB transfer process is relevant to self is in default and also can select all transfer including SOF package of USB host. In USB host mode, the pin output high-level when USB device disconnects; the pin output low-level after USB device connecting. The ACT# can external connect LED which serial connects limited current resistor to appoint relevant state.

UD+ and UD- are USB signal wires. When works on USB device mode, they must connect to USB bus directly. When works on USB host mode, they can directly connect to USB device. In order to keep safe to serial connect secure resistor or inductance or ESD protective equipments, the AC/DC equivalent serial connect resistor is within 5Ω .

UEN pin in CH374 is used to control USB signal wire UD+ and UD- output enable. For without UEN pin of CH374T, must set BIT_CTRK-OE_POLAR as 1. For CH374S, UEN pin controls whether allow USB signal output or not. UEN pin can connect to USB device power wire after serial connecting resistor to avoid USB device to continue sending USB signal when losing work power. UEN can be used to woke up sleeping CH374.

CH374 internal set power-up reset circuit and no need external supply reset in generally. RSTI is used to external input asynchronous reset signal; CH374 is reset when RSTI is high-level; when RSTI resume low-level, CH374 internal will continue delay reset about 25mS to step into work state. In order to credibly reset and reduce external disturbing during power-up period, a 0.1uF capacitance can over connect between RSTI and VCC. RST and RST# are reset state output pins and active with high-level and low-level respectively. RST and RST# respectively output high-level and low-level when CH374 power-up reset, forced to reset by external or reset delay and watchdog time over. After CH374 finishes internal reset, RST and RST# will continue delay decades milliseconds then resume to low-level and high-level respectively. RST and RST# supply power-up reset signal for external MCU. Executing any write operation for CH374 can clear watchdog counter time.

The CH374 needs outside to supply 24MHz clock to work normally. In common, clock signal is generated by inverter in CH374 through oscillating of crystal keeping frequency. A crystal of 24MHz between XI and XO can compose the peripheral circuit and connects a high frequency oscillator capacitance to ground respectively. The 24MHz clock signal directly input to XI while suspending XO.

SLP is sleeping state output pin and output low-level in default. If set BIT_CTRL_OSCIL_OFF as 1 to close clock oscillator, then CH374 comes into sleeping state. SLP output high-level until arose to resume low-level.

CKO in CH374 is programmable clock output, and used to supply clock signal from 3MHz to 24MHz. It supports dynamically adjusts clock frequency and transition smoothness. The pin will stop output clock when CH374 come into sleeping state.

CH374 chip supports 5V source voltage or 3.3V source voltage (some types don't support 3.3V voltage). VCC pin input external 5V source when CH374 works with 5V power. And V3 pin must external connect to power-decoupling capacitance range from 4700pF to 0.02uF. When use 3.3V power, V3 in CH374 must be connected to VCC and input external 3.3V power. The other chip that connects to CH374 works voltage is not surpassing 3.3V. One suggestion is that set BIT_CTRL_USB_POWER as 1 to economize power.

6.4. Internal structure

In function, CH374 is a pure interface chip of CH375 removes command explanation device, protocol handing device and common firmware program. The external MCU program is more complex because of removing protocol handling device and firmware program. The interface speed with MCU is higher due to

reduce inner transact etc middle process.

CH374 has a compound USB host mode with USB device mode USB interface engineer SIE and ROOT-HUB to finish physical USB data transfer and receive, deal with bit tracking automatically and synchronous, NRZI code and decode, bit (be) stuffing, parallel/serial data conversion, CRC data checking, transaction handshake, retry error, USB bus state detection and so on.

There are seven endpoints in CH374 inner.

The port0 is a default endpoint, supports upstream and downstream. The buffer of upstream and downstream is 8-byte respectively.

The port1 includes upstream and downstream endpoint and buffer of each is 8-byte. The upstream endpoint number is 81H while the downstream endpoint number is 01H.

The port2 includes upstream and downstream endpoint and buffer of each is 64-byte. The upstream endpoint number is 82H while the downstream endpoint number is 02H.

The host endpoints include output and input endpoint, and each buffer is 64 bytes. The host endpoint is operable to port2 with one buffer. The transfer buffer of host is the upstream buffer of port2 as the receive buffer of host is downstream buffer of port2.

The port0, port1 and port2 of CH374 are used to USB-DEVICE mode while the host endpoint is used to USB-HOST. In USB-HOST mode, CH374 supports various common USB low-speed and full-speed devices. The endpoint number is from 0 to 15 in USB devices, and two directions can support up to 31 endpoints. The package size is from 0 to 64 bytes of USB device and receive maximum package size is 128 bytes.

7. Parameter

7.1. Absolute Maximum Rating (Stresses above those listed can cause permanent damage to the device. Exposure to maximum rated conditions can affect device operation and reliability.)

Name	Param	eter note	Min.	Max.	Units
ТА	Ambient	VCC=5V	-40	85	Ŷ
	temperature	VCC=V3=3.3V	-40	85	C
TS	Storage t	emperature	-55	125	°C
VCC	Source voltage to power, G	e (VCC connects ND to ground)	-0.5	6.0	V
VIO	The voltage o	f input or output pin	-0.5	VCC+0.5	V

7.2. Electrical parameter (test conditions: TA=25°C,VCC=5V,exclude pin connection of USB bus) (The every current parameter must multiply the coefficient of 40% when the power is 3.3V)

Name		Note of	parameter	Min.	Typical	Max.	Units	
VCC	Source	V3 doe	esn't connect to VCC	4.5	5	5.3	V	
VCC	voltage	V3	connects to VCC	3.3	3.3	3.6	v	
ICC	Total source current when working		VCC=5V		4	30	mA	
ICC			VCC=3.3V		2	15	IIIA	

ISLP	Source current with low-power, I/O pin in	VCC=5V		0.15	0.2	mA
	up	VCC=3.3V		0.05	0.08	
VIL	LOW-level Input Voltage		-0.5		0.7	V
VIH	HIGH-level Input Voltage		2.0		VCC+0.5	V
VOL	Output Voltage LOW (draw 4mA current)				0.5	V
VOH	Output Voltage HIGH (4mA output current)		VCC-0.5			V
IUINT	Output current HIGH pull-up in INT#		24	240	360	uA
IUACT	Output current HIGH pull-up in ACT#		53	530	800	uA
IUP	Input current in other input port with internal pull-up resistor		3	150	250	uA
IDUEN	UEN input current with internal pull-down resistor		-30	-60	-120	uA
IDRI	Input current in RSTI with internal pull-down resistor		-70	-140	-210	uA
VR	Edge power whe	en power-up reset	2.4	2.7	3.0	V

7.3. Basic time sequence (test conditions: TA=25°C,VCC=5V or VCC=3.3V)

Name	Explanation of parameter	Min.	Typical	Max.	Units
FCLK	The clock freq of XI in mode of USB-HOST	23.99	24.00	24.01	MHz
TPR	Reset time of internal power-up	15	20	40	mS
TRI	Effective signal width of external reset	100			nS
TRD	Delay time of external reset	15	17	20	mS
TR0	RST and RST# output reset time when power-up	60		150	mS
TDGC	Watchdog count time cycle (overflow time)	950		1170	mS
TDGR	The reset time generated by watchdog count time overflow	60	64	140	mS
TWAK	Chip wake-up time	3	5	15	mS
TINT	INT# interrupt pulse width in low-level pulse mode	8		16	mS
TNAK	The overtime of NAK automatically retry	3900		4200	mS

7.4. Parallel interface time sequence (test conditions: TA=25°C, VCC=5V, parameter VCC=3.3V in bracket, refer to the following picture)

(RD implies RD# and CS# are active, execute read operation when WR#=1 & RD#=CS#=0)

Explanation of parameter Name Min. Typical Max. Units TWW Write pulse width 40 (65) nS TRW Read pulse width 40 (65) nS TWS The interval width of READ pulse or WRITE pulse 120 (135) nS Address to Read HIGH or Write HIGH SET-UP TAS 6 nS TIME

(WR implies WR# and CS# are active, execute write operation when WR#=CS#=0)

TAH	Address hold time after Read HIGH or Write HIGH	3			nS
TIS	Data to Write HIGH set-up time	3			nS
TIH	Data hold time after Write HIGH	6			nS
TON	Data valid after Read LOW		30 (45)	30 (55)	nS
TOF	Data hold after Read HIGH			20 (35)	nS

7.5. Serial interface time sequence (test conditions: TA=2	5°C,VCC=5V	/, parameter `	VCC=3.3V	' in
bracket, refer to the upper picture)				

Name	Explanation of parameter	Min.	Typical	Max.	Units
TSS	SCS# LOW to SCK LOW set-up time	20 (30)			nS
TSH	SCK HIGH to SCS# HOLD TIME	20 (30)			nS
TNS	SCS# HIGH to SCK LOW set-up time	20 (30)			nS
TNH	SCKHIGH to SCS# HIGH hold time	20 (30)			nS
TN	SCS# invalid time	60 (100)			nS
TCH	High–level time of SCK	20 (30)			nS
TCL	Low-level time of SCK	20 (30)			nS
TDS	SDI input to SCK rising edge set-up time	8 (12)			nS
TDH	After SCK rising edge to SDI input hold time	5			nS
TOE	SCK falling edge to SDO output valid	2	12 (20)	20 (30)	nS
TOX	SCK falling edge to SDO output change		8 (12)	12 (20)	nS
TOZ	SCS# invalid to SDO output invalid			20 (30)	nS

8.Application

8.1. Parallel interface mode (the following image)

This is parallel connection circuit of CH374.

In the image, the VCC of CH374 is 5V in default. If VCC is 3.3V, connect V3 and VCC. The USB source power is 5V which is supplied to the USB port P1.

The capacitance C3 eliminates the coupling of inner power of CH375.The capacity of C3 is 4700pF to 0.02uF.It is made of monolithic or high frequency ceramic. The C4 is used to decoupling of external power. The C4 is 0.1uF and made of monolithic or high frequency ceramic.

The crystal X1, capacitance C1 and C2 are composed of clock oscillating circuit of CH374.The USB-HOST manner needs exact frequency. The frequency of X1 is 24MHz±0.4‰,C1 and C2 are monolithic or high frequency ceramic capacitors of 22pF. Capacitance C5 is optional and only be used to prolong reset time when CH374 power-up. In generally, the C5 can be taken out of the application circuit.

If the source power of CH374 is 3.3V, connect V3 and VCC, and input 3.3V voltage, take the C3 out of the circuit.

When designing the PCB, pay much attention to some notes: decoupling capacitance C3 and C4 must keep near to connection pin of CH374; makes sure D+ and D- are parallel and supply ground or cover copper besides to decrease the disturb from outside signal; the relevant signal leads between XI and XO must be kept as short as possible. In order to lessen the high frequency clock disturb outside, setting ground wire on the circle or covering copper to the relative equipment.

In USB-HOST application, resistor R2 and capacitance C7 are usually used to limit peak current when USB device connecting. UEN connects to USB power via $1K\Omega$ resistor and be used to close USB output signal when lose sources. L1 and limited resistor R1 are optional to indicate state.

CH374 also supplies assistant signal as following: RST and RST# can be used to supply power reset and watch-dog reset signal for MCU; CKO can supply clock signal for MCU which can be automatically programmed; SLP can supply automatically awake control for MCU or other device.

The program of MCU can be substituted of detecting interrupt token register if the INT# doesn't connect.

CH374 has common passive parallel interface and can directly connect to various MPU, DSP, MCU and so on through D0-D7,A0,-RD,-CS and –INT signal.

8.2. Serial interface mode (the following picture)

CH374 works on the SPI serial interface mode when RD# and WR# connect to ground while CS# is high-level or suspended. On SPI serial interface mode, CH374 only connects five signal wires to

MPU/DSP/MCU and the five signal wires are SCS#, SCK, SDI, SDO and INT#. The other pins are left suspended.

In order to save pins, INT# can be left disconnected and replace detection of interrupt token register, but the detection efficient is low.

SDO can be serially connected to 330Ω resistor R4 then parallel connected to SDI, at last connected to SDI and SDO in MCU to economize pins. Certainly, the SDO in MCU must be three-state or can be close output.

The circuit of SPI serial interface mode is the same with parallel interface mode except the connect lines is less. In the soft program, the program is basically same with parallel interface mode except the interface sub-program of hardware abstract layer.

The SPI serial interface mode of CH374 supply USB communication and control USB device mode for MCU which has limited I/O pins and without parallel interface bus.

