

# Chunghwa Picture Tubes, Ltd. Technical Specification

To :

Date: 2012/03

**CPT TFT-LCD** 

# **CLAA101FP01**

| ACCEPTED BY : |  |  |
|---------------|--|--|
|               |  |  |
|               |  |  |
|               |  |  |

| APPROVED BY | CHECKED BY | PREPARED BY                    |
|-------------|------------|--------------------------------|
|             |            | Product Planning<br>Management |

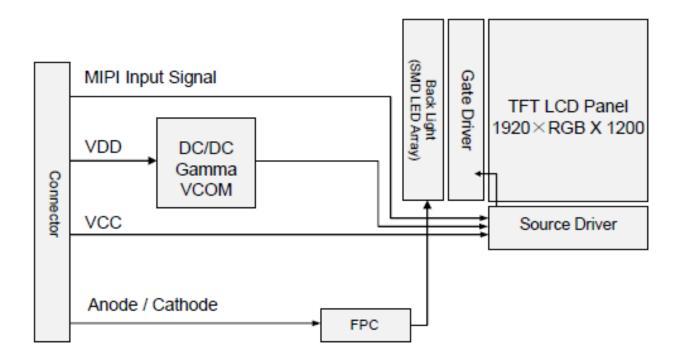
# CHUNGHWA PICTURE TUBES, LTD.

1127 Hopin Rd., Padeh, Taoyuan, Taiwan 334, R.O.C. TEL: +886-3-3675151 FAX: +886-3-260-7003

| Doc. No: Spec-CLAA101FP01-V1.0 | Issue Date: | 2012/03 |
|--------------------------------|-------------|---------|
|--------------------------------|-------------|---------|

# **Modification Record List**

| Vision<br>Notice | Description    | Rev. Date  |
|------------------|----------------|------------|
| 1.0              | First revision | 2012/03/06 |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |


# Contents

| No | Item                                                | Page |
|----|-----------------------------------------------------|------|
| 1  | General Description                                 | 4    |
| 2  | Absolute Maximum Ratings                            | 5    |
| 3  | Electrical Specifications                           | 6    |
| 4  | Optical Specifications                              | 10   |
| 5  | Interface Connections                               | 15   |
| 6  | Signal Timing Specifications                        | 17   |
| 7  | Signal Timing Waveforms                             | 18   |
| 8  | Input Signals, Basic Display Colors & Gray Scale of | 19   |
|    | Colors                                              |      |
| 9  | Power Sequence                                      | 20   |
| 10 | Mechanical Characteristics                          | 21   |
| 11 | Mechanical Drawing                                  | 22   |
| 12 | Reliability Test                                    | 24   |
| 13 | Handling & Cautions                                 | 25   |
|    |                                                     |      |
|    |                                                     |      |
|    |                                                     |      |
|    |                                                     |      |

#### 1.0 GENERAL DESCRIPTION

#### 1.1 Introduction

CLAA101NP01 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 10.1 inch diagonally measured active area with WSVGA resolutions (1920 horizontal by 1200 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical Stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is a low reflection and higher color type.



#### 1.2 Features

- \_ Thin and Light Weight
- \_ 3.3 V Logic Power & 16 V Back-light power Supply
- \_ 1 Channel LVDS Interface
- \_ SMD LED (20EA) Array (Bottom Side/Horizontal Direction)
- \_ 16.7M Colors (6bits & HFRC)
- \_ Green Product (RoHS) & Halogen free

### 1.3 Application

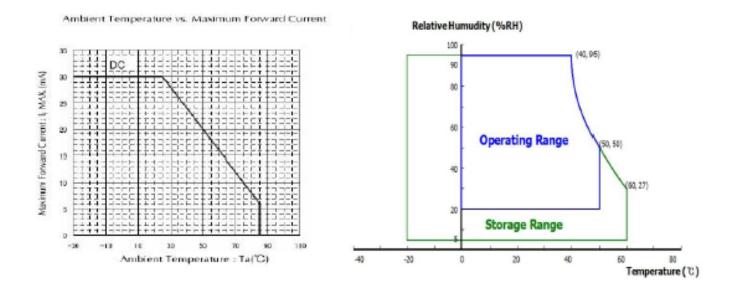
\_ E-book, etc

## 1.4 General Specifications

< Table 1. General Specifications >

| Parameter         | Specification                        | Unit   | Remark |
|-------------------|--------------------------------------|--------|--------|
| Active area       | 216.576(H) ×135.36(V)                | mm     |        |
| Number of pixels  | 1920(H) ×RGB X 1200(V)               | pixels |        |
| Pixel pitch       | 0.1128 × 0.1128                      | mm     |        |
| Pixel arrangement | RGB Vertical Stripe                  |        |        |
| Display colors    | 16.7M (6bit + HFRC)                  | colors |        |
| Display mode      | Normally Black                       |        |        |
| Outline dimension | 229.±0.3(H)×153±0.3(V)×2.5±0.2(D)    | mm     |        |
| Weight            | 150 (Typ.)                           | g      |        |
| Back-light        | Top & Bottom alignment, 84-LEDs type |        |        |

#### 2.0 ABSOLUTE MAXIMUM RATINGS


The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit.

< Table 2. Absolute Maximum Ratings >

Ta=25+/-2°C

| Parameter                       | Symbol           | Min. | Max. | Unit | Remarks |
|---------------------------------|------------------|------|------|------|---------|
| Logic Power Supply Voltage      | $V_{DD}$         | -0.3 | 4.0  | V    |         |
| Logic Power Supply Voltage      | V <sub>cc</sub>  | -0.3 | 2.0  | ٧    |         |
| Back-light Power Supply Voltage | $HV_{DD}$        | -0.3 | 40   | ٧    |         |
| Back-light LED Current          | I <sub>LED</sub> | -    | 30   | mA   | Note 1  |
| Back-light LED Reverse Voltage  | $V_R$            | -    | 5    | V    |         |
| Operating Temperature           | T <sub>OP</sub>  | -0   | +50  | ċ    | Note 1, |
| Storage Temperature             | T <sub>SP</sub>  | -20  | +60  | Ċ    | Note 2  |

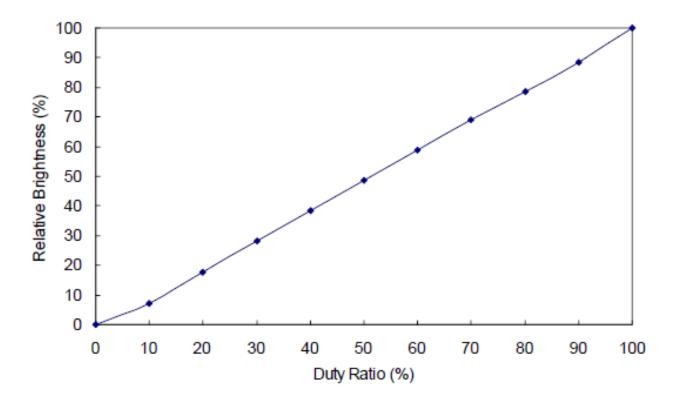
- Note 1. Ambient temperature vs allowable forward current are shown in the figure below.
- Note 2. Temperature and relative humidity range are shown in the figure below. 90% RH Max. (40 C ≥ Ta) Maximum wet - bulb temperature at 39 C or less. (>40 C) No condensation.



## 3.0 ELECTRICAL SPECIFICATIONS

#### 3.1 Electrical Specifications

< Table 3. Electrical Specifications >


| Parameter                                                |                                      | Min. | Тур.   | Max. | Unit | Remarks                  |
|----------------------------------------------------------|--------------------------------------|------|--------|------|------|--------------------------|
| Logic Power Supply Voltage                               | V <sub>DD</sub>                      | -    | 3.3    | -    | ٧    |                          |
| Logic Power Supply Current                               | I <sub>DD</sub>                      | -    | TBD    | -    | mA   | Vdd=3.3V, 25℃<br>Note 1  |
| Back-light LED Voltage /<br>Back-light LED Total Voltage | V <sub>LED</sub><br>N <sub>BL</sub>  | -    | 3.0/42 | -    | ٧    | Note 2                   |
| Back-light LED Current /<br>Back-light LED Total Current | I <sub>JED</sub><br>/I <sub>BL</sub> | -    | 20/240 | -    | mA   | Note 2                   |
|                                                          | P <sub>DD</sub>                      | -    | TBD    | -    | W    |                          |
|                                                          | Pcc                                  | -    | TBD    | -    | W    | Vdd=3.3V, 25℃            |
| Power Consumption                                        | Рвь                                  | -    | -      | 5.2  | W    | Vcc=1.8V , 25℃<br>Note 1 |
|                                                          | Ptotal                               | -    | TBD    | -    | W    | 11010                    |

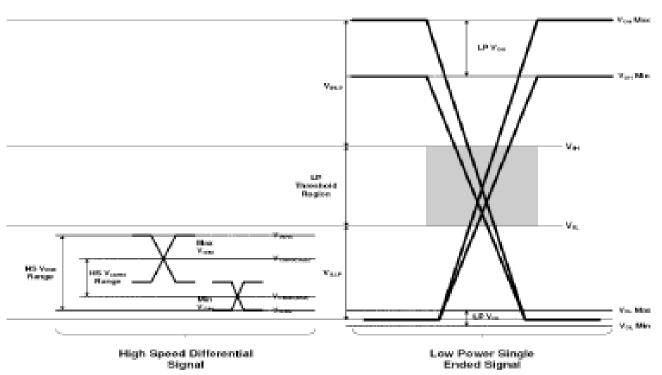
Notes: 1. The supply voltage is measured and specified at the interface connector of LCM.

(Max Pattern: White)

2. Calculated value for reference (VLED  $\times$  ILED  $\times$  # of LEDs (84EA) ).

# 3.2 PWM Duty Ratio vs Brightness



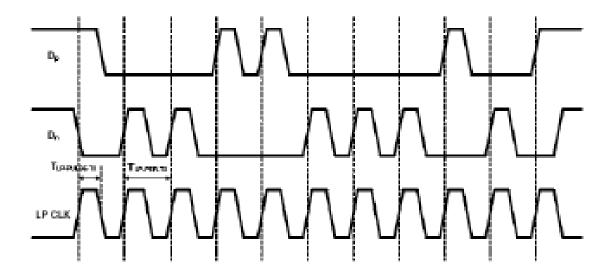

## Notes:

In case of duty ratio 0%, LED can't illuminate itself so this state is LED off. In case of duty ratio 100%, the brightness of LED is maximum and the state is LED on.

# 3.3MIPI Interface DC Characteristic:

< Table 4. MIPI Interface DC Characteristic >

|                    | Min.                              | Тур.               | Max. | Unit | Remarks |      |  |
|--------------------|-----------------------------------|--------------------|------|------|---------|------|--|
| Input data bit rat | e                                 | BR                 | 200  | -    | 1000    | Mbps |  |
| Differential Input | Impedance                         | Z <sub>io</sub>    | 80   | 100  | 125     | Ω    |  |
|                    | Common-mode voltage               | V <sub>CMRX</sub>  | 70   | -    | 330     | mV   |  |
|                    | Differential input high threshold | V <sub>IDTK</sub>  | -    | -    | 70      | mV   |  |
| High speed Rx      | Differential input low threshold  | V <sub>en.</sub>   | -70  | -    | -       | m۷   |  |
| nigii speed KX     | Differential input voltage range  | [V <sub>DM</sub> ] | 70   | -    | 500     | mV   |  |
|                    | Single-end input high voltage     | VIHAR              | -    | -    | 460     | mV   |  |
|                    | Single-end input low voltage      | VLH                | -40  | -    | -       | m۷   |  |
| Low Power Rx       | Logic 1 input voltage             | V <sub>BLP</sub>   | 880  | -    | -       | mV   |  |
| Low Power RX       | Logic O input voltage             | VILLE              | -    | -    | 550     | mV   |  |
| Low power Tx       | Output high level                 | V <sub>OH</sub>    | 1.08 | 1.2  | 1.32    | ٧    |  |
| Low power 1x       | Output low level                  | Voc                | -50  | -    | 50      | mV   |  |




# 3.4 MIPI Interface AC Characteristic:

< Table 5. LP Transmitter AC Specifications>

| Parameter                                           | Min.                                | Тур. | Max. | Unit | Remarks |        |
|-----------------------------------------------------|-------------------------------------|------|------|------|---------|--------|
| Minimum pulse width response<br>(LP Rx mode)        | T <sub>MIN-RX</sub>                 | 50   | -    | -    | ns      |        |
| Pulse width of the LP exclusive-OR clock            | T <sub>LP-PULSE-TX</sub>            | 50   | 55   | 58   | ns      | Note 1 |
| 15%~85% rise time and fall time<br>(LP Tx mode)     | T <sub>RLP</sub> / T <sub>FLP</sub> | -    | -    | 25   | ns      |        |
| 30%~85% rise time and fall time of EOT (LP Tx mode) | T <sub>REOT</sub>                   | _    | -    | 35   | ns      |        |
| Period of the LP exclusive-OR clock                 | T <sub>LP-PER-TX</sub>              | 90   | -    | -    | ns      |        |
| Data to clock setup time                            | T <sub>SETUP</sub>                  | 0.15 | -    | -    | U       |        |
| Data to clock setup time                            | T <sub>HOLD</sub>                   | 0.15 | -    | -    | UI      |        |

Note 1: 1st clock pulse after STOP state or last clock pulse before STOP state/all other pulse.



#### 4.0 OPTICAL SPECIFICATIONS

#### 4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance  $\le 1$  lux and temperature =  $25\pm2$  °C) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5A) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of  $\theta$  and  $\Phi$  equal to 0°. We refer to  $\theta_{\varnothing=0}$  (= $\theta$ 3) as the 3 o'clock direction (the "right"),  $\theta_{\varnothing=00}$  (= $\theta$ 12) as the 12 o'clock direction ("upward"),  $\theta_{\varnothing=180}$  (= $\theta$ 9) as the 9 o'clock direction ("left") and  $\theta_{\varnothing=270}$  (= $\theta$ 6) as the 6 o'clock direction ("bottom"). While scanning  $\theta$  and/or  $\varnothing$ , the center of the measuring spot on the Display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement.  $V_{DD}$  shall be 3.3+/- 0.3V at 25°C.

# 4.2 Optical Specifications

<Table 6. Optical Specifications>

| Parame                           | eter         | Symbol                                      | Condition           | Min.  | Тур.  | Max.  | Unit              | Remarks |
|----------------------------------|--------------|---------------------------------------------|---------------------|-------|-------|-------|-------------------|---------|
|                                  | Hadronial    | Θ <sub>3</sub>                              |                     | 80    | 89    | -     | Deg.              |         |
| Viewing Angle                    | Horizontal   | Θ,                                          | CR > 10             | 80    | 89    | _     | Deg.              | Note 1  |
| range                            | Vertical     | Θ <sub>12</sub>                             | CIC > IO            | 80    | 89    | -     | Deg.              | INOTE I |
|                                  | VEHICAL      | Θ <sub>6</sub>                              |                     | 80    | 89    | -     | Deg.              |         |
| Luminance Co                     | ntrast ratio | CR                                          | 0 - 0               | 600   | 800   | -     |                   | Note 2  |
| Luminance of<br>White            | 1 Points     | Yw                                          |                     | 650   | 700   | -     | cd/m <sup>2</sup> | Note 4  |
| White<br>Luminance<br>uniformity | 9 Points     | ΔΥ9                                         | 0 - 0-              | 75    | _     |       | %                 | Note 5  |
| White Chro                       | maticity     | W <sub>x</sub>                              | 0 - 0*              | 0.283 | 0.313 | 0.343 | -                 | 1       |
| Write Circl                      | Haucity      | Wy                                          |                     | 0.299 | 0.329 | 0.359 | -                 |         |
|                                  | Red          | R <sub>x</sub>                              | _                   | -     | 0.570 | -     | -                 |         |
|                                  | Neu          | R <sub>v</sub>                              |                     | -     | 0.324 | -     | _                 | Note 3  |
| Reproduction                     | Green        | G <sub>x</sub>                              | 0 - 0"              | -     | 0.331 | -     | -                 | INDIE 3 |
| of color                         | Green        | Gy                                          | 0-0                 | -     | 0.578 | -     | -                 |         |
|                                  | Blue         | B,                                          |                     | •     | 0.159 | -     | -                 |         |
| blue                             |              | В,                                          |                     | -     | 0.105 | -     | _                 |         |
| Respor<br>Time                   |              | Total<br>(T <sub>r</sub> + T <sub>d</sub> ) | Ta= 25° C<br>Θ = 0° | -     | 30    | 40    | ms                | Note 6  |
| Cross T                          | alk          | CT                                          | 0 - 0*              | -     | -     | 2.0   | %                 | Note 7  |

#### Notes:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 1).
- 2. Contrast measurements shall be made at viewing angle of  $\Theta$ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state (see Figure1). Luminance Contrast Ratio (CR) is defined mathematically as CR = Luminance when displaying a white raster / Luminance when displaying a black raster.
- 3. Reference only / Standard Front Surface Treatment Measured with green cover glass. The color chromaticity coordinates specified in Table 4 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

## 4.3 Optical Measurements

Figure 1. Measurement Set Up

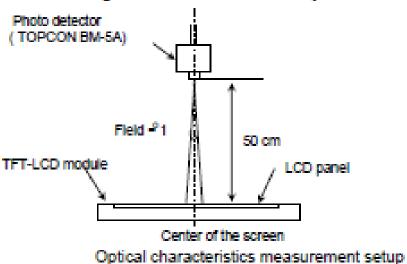
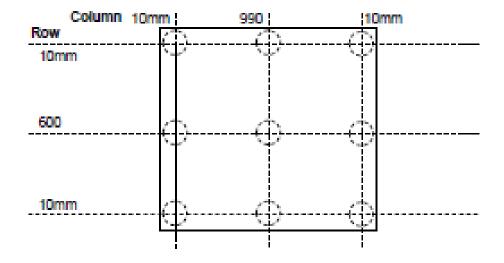




Figure 2. White Luminance and Uniformity Measurement Locations (9 points)



#### Note 4.

The White luminance uniformity on LCD surface is then expressed as :  $\Delta Y = ($  Minimum Luminance of 9 points ) \* 100 Refer Figure 2 about measurement points

\* LED Condition = (Duty Ratio 100%, LED current 20mA)

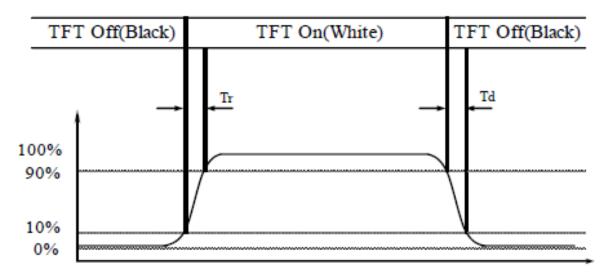



Figure 3. Response Time Testing

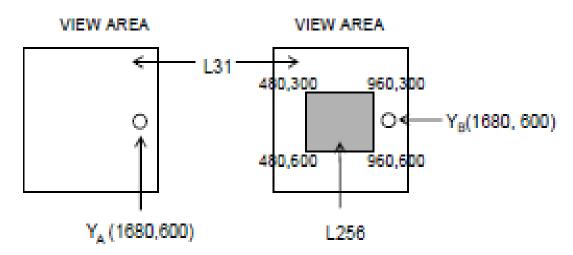



Figure 4. Cross Modulation Test Description

Cross-Talk (%) = 
$$\left| \frac{Y_B - Y_A}{Y_B} \right| \times 100$$

Where:

Y<sub>A</sub> = Initial luminance of measured area (cd/m<sup>2</sup>)

Y<sub>B</sub> = Subsequent luminance of measured area (cd/m<sup>2</sup>)

The location measured will be exactly the same in both patterns

#### Note 6

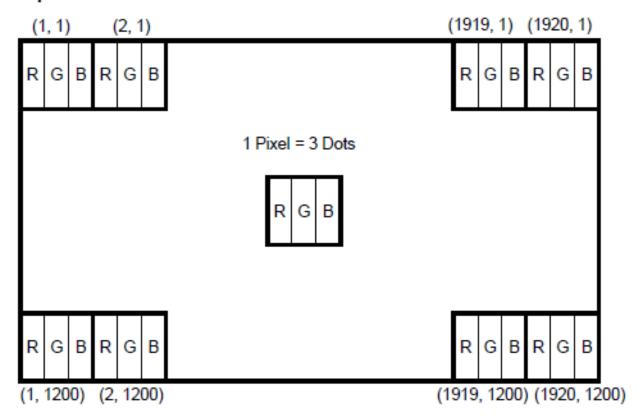
The electro-optical response time measurements shall be made as Figure 4 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.

#### Note 7.

Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark (Refer to Figure 4).

# **5.0 INTERFACE CONNECTIONS**

## **5.1 Electrical Interface Connection**


CN1 Interface Connector (AYF334535, Manufactured by JAE)

< Table 7, Electrical Interface Connection >

| Pin No. | SYMBOL            | FUNCTION                                   |
|---------|-------------------|--------------------------------------------|
| 1       | VDD               | Power Supply, 3.3V(Typical)                |
| 2       | VDD               | Power Supply, 3.3V(Typical)                |
| 3       | VDD               | Power Supply, 3.3V(Typical)                |
| 4       | VDD               | Power Supply, 3.3V(Typical)                |
| 5       | NC(BIST)          | BIST testing (Only for Hydis)              |
| 6       | NC/ALV_3P         | NC/LVDS Input Data Pair                    |
| 7       | GND               | Ground                                     |
| 8       | NC/ALV_3N         | NC/LVDS Input Data Pair                    |
| 9       | GND               | Ground                                     |
| 10      | GND               | Ground                                     |
| 11      | MIPI_D3N/BLV_3P   | MIPI Input Data Pair /LVDS Input Data Pair |
| 12      | NC/ALV_CLKP       | NC/LVDS Input Data Pair                    |
| 13      | MIPI_D3P/BLV_3N   | MIPI Input Data Pair /LVDS Input Data Pair |
| 14      | NC/ALV_CLKN       | NC/LVDS Input Data Pair                    |
| 15      | GND               | Ground                                     |
| 16      | GND               | Ground                                     |
| 17      | MIPI_DON/BLV_CLKP | MIPI Input Data Pair /LVDS Input Data Pair |
| 18      | NC/ALV_2P         | NC/LVDS Input Data Pair                    |
| 19      | MIPI_D0P/BLV_CLKN | MIPI Input Data Pair /LVDS Input Data Pair |
| 20      | NC/ALV_2N         | NC/LVDS Input Data Pair                    |
| 21      | GND               | Ground                                     |
| 22      | GND               | Ground                                     |
| 23      | MIPI_CKN/BLV_2P   | MIPI Input Data Pair /LVDS Input Data Pair |
| 24      | NC/ALV_1P         | NC/LVDS Input Data Pair                    |

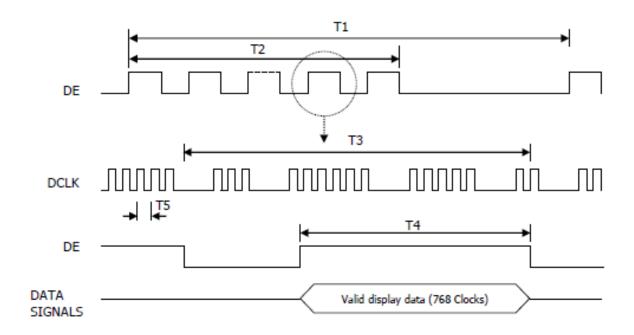
| Pin No. | SYMBOL          | FUNCTION                                   |
|---------|-----------------|--------------------------------------------|
| 25      | MIPI_CKP/BLV_2N | MIPI Input Data Pair /LVDS Input Data Pair |
| 26      | NC/ALV_1N       | NC/LVDS Input Data Pair                    |
| 27      | GND             | Ground                                     |
| 28      | GND             | Ground                                     |
| 29      | MIPI_D1N/BLV_1P | MIPI Input Data Pair /LVDS Input Data Pair |
| 30      | NC/ALV_0P       | NC/LVDS Input Data Pair                    |
| 31      | MIPI_D1P/BLV_1N | MIPI Input Data Pair /LVDS Input Data Pair |
| 32      | NC/ALV_DN       | NC/LVDS Input Data Pair                    |
| 33      | GND             | Ground                                     |
| 34      | GND             | Ground                                     |
| 35      | MIPI_D2N/BLV_0P | MIPI Input Data Pair /LVDS Input Data Pair |
| 36      | NC              | NC                                         |
| 37      | MIPI_D2P/BLV_0N | MIPI Input Data Pair /LVDS Input Data Pair |
| 38      | LED_EN          | LED Enable Pin                             |
| 39      | NC              | NC                                         |
| 40      | CABC_EN         | CABC Function Enable Pin                   |
| 41      | LED_PWM         | PWM Signal for LED Dimming Control         |
| 42      | VLED            | LED Power Supply                           |
| 43      | VLED            | LED Power Supply                           |
| 44      | VLED            | LED Power Supply                           |
| 45      | VLED            | LED Power Supply                           |
| •       | ·               | • ·                                        |

# 5.2 Data Input Format



# 6.0. SIGNAL TIMING SPECIFICATIONS

6.1 The LCM is operated by the only DE (Data enable) mode


< Table 8, Signal Timing >

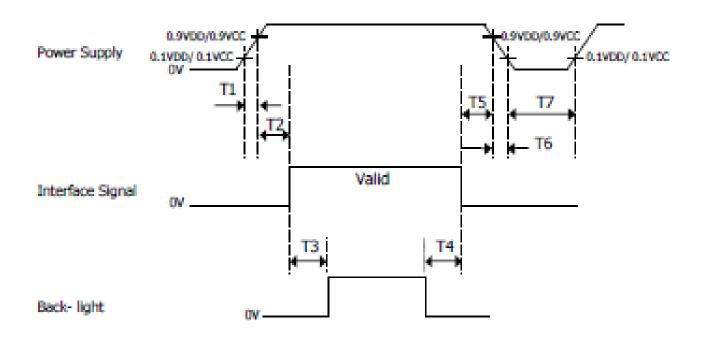
| Item                      | Symbol | Min. | Тур.  | Max. | Unit   | Remark |
|---------------------------|--------|------|-------|------|--------|--------|
| Frame Period              | T1     |      | T.B.D |      | Lines  |        |
| Vertical Display Period   | T2     | -    | 1920  | -    | Lines  |        |
| One line Scanning Period  | Т3     |      | T.B.D |      | Clocks |        |
| Horizontal Display Period | T4     | -    | 1200  | -    | Clocks |        |
| Clock Frequency           | 1/T5   |      | T.B.D |      | MHz    | Note 1 |

Note 1. This value only guarantee for the circuit-operation

# 7.0 SIGNAL TIMING WAVEFORMS

# 7.1 Timing Waveforms of Interface Signal




# 8.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

A total of 16.7M colors are displayed with dither & HFRC using 64 gray from 8bit input.

|               |            |     |   |    |      |      |    | _ |      |              |   |   | _     | -   |   |    | _ |   |        |   | _    | -      |   |   |   |
|---------------|------------|-----|---|----|------|------|----|---|------|--------------|---|---|-------|-----|---|----|---|---|--------|---|------|--------|---|---|---|
| Colors & Gray |            |     |   |    | 1000 | data |    | - | -    |              | - |   | Green |     |   | -  | - |   |        |   | Stue | _      |   |   | - |
| 50            | zile       | - K | 6 | H. | 1 %  | 2    | K. | 1 | - 80 | G            | G | 6 | 6     | G . | 6 | 66 | 6 | 8 | B<br>6 | 5 | 8    | B<br>3 | В | 8 | 8 |
|               | Black      | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 |   | 0     | ē.  | 0 | 0  | 0 | 0 | 0      | 0 |      | 0      | 0 | 0 | 0 |
|               | Dius       | 0   | 0 | 0  | 0    | 0    | 0  |   | 0    | 0            | 0 | 0 | 0     |     | 0 | 0  | 0 | ī | 1      |   | Ť    | ī      | Ť | ī | Ť |
| •             | Green      | 0   | 0 | 0  | 0    | 0    |    | 0 | 0    | 1            | 1 | 1 | 1     | 1   | ī | 1  | 1 | 0 | 0      | 0 | 0    | 0      | 0 | 0 | 0 |
| Basic         | Cynn       | 0   | 0 | 0  | 0    | 0    | 0  |   |      | 1            | 1 | 1 | 1     | 1   |   | 1  | 1 |   | 1      | 1 | 1    |        |   |   | 1 |
| Colors        | Red        | ī   |   | 1  | 1    | 1    | 1  |   |      | 0            | 0 | 0 | 0     | 0   | 0 | 0  | 0 |   | 0      | 0 |      | 0      | 0 | 0 | 0 |
| •             | Maganta    | 1   | 1 | 1  | 1    | 1    | 1  | ī | 1    | 0            | 0 | 0 | 0     | 0   | 0 | 0  | 0 | 0 | 0      | 1 | 1    | 1      | 1 | 1 | 1 |
| •             | Yellow     | 1   | 1 | 1  | 1    | 1    | 1  | 1 | 1    | 1            | 1 | 1 | 1     | 1   | 1 | 1  | 1 |   | 0      | 0 |      | 0      | 0 | 0 | 0 |
| •             | White      | 1   | 1 | 1  | 1    | 1    | 1  | 1 | 1    | 1            | 1 | 1 | 1     | 1   | 1 | 1  | 1 | 1 | 1      | 1 | 1    | 1      | 1 | 1 | 1 |
|               | Dinck.     | 0   | 0 | 0  | 0    | 0    | 0  |   | 0    | 0            | 0 | 0 | 0     |     | 0 | 0  | 0 |   | 0      | 0 |      | 0      | 0 | 0 | 0 |
|               | Δ          | 0   | 0 | 0  | 0    | 0    | 0  |   | 1    | 0            | 0 | 0 | 0     | 0   | 0 | 0  | 0 |   | 0      | 0 |      | 0      | 0 | • | 0 |
| Grav          | Derker     | 0   | 0 | 0  | 0    | 0    | •  | 1 | 0    | 0            | 0 | 0 | 0     | 0   | • | 0  | 0 |   | 0      | 0 |      | 0      | 0 | • | 0 |
| Scale         | Δ          |     |   |    |      |      |    |   |      |              |   |   |       |     |   |    |   |   |        |   |      |        |   |   |   |
| Of            | V          | 1   |   |    |      |      |    |   |      |              |   |   |       |     |   |    |   |   |        |   |      |        |   |   |   |
| Red           | Brighter   | 1   | 1 | 1  | 1    | 1    | 1  | 0 | 1    | 0            | 0 | 0 | 0     | 0   | • | 0  | 0 |   | 0      | 0 |      | 0      | 0 | • | 0 |
|               | V          | 1   | 1 | 1  | 1    | 1    | -  | 1 | •    | 0            | 0 | • | 0     |     | 0 | •  | 0 | • | 0      | 0 |      | 0      | 0 | ۰ | 0 |
|               | Red        | 1   | - | 1  | 1    | -    | =  | 1 | •    | •            | • | • | •     | •   | • | •  | • | • | 0      | • |      | 0      | • | ۰ |   |
|               | Disck      | 0   | 0 | 0  | 0    | 0    | •  | 0 | •    | 0            | 0 | ۰ | 0     | •   | • | •  | • | • | 0      | 0 |      | 0      | 0 | ۰ | 0 |
|               | Δ          | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 | 0 | 0     | 0   | 0 | 0  | 1 |   | 0      | 0 |      | 0      | 0 | 0 | 0 |
| Gray          | Darker     | 0   | 0 | 0  | 0    | 0    | 0  | • | 0    | 0            | 0 | 0 | 0     | •   | 0 | 1  | 0 | • | 0      | 0 |      | 0      | 0 | 0 | 0 |
| Scale         | Δ          |     |   |    | 1    |      |    |   |      | †            |   |   |       |     |   |    | t |   |        |   |      |        |   |   |   |
| Of<br>Green   | ⊽          |     |   |    |      |      |    |   |      | 1            |   |   |       |     |   |    | + |   |        |   |      |        |   |   |   |
| CAPOLITI      | Drighter   | 0   | 0 | 0  | 0    | 0    | 0  | • | 0    | 1            | 1 | 1 | 1     | 1   | 1 | 0  | 1 | • | 0      | 0 |      | 0      | 0 | 0 | 0 |
|               | V          | 0   | 0 | 0  | 0    | 0    | 0  |   | 0    | 1            | 1 | 1 | 1     | 1   | 1 | 1  | 0 | • | 0      | 0 |      | 0      | 0 | 0 |   |
|               | Green      | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 1            | 1 | 1 | 1     | 1   | - |    | 1 | • | 0      | 0 |      | 0      | 0 | • |   |
|               | Dack       | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | • | 0 | 0     | •   | 0 | 0  | 0 | • | 0      | 0 |      | 0      | 0 | • | 0 |
|               | Δ.         | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 | • | 0     | •   | 0 | 0  | 0 | • | 0      | 0 |      | 0      | 0 | 0 | 1 |
| Gray          | Darker     | 0   | 0 | 0  | 0    | 0    | 0  |   | 0    | 0            |   | 0 | 0     |     | 0 | 0  | 0 | • | 0      | 0 |      | 0      | 0 | 1 | 0 |
| Scale         | Δ          | †   |   |    |      |      |    |   |      | †            |   |   |       |     |   |    |   | Ť |        |   |      |        |   |   |   |
| Of<br>Blue    | ∀          |     | ı | 1  |      | ļ.   |    |   |      | _            | ı |   |       |     | 1 | ı  | 1 |   | ı      | ı |      | 1      | 1 | 1 | 1 |
| -             | Brighter   | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 | 0 | 0     | •   | 0 | 0  | 0 | 1 | 1      | 1 | 1    | 1      | 1 | • | 1 |
|               |            | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 | 0 | 0     |     | 0 | 0  | 0 | 1 | 1      | 1 | 1    | 1      | 1 | 1 | 0 |
|               | Dius       | 0   | 0 | 0  | 0    | 0    | 0  | • | 0    | 0            | 0 |   | 0     | •   | 0 | 0  | 0 | 1 | 1      | - | 1    | -      | - | - | - |
|               | Dinck<br>△ | 0   | 0 | 0  | 0    | 0    | 0  | 0 | 0    | 0            | 0 |   | 0     |     | 0 | 0  | 0 | • | 0      | 0 |      | 0      | 0 | • | 0 |
| Gray          | Darker     | 0   | 0 | 0  | 0    | 0    | 0  |   | 1    | 0            | 0 | 0 | 0     | •   | 0 | 0  | 1 | • | 0      | 0 |      | 0      | 0 | 0 | 1 |
| Scale         |            | 0   | 0 | 0  | 0    | 0    | 0  | 1 | 0    | 0            | 0 | 0 | 0     |     | 0 | 1  | 0 | • | 0      | 0 |      | 0      | 0 | 1 | 0 |
| White         |            |     |   |    |      |      |    |   |      |              |   |   |       |     |   |    |   |   |        |   |      |        |   |   |   |
| 8.            | Drighter   |     |   |    | 1    |      |    |   |      | <del> </del> |   |   |       |     |   |    |   |   |        |   |      |        |   |   |   |
| Black         | V          | 1   | - | 1  | 1    | 1    | -  |   | 1    | 1            | 1 | - | -     | 1   | - | 0  | 1 | 1 | 1      | 1 | 1    | -      | - | 0 | 1 |
|               | White      | 1   | 1 | 1  | 1    | 1    | 1  | 1 | 0    | 1            | 1 | 1 | 1     | 1   | - | 1  | 0 | 1 | 1      | 1 | 1    | 1      | - | 1 | 0 |
|               | 111111111  | 1.  | 1 | 1  | 1    | 1    | 1  |   | 1    | 1            | 1 | 1 | 1     | 1   | 1 |    | 1 | 1 | 1      |   |      | 1      | 1 | 1 | 1 |

# 9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below



- T1 ≤ 50 ms.
- 100 ≤ T2 ≤ 150 ms
- 200 ms ≤ T3
- 0 ≤ T5 ≤ 50 ms
- 0 ≤ T6 ≤ 10ms
- 150ms ≤ T7.

Notes: 1. When the power supply VDD/ VCC is 0V, Keep the level of input signals on the low or keep high impedance.

- 2. Do not keep the interface signal high impedance when power is on.
- Back Light must be turn on after power for logic and interface signal are valid.

## 10.0 MECHANICAL CHARACTERISTICS

## **10.1 Dimensional Requirements**

Figure 5 & 6 shows mechanical outlines for the model

< Table 9, Mechanical Characters >

| Parameter         | Specification                                      | Unit |
|-------------------|----------------------------------------------------|------|
| Active Area       | 216.576(H) ×135.35(V)                              | mm   |
| Number of pixels  | 1920(H) X 1200(V) (1 pixel = R + G + B dots)       |      |
| Pixel pitch       | 0.1128(H) X 0.1128(V)                              | mm   |
| Pixel arrangement | RGB Vertical stripe                                |      |
| Display colors    | 16.7M (6bit + HFRC)                                |      |
| Display mode      | Normally Black                                     |      |
| Outline dimension | 229(H)×153(V)×2.5(D) (Typ.)                        | mm   |
| Weight            | 150(Typ.)                                          | g    |
| Back-light        | Top & Bottom alignment 84-LEDs type (2 X 42 Array) |      |

#### 10.2 Polarizer Hardness.

The surface of the LCD has a low reflection coating and a coating to reduce scratching.

#### 10.3 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 150lux. The manufacture shall furnish limit samples of the panel showing the light leakage acceptable.

# 11.0 MECHANICAL DRAWING

Figure 5. TFT-LCD Module Outline Dimension (Front View)

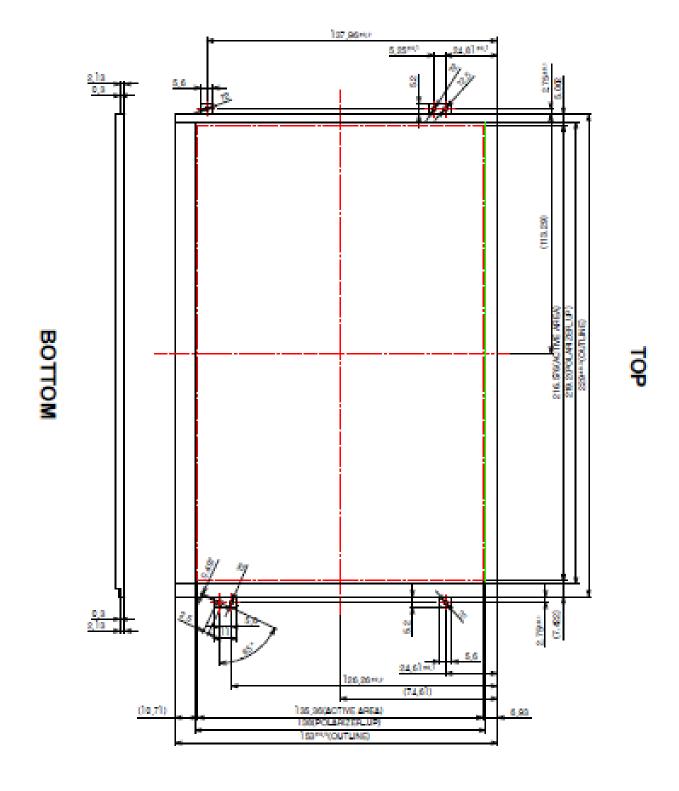
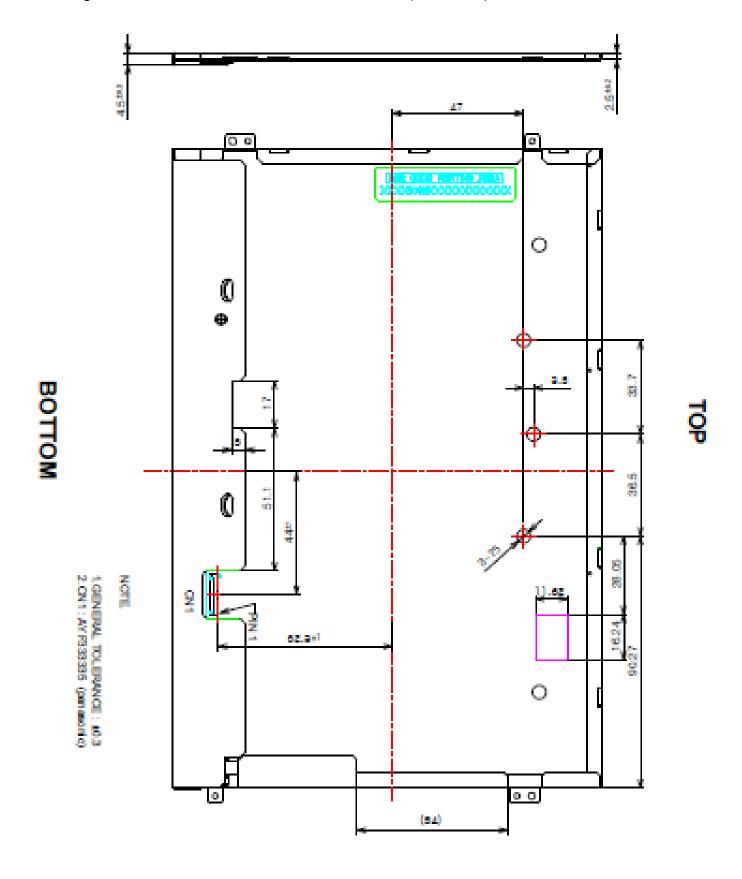




Figure 6. TFT-LCD Module Outline Dimensions (Rear view)



# **12.0 RELIABLITY TEST**

The Reliability test items and its conditions are shown in below.

# < Table 10, Reliability Test >

| No | Test Item                                    | Conditions                                                                                                             |
|----|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1  | High temperature storage                     | 80C/240h                                                                                                               |
| 2  | Low temperature storage                      | -30C/240h                                                                                                              |
| 3  | High temperature<br>/High humidity Storage   | 60C/90%RH/240h                                                                                                         |
| 4  | High temperature operating                   | 60C/240H                                                                                                               |
| 5  | Low temperature operating                    | -20C/240h                                                                                                              |
| 6  | High temperature<br>/High humidity operating | 40C/90%RH/240h                                                                                                         |
| 7  | Thermal Shock Storage                        | -30°C (30 min)~ +80 °C(30 min) ,27 cycles                                                                              |
| 8  | Shock test                                   | 980m/s2,Action time: 6ms, Time: 3 times for each direction, Direction:+/-X, +/-Y, +/-Z                                 |
| 9  | Package Vibration test                       | Frequency range: 10-55Hz, stroke:1.5mm,<br>sweep time: 1 minute,<br>test period: 2 hours for each direction of X, Y, Z |
| 10 | Package Drop test                            | Height: 60cm, 1 corner, 3 edges, 6 surfaces<br>: 1 time for each direction                                             |
| 11 | FPC Bending test                             | Bending degree is 180, bending 30 times and the bending radius is 1.0mm                                                |
| 12 | FPC Insert/Remove test                       | 30 time FPC insert/remove                                                                                              |
| 13 | Low Air Pressure Test                        | 533mbar(100mbar/min ramp), "-40C~55C"(1C/min ramp) and 2hrs per each temperature                                       |
| 14 | ESD test                                     | Air +/-15KV ,contact +/-8KV , no damage                                                                                |

#### 13.0 HANDLING & CAUTIONS

# 13.1 Cautions when taking out the module

Pick the pouch only, when taking out module from a shipping package.

# 13.2 Cautions for handling the module

- As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- As the LCD panel and back light element are made from fragile glass (epoxy) material, impulse and pressure to the LCD module should be avoided.
- As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- Do not pull the interface connector in or out while the LCD module is operating.
- Put the module display side down on a flat horizontal plane.
- Handle connectors and cables with care.

#### 13.3 Cautions for the operation

- When the module is operating, do not lose MCLK, DE signals. If any one of these signals were lost, the LCD panel would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.

#### 13.4 Cautions for the atmosphere

- Dew drop atmosphere should be avoided.
- Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.

#### 13.5 Cautions for the module characteristics

- Do not apply fixed pattern data signal to the LCD module at product aging.
- Applying fixed pattern for a long time may cause image sticking.

#### 13.6 Cautions for the digitizer assembly

- When assembling FPC connector, do not flip connector past 90° due to possible damage to connector.
- When positioning digitizer underneath driver IC, do not lift driver IC past 90° due to possible damage to drive IC pattern.
- Please be warned that during assembly of digitizer, the opening or closing of FPC will result in possible electrostatic discharge damage to the LED

#### 13.7 Other cautions

- Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be broken.
   We recommend to use the original shipping packages.