

CH7211 DisplayPort to HDMI 2.0 Converter on USB Type C

FEATURES

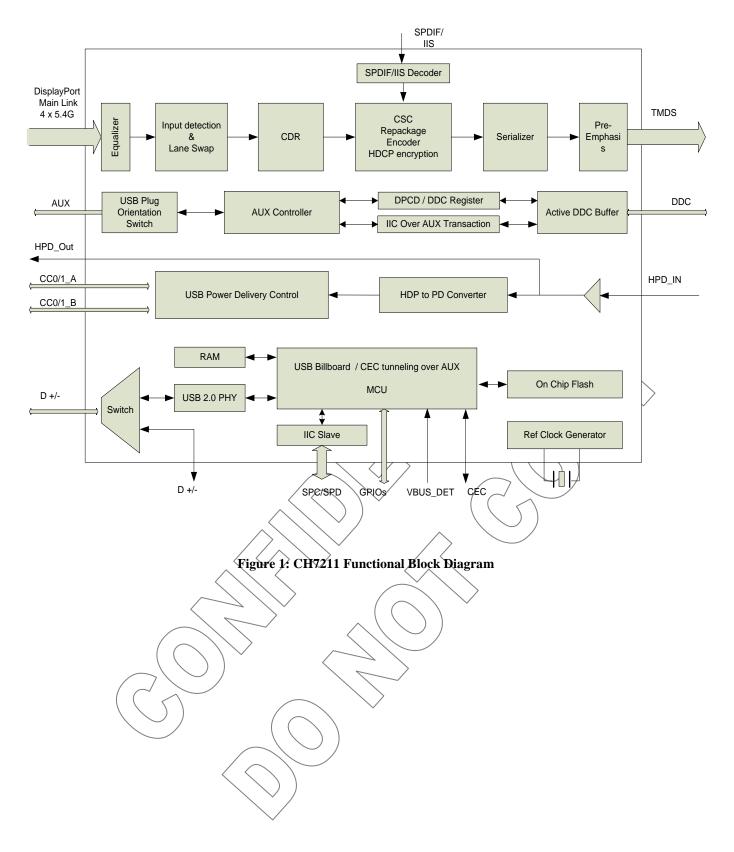
- Compliant with DisplayPort Alternate Mode on USB Type C standard
- Compliant with DisplayPort Specification version 1.3 and Embedded DisplayPort (eDP) Specification version 1.4
- Support up to 4 Main Link Lanes at 1.62Gbps,2.7Gbps (HBR) or 5.4Gbps (HBR2) link rate
- Automotive DP input signal detection and Lane swap supported for compliance with the USB type C cable plug orientation switch
- DP_BR signaling modes supported
- DisplayPort receiver auto equalization supported for the compensation of input signal attenuation
- Support Spread Spectrum Clocking (de-spreading) for EMI reduction
- Fast and full Link Training for embedded DisplayPort system
- Support eDP Authentication: Alternative Scramble Seed Reset and Alternative Framing
- USB Power Delivery control module supported with HPD to PD converter integrated
- HDMI transmitter compliant with HDMI specification version 2.0 and DVI specification version 1.0
- HDMI transmitter supports up to 6.0Gbps data rate for video timing of 4Kx2K@60Hz
- HDMI 3D dual view and 3D audio are supported
- High-Dynamic-Range (HDR) display are supported
- YCC 4:4:4/4:2:2 to YCC 4:2:2/4:2:0,Y-only(Gray display) conversion are supported
- HDCP engine compliant with HDCP 2.2 specification with internal HDCP Keys
- HDCP 2.2 repeater supported
- Active DDC buffer and related control register integrated
- IIC-over-AUX transaction supported
- CEC tunneling over AUX is supported
- Programmable equalizer
- Programmable Pre-Emphasis on output driver supported
- Single 3.3V power supply with regulator integrated
- On-chip Audio Decoder which support 8 channel Audio input from DP Rx and output from HDMI Tx with sample rate up to 192KHz
- SPDIF/IIS input supported with audio sampling rate up to 192KHz
- Embedded MCU to handle the control logic
- USB billboard module integrated
- USB 2.0 PHY supported with internal switch for data/file transport
- Firmware run on On-chip Flash directly, integrated EDID Buffer
- DP AUX channel and IIC slave interface are available for firmware update and debug IIC slave interface are

GENERAL DESCRIPTION

Chrontel's CH7211 is a low-cost, low-power semiconductor device that translates the DisplayPort signal to HDMI/DVI through the USB Type-C connector. This innovative USB Type-C based DisplayPort receiver with an integrated HDMI Transmitter is specially designed to target the USB Type-C to HDMI converter, adopter and docking device. Through the CH7211's advanced decoding / encoding algorithm, the input DisplayPort high-speed serialized multimedia data can be seamlessly converted to HDMI/DVI output.

The CH7211's DP/eDP receiver is compliant with the DisplayPort Specification 1.3 and Embedded DisplayPort (eDP) Specification version 1.4. With sophisticated DisplayPort signal detection and the Lane Swap/AUX polarity inversion logic, the CH7211 supports USB Type-C cable plug orientation switch. With internal HDCP key Integrated, the device support HDCP 2.2 specifications. In the device's receiver block, which supports four DisplayPort Main Link Lanes input with data rate running at 1.62Gbps, 2.7Gbps or 5.4Gbps, and converted the input signal to HDMI output up to 4Kx2k@60Hz. Leveraging the USB Power Delivery control logic, the USB billboard module for USB device indentify and DisplayPort's unique source/sink "Link Training" routine, the CH7211 is capable of instantly bring up the video display to the HDMI/DVI TV/Monitor when the initialization process is completed.

The CH7211 also supports up to 8-channel audio input from either DP Rx or SPDIF port and output from HDMI Tx with sample rate up to 192 KHz. Available audio bandwidth depends on the pixel clock frequency, the video format timing, and whether or not content protection re-synchronization is needed.


With sophisticated MCU and the On Chip Flash, CH7211 support auto-boot and EDID buffer. Leveraging the firmware auto-loaded from Flash, CH7211 can support DP input detection, HDMI connection detection, and determine to enter into Power saving mode automatically. available for debug

- AUX channel, USB and Type-C port are available for firmware update.
- Support Auto Power Saving mode and low stand-by current
- Anti-back drive support
- Low power architecture
- RoHS compliant and Halogen free package
- HBM 2KV ESD performance
- Offered in 64 pin QFN package (8 X 8 mm)

APPLICATION

- USB Type C to HDMI 2.0 cable/Adapter/Docking Station
- On-board DP to HDMI 2.0 application
- Handheld/Portable Device

CHRONTEL

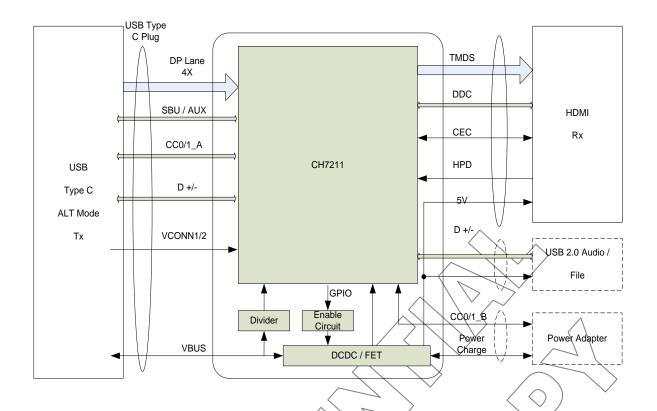
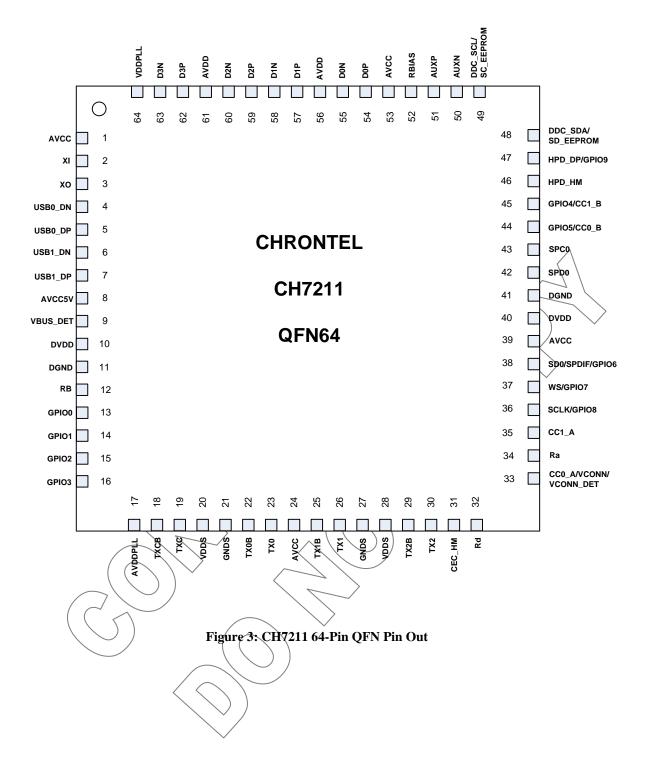



Figure 2: CH7211 USB Type-C to HDMI / USB 2,0 / Power Charge Docking Application Block Diagram

1.0 PIN-OUT

1.1 Package Diagram

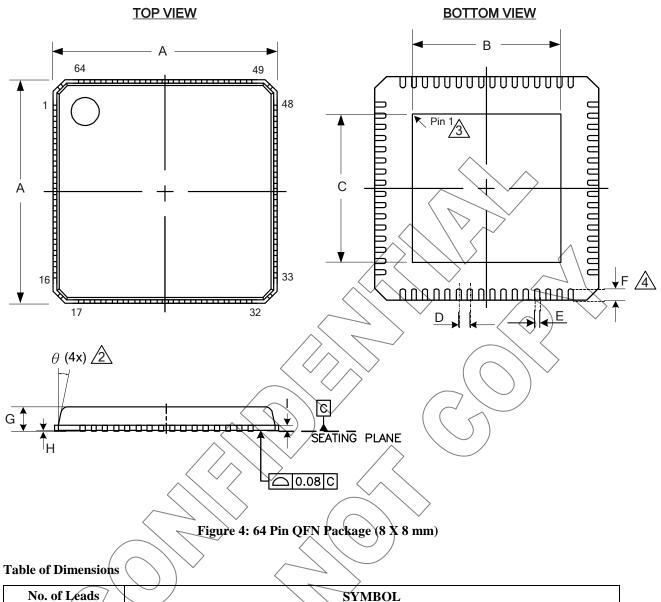
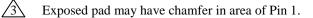

1.2 Pin Description

Table 1: 64 BGA Pin Name Descriptions

Pin #	Туре	Symbol	Description			
2	In	XI	Crystal Input / External Reference Input			
			A parallel resonance crystal should be attached between this pin and			
			XO. An external 3.3V CMOS compatible clock also can drive the XI			
-			Input			
3	Out	XO	Crystal Output			
			A parallel resonance crystal should be attached between this pin and			
			XI / FIN. However, if an external CMOS clock is attached to XI/FIN,			
4,5	In/Out	USB0 DN/	XO should be left open D+/- Input of USB Type C Interface			
4,5	III/Out	USB0_DN/ USB0_DP	D+/- Input of USB Type C Interface			
6,7	In/Out	USB1_DN/	USB 2.0 Output Pins			
		USB1_DP				
9	In	VBUS_DET	USB VBUS Voltage Detection			
			Voltage input 0 ~ 5V			
12	In	RB	Reset* Input (Internal pull-up)			
			When this pin is low, the device is held in the power-on reset			
			condition. When this pin is high, reset is controlled through the serial			
			port register.			
13~16	In/Out	GPIO[3:0]	General Purpose/Input/Output Interface			
18,19	Out	TXCB/ TXC	HDMI Clock Outputs			
			These pins provide the differential clock output for the MDMI			
22,23	Out	TX0B/ TX0	HDMI Data Channel 0 Outputs			
			These pins provide the TMDS differential outputs for data channel 0			
25,26	Out	TX1B/ TX1	HDMI Data Channel 1 Outputs			
20/20			These pins provide the TMDS differential outputs for data channel 1			
29/30	Out	TX2B/TX2	HDMT Data Channel 2 Outputs			
31	In/Out	CEC_HM	These pins provide the TMDS differential outputs for data channel 2 HDMI CEC Channel			
	III/Out					
32	In	Rd	USB Type-C Dead Battery Rd Resistor			
22	In /Out		Connect CC0_A to this pin to enable dead battery Rd on CC0_A pin			
33	In/Out	CC0_A	Port A USB Type-C Configure Channel 0			
	In	VCONN >	VCONN Input			
			Connect this pin to VCONN pin of USB Type-C Plug Connector if			
			CH7211 is used in VCONN Power Accessory mode.			
	In (VÇONN_DET	USB VCONN Voltage Detection			
24		Ra	Voltage input 2.7 ~ 5.5v			
34		Ka	Ra Resistor When used in typeC accessory mode, this pin needs connect to CC0.			
35	In/Out	CC1_A	Port A USB Type-C Configure Channel 1			
36	In	SCLK	HSAudio Input's Bit clock			
50						
	In/Out	GPIO8	General Purpose Input/Output Interface			
37	In	ws	/IIS Audio Input's WS			
	In/Out	GPIO7 V	General Purpose Input/Output Interface			
38	In	SD0/SPDIF	IIS Audio Input's Data or SPDIF Input.			
	In/Out	GPIO6	General Purpose Input/Output Interface			
	T (0)	SPD0	Serial Port Data Input / Output			
42	In/Out	SEDU				
42	In/Out	5100	This pin functions as the bi-directional data pin of the serial port.			

43	In	SPC0	Serial Port Clock Input			
			This pin functions as the clock pin of the serial port. External pull-up			
44	In/Out	CC0_B	6.8 KΩ resister is requiredPort B USB Type-C Configure Channel 0			
	In/Out	GPIO5	General Purpose Input/Output			
45	In/Out	CC1_B	Port B USB Type-C Configure Channel 1			
40	In/Out	GPIO4				
16			General Purpose Input/Output			
46	In	HPD_HM	HDMI Tx HPD Input			
47	Out	HPD_DP	DP Rx HPD Output			
	In/Out	GPIO9	General Purpose Input/Output			
48	In	DDC_SDA	Serial Port Data to HDMI Receiver The pin should be connected to data signal of HDMNDDC. This pin			
			requires a pull-up 1.8 k Ω resistor to the desired voltage level			
	In/Out	SD_EEPROM	Connect to External EEPROM I2C Port Data The EEPROM is optional depending on FW size			
49	Out	DDC_SCL	Serial Port Clock Output to HDMI Receiver			
77	Out	DDC_DCL	The pin should be connected to clock signal of HDMI DDC. This pin			
			requires a pull-up 1.8k Ω resistor to the desired voltage level			
	Out	SC_EEPROM	Connect to External EEPROM I2C Port Clock			
50,51	In/Out	AUXN/AUXP	AUX Channel Differential Input/Output			
			These two pins are DisplayPort AUX Channel control, which supports			
50	· ·	DDIAG	a half-duplex, bi-directional AC-coupled differential signal.			
52	In	RBIAS	HDMI/Swing Control This pin sets the swing level of the HDMI outputs. A 1K-ohm with 1%			
			tolerance resistor should be connected between this pin and ground			
			using short and wide traces.			
54,55	In	D0P/D0N	PP Main Link Differential Lane 0 Input			
		\sim	These pins accept four AC-coupled differential pair signals from the			
			DisplayPort transmitter.			
57/58	In	D1P/D1N	DP Main Link Differential Lane 1 Input			
		$\land \land \land$	These pins accept four AC-coupled differential pair signals from the DisplayPort transmitter.			
59,60	In	Ø2P/ D2N	De Main Link Differential Lane 2 Input			
57,00	III		These pins accept four AC-coupled differential pair signals from the			
		$///\sim$	DisplayPort transmitter.			
62,63	In (D3P/D3N	DP Main Link Differential Lane 3 Input			
	\square	\bigcirc	These pins accept four AC-coupled differential pair signals from the DisplayPort transmitter.			
1,24,39,5	Power	AVCC	Analog Power Supply(3.3V)			
3		nvee				
8	Power	AVCC5V	Analog Power Supply (5V)			
10,40	Power	DVDD	Digital Core/IO Power Supply (1.2V)			
11,41	Power	DGND	Digital Ground			
17	Power	AVDDPLD	PLL Power Supply (1.2V)			
20,28	Power	VDDS	Serializer Power Supply (1.2V)			
21,27	Power	GNDS	Ground			
56,61	Power	AVDD	Analog Power Supply (1.2V)			
64	Power	VDDPLL	PLL Power Supply (1.2V)			

2.0 PACKAGE DIMENSION


10.01	Leaus	$\langle \ $	SIMBOL							
64 (8 X	8 mm) 🧹	À	В	-C	D	Е	F	G	Н	Ι
Milli-	MÌN	/ 7.9	4.85	4.85	0.4	0.15	0.30	0.7	0	0.2
meters	MAX	8.1	6.3	6.3	0.4	0.25	0.50	1	0.05	0.2
					/					

Notes:

1. Conforms to JEDEC standard JE\$D-30 MO-220.

Side of body may be square or curved.

4 Pins may protrude from edge of body by 0.05 mm.

Disclaimer

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. CHRONTEL warrants each part to be free from defects in material and workmanship for a period of one (1) year from date of shipment. Chrontel assumes no liability for errors contained within this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.

		ORDERING INFORMATION	
Part Number	Package Type	Operating Temperature Range	Minimum Order Quantity
CH7211A-BF	64 QFN, Lead-free	Commercial: 0 to 70°C	260/Tray

Chrontel

Chrontel International Limited

129 Front Street, 5th floor,

Hamilton, Bermuda HM12

www.chrontel.com E-mail: sales@chrontel.com

©2017 Chrontel - All Rights Reserved.