

CHT-CG-050

Preliminary datasheet Version 0.4 (08/2005)

Versatile High Temperature Clock Generator

General Description

The CHT-CG-050 is a versatile High-Temperature crystal clock generator with extended functional capabilities. The chip features a programmable crystal oscillator driver with an enable/disable control signal, an external clock input, a programmable divider chain and a programmable strength three-state output buffer. Using an external crystal, it is intended to provide reliable precision performance throughout the -30 to +225°C temperature range for supply voltages between 3V and 5V.

The CHT-CG-050 can operate with crystals from 1MHz to 50MHz. The output frequency can be selected by means of a programmable divider, providing division factors of one, two, four and eight. The programmability of the crystal driver allows working with a wide range of crystals. A crystal driver enable pin (/XtalEn) is included for extremely low power applications, as well as an output enable pin (/OE). In applications requiring only a precision divider chain, where an external clock source is already present, the crystal driver may be bypassed by means of inputs ExtClkIn and ExtClkEn.

Features

- 3V to 5V power supply
- Qualified from -30 to +225°C (T_i)
- Operational up to +250°C (T_i)
- Two input sources: crystal (1 to 50 MHz), external clock (DC to 50MHz)
- Operation from 32.768kHz crystals
- Programmable frequency divider: f_{in}, f_{in}/2, f_{in}/4 and f_{in}/8
- Programmable crystal driver and output driver strength
- Available in several standard packages or as die

Applications

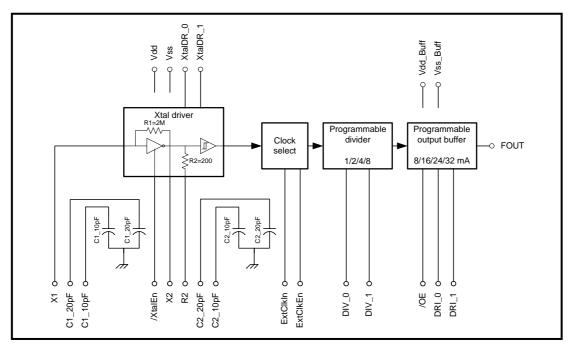
- Well logging, Automotive, Aeronautics
 & Aerospace
- Precision timing

Pin Description

C1_10pF	Built-in	capacitors	with	а
C1_20pF	commor	n terminal co	nnect	ed
C2_10pF	to Vss.			
C2_20pF				

DIV_0 Inputs to set the division DIV_1 factor.

DIV_1	DIV_0	Factor
0	0	1
0	1	2
1	0	4
1	1	8


DRI_0 Inputs to set the output DRI_1 buffer strength.

TRUTH TABLE				
DRI_1	DRI_0	DRI_0 Strength		
0	0	8mA		
0	1	16mA		
1	0	24mA		
1	1	32mA		

ExtClkEn	When driven HIGH, opera- tion from the external clock source is selected.
ExtClkIn	Input for an external clock source.
FOUT	Output signal.
/OE	When driven LOW, output is enabled, When driven HIGH, output is at high im- pedance.
R2	Terminal of a 200Ω resistor. The other terminal of this resistor is connected to X2.

Pin Description (Cnt'd) X2		Output of crystal driver			
Vdd	Circuit core power supply terminal.	XtalDR_0 XtalDR_1	Inputs to set the crystal drive strength.		
Vdd_Buff	Output buffer power supply		TRUTH TABLE XtalDR_1 XtalDR_0 Strength 0 0 Lowest		
	terminal.		0 1 Low 1 0 High		
Vss	Circuit core ground terminal.		1 1 Highest		
Vss_Buff	Output buffer ground termi- nal.	/XtalEn	When driven LOW, the crys- tal oscillator is enabled. When driven HIGH, the		
X1	Input of crystal driver		crystal oscillator is stopped.		

Internal architecture

Absolute Maximum Ratings

Supply Voltage V _{DD} to GND	
Voltage on any Pin to GND	

ESD Rating (expected)

Human Body Model

-0.5 to 6.0V -0.5 to V_{DD}+0.3V

1kV

Operating Conditions

Supply Voltage V_{DD} to GND Junction temperature

3.3V to 5V -30°C to +225°C

Operation up to $+250^{\circ}$ C (T_j) can be obtained with little increase of the current consumption.

Electrical Characteristics

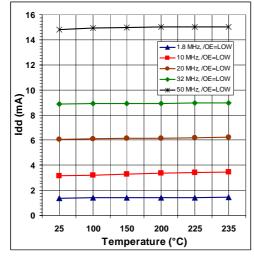
Unless otherwise stated: V_{DD} =5V, $\underline{T_i}$ =25°C. Bold figures indicate values over the whole temperature range (-30°C < T_i < +225°C).

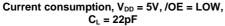
Parameter	Condition	Min	Тур	Max	Units
Supply voltage		3.13		5.5	V
	$\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 3V, \ F_{\text{IN}} = 1.8 \text{MHz} \\ \hline \\ Output \ disabled \ (/\text{OE: HIGH}) \\ \hline \\ V_{\text{DD}} = 3V, \ F_{\text{IN}} = 1.8 \text{MHz} \\ \hline \\ Output \ enabled \ (/\text{OE: LOW}) \\ \end{array}$		0.141 0.374 0.405		-
	$C_{L} = 22pF$ $V_{DD} = 3V, F_{IN} = 32MHz$ Output disabled (/OE: HIGH)		0.800		
	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3V, \ F_{IN} = 32MHz \\ Output \ enabled \ (/OE: \ LOW) \\ C_L = 22pF \end{array}$		5.08 5.15		
Current consumption ^a	$V_{DD} = 5V, F_{IN} = 1.8MHz$ Output disabled (/OE: HIGH)		1.01		
ldd	$V_{DD} = 5V, F_{IN} = 1.8MHz$ Output enabled (/OE: LOW) $C_L = 22pF$		1.40 1.44		mA
	$V_{DD} = 5V, F_{IN} = 32MHz$ Output disabled (/OE: HIGH)		1.84		
	$V_{DD} = 5V, F_{IN} = 32MHz$ Output enabled (/OE: LOW) $C_L = 22pF$		8.97 9.08		
	$V_{DD} = 5V, F_{IN} = 50MHz$ Output disabled (/OE: HIGH)		2.49		
	$V_{DD} = 5V, F_{IN} = 50MHz$ Output enabled (/OE: LOW) $C_L = 22pF$		14.82 15.03		
Minimum HIGH level output voltage V _{он}	$R_{LOAD} = 600\Omega$	4.67			V
Maximum LOW level output voltage V_{oL}	$R_{LOAD} = 600\Omega$			0.30	V
Minimum HIGH level input voltage V _{IH}		3.15			V
Maximum LOW level input voltage V _{IL}				1.35	V
Internal capacitors					
Initial accuracy			17		%
Temperature depend- ence	ΔT = 200°C		0.6		%
TC1	$C(T) = C(T_0) [1+TC1.(T-T_0)+TC2.(T-T_0)^2]$		0.023		10 ⁻³ /K
TC2			0.013		10 ⁻⁶ /K ²

^a The given value includes the consumption due to the load. Current consumption due to a capacitive load must be computed according to $I_{LOAD} = C_L \cdot V_{DD}$.f.

AC Electrical Characteristics

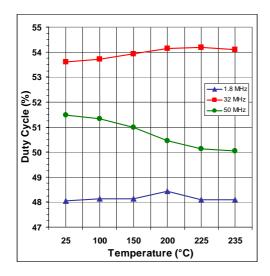
Unless otherwise stated: $V_{DD}=5V$, <u>T_i=25°C</u>. Bold figures indicate values over the whole temperature range (-30°C < T_i < +225°C).

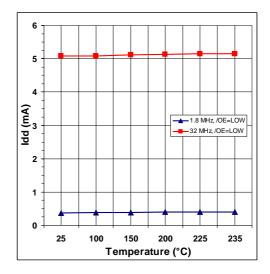

Parameter	Condition	Min	Тур	Max	Units
Frequency range F _{IN}		1		50	MHz
Duty cycle @ 50% V_{DD} DC ^{b c}	F_{IN} =1.8MHz, V_{DD} = 5V			48/52	
	F_{IN} =32MHz, V_{DD} = 5V		47/53	45/55	%
	F_{IN} =50MHz, V_{DD} = 5V			45/55	
Output rise time ^d 10% to 90% V _{DD} t _r	Vdd = 5V, Z_{LOAD} = 1M Ω // 22pF		3.0		ns
	Vdd = 5V, Z_{LOAD} = 600 Ω // 15pF		2.5		
Output fall time ^e 10% to 90% V _{DD} t _f	Vdd = 5V, Z_{LOAD} = 1M Ω // 22pF		2.5		ns
	Vdd = 5V, Z_{LOAD} = 600 Ω // 15pF		2.1		
Oscillation established after Vdd goes high ^f t _{power-on}	V_{DD} from 0 to 5V		1.2 3.2		ms
Oscillation established after /XtalEn goes LOW ^g t _{start-up}	V _{DD} = 5V /XtalEn from LOW to HIGH		0.6 1.4		ms

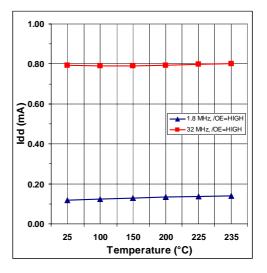

 $^{\rm b}$ Duty cycle is measured with a unitary division factor and Z_{LOAD} = 1050 Ω // 22pF.

^c Depends on used crystal and **R2** value.

- ^d Depends on load conditions and DRI_0, DRI_1 settings. ^e Depends on load conditions and DRI_0, DRI_1 settings. ^f Depends on used crystal and XtaIDR_0, XtaIDR_1 settings.
- ⁹ Depends on used crystal and XtalDR_0, XtalDR_1 settings.






Current consumption, $V_{DD} = 5V$, /OE = HIGH

Duty cycle, $V_{DD} = 5V$

Current consumption, V_{DD} = 3V, /OE = LOW, C_L = 22pF

Current consumption, $V_{DD} = 3V$, /OE = HIGH

Circuit functionality

Operating conditions

The CHT-CG-050 has been qualified for supply voltages ranging from 3V up to 5.5V. The upper limit is imposed by the technology on which the CHT-CG-050 is implemented.

The qualification temperature range extends from -30°C to +225°C, though functionality is above +250°C is achieved with little increase of the current consumption.

Crystal driver

XtaIDR_0 and **XtaIDR_1** allow the crystal driver to change its strength to be able to oscillate with a wide range of crystals, under any supply (3V to 5V) and temperature (up to 225°C) condition.

The presence of integrated passive components offers a great versatility to the final user. Highly temperature-stable capacitors allow for a nearly-constant crystal load along the whole temperature range. Internal passive components can be bypassed or tied to ground if needed.

/XtalEn enables or disables the crystal oscillator to operate, allowing the CHT-CG-050 to be embedded into power-optimized high-temperature applications.

Clock source selector

By means of **ExtClkEn** and **ExtClkIn**, the CHT-CG-050 is able to operate either from its internal crystal oscillator or from an external clock source.

Frequency divider

Four division factors (1, 2, 4 and 8) can be selected depending on the levels at the control lines **DIV_0** and **DIV_1**.

Output buffer

A programmable-strength output buffer, controlled by **DRI_0** and **DRI_1**, enables the CHT-CG-050 to drive a large range of output loads, improving the output signal integrity. The four possible output strengths are 8mA, 16mA, 24mA and 32mA.

The output buffer has supply terminals independent from the rest of the circuit, allowing the system designer to properly decouple them in noise-sensitive application.

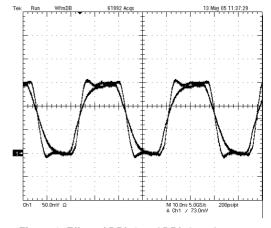


Figure 2. Effect of DRI_0 and DRI_1 on the output signal.

Figure 2 shows the superposition of the output signal when **DRI_0**, **DRI_1** = LOW and **DRI_1** is then set to HIGH, V_{DD} =3V, T=235°C, Freq = 27MHz. As a result, the signal integrity is improved.

Packaging options

As mentioned above, the layout of the CHT-CG-050 allows for a very high level of flexibility for the system designer. Several packaging configurations are possible, from 8-pin to 24-pin standard carriers.

At the packaging stage, many functional features can be enabled or safely disabled in order to optimize the form factor according to the final user needs.

Typical application

The CHT-CG-050 offers the final user several possible configurations depending upon the characteristics of the target application.

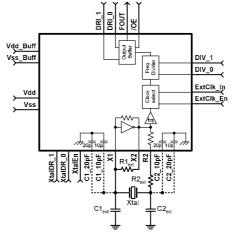


Figure 3. Full configuration.

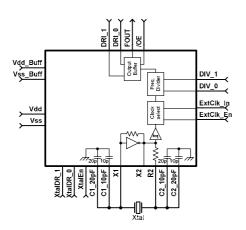


Figure 4. Minimal configuration.

Dashed lines in Figure 3 indicate optional connections. Figure 4 shows the minimal possible configuration with no external components. Any configuration in between those of Figure 3 and Figure 4 can be obtained by properly bypassing or tying to ground the corresponding internal component.

Any programmable feature can be changed on-the-fly, allowing the CHT-CG-050 to accommodate to new operating conditions in smart or adaptive applications.

Possible Packaging Options

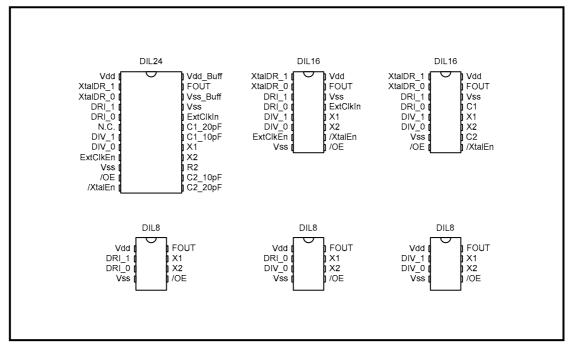


Figure 5. CHT-CG-050: possible packaging options.

NOTES:

- The CHT-CG-050 can also be ordered as die.
- Packaging options shown are only indicative. Other possibilities are also available.
- Ask CISSOID for other packaging configurations.

Contact & Ordering

CISSOID S.A. Chemin du Cyclotron 6 1348 Louvain-la-Neuve Belgium

Tel : +32-10-489210 Fax : +32-10-489219

sales@cissoid.com http://www.cissoid.com

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.