

Chunghwa Picture Tubes, Ltd. Technical Specification

To : YIH HSING ENTERPRISE CO., LTD

Date: 2003/09/18

CPT TFT-LCD

CLAA150XG 09Y

ACCEPTED BY:		

APPROVED BY	CHECKED BY	PREPARED BY
		TFT-LCD
		Product Planning
		Management Division

Prepared by: TFT-LCD Product Planning Management Division CHUNGHWA PICTUER TUBES, LTD.

1127 Hopin Rd., Padeh, Taoyuan, Taiwan 334, R.O.C. TEL: +886-3-3675151 FAX: +886-3-377-3001

Doc.No: CLAA150XG 09Y-Yih Hsing-Ver:1-2003/09/18 Issue Date: 2003/09/18

1703V36762 160VA NEW

CLAA150XG09Y(with LVDS interface) is 15.0" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit and backlight.

By applying 8 bit digital data, 1024×768, 16.2M(6 Bit+FRC)-color images are displayed on the 15.0" diagonal screen. Input power voltage is 3.3V for LCD driving.

Inverter for backlight is not included in this module. General specification are summarized in the

following table:

ITEM	SPECIFICATION
Display Area(mm)	304.1(H)x228.1(V) (15.0-inch diagonal)
Number of Pixels	1024(H)x768(V)
Pixel Pitch(mm)	0.297(H)x0.297(V)
Color Pixel Arrangement	RGB vertical stripe
Display Mode	normally white TN
Number of Colors	16.2M(6 Bit+FRC)
Brightness(cd/m^2)	250cd/m ² (Typ.)(Center point ,IL=8mA)
Viewing Angle	-60~60(H),-60~45(V) (Typ.)
Surface Treatment	Anti-glare,3H
Electrical Interface	LVDS, 1Ch
Total Module Power(W)	7.0(Typ.)
Optimum Viewing Angle	6 o'clock
Module Size(mm)	326.0(W)×251.0(H)×12.0(D)
Module Weight(g)	1200
Backlight Unit	CCFL, 2 tables, edge-light(top*1/bottom*1)

The LCD Products listed on this document are not suitable for use of aerospace equipment, submarine cables, nuclear reactor control system and life support systems. If customers intend to use these LCD products for above application or not listed in "Standard" as follows, please contact our sales people in advance.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tool, Industrial robot, Audio and Visual equipment, Other consumer products.

2. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT
Power Supply Voltage for LCD	VCC	-	4.0	V
ICC Rush Current	I_{RUSH}		2.5	A
Operation Temperature *1)	Тор	0	50	
Storage Temperature *1)	Tstg	-20	60	

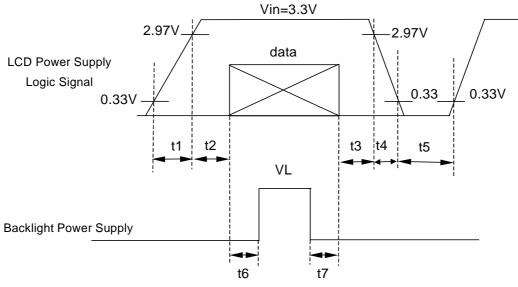
Note:

Relative Humidity 90% (Ta Wet Bulb Temperature 40 (Ta 40

^{*1)}Humidity

3. ELECTRICAL CHARACTERISTICS

(a)TFT-LCD

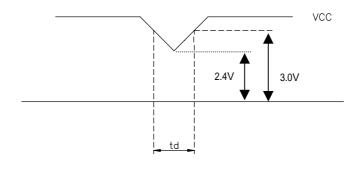

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	Remark	
Power Supply Voltage for I	VCC	3.0	3.3	3.6	V	Note1	
Power Supply Current for L	ICC	-	600	700	mA	Note2	
Permissive Input Ripple Vo	VRP	-	-	100	mVp-p	Vcc=3.3V	
Differential impedance		Zm	90	100	110	Ω	
Input Threshold Voltage	High	VIH	3.0	3.3	3.6	V	
	Low	VIL	0	-	0.8	V	

[Note 1] Power and Data sequence

VCC-turn-on conditions:

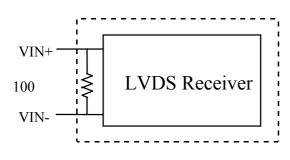
 $\begin{array}{ccccc} t1 & 10 \text{ms} & & 1 \text{ sec} & t5 \\ 0 < t2 & 50 \text{ms} & & 200 \text{ms} & t6 \\ 0 < t3 & 50 \text{ms} & & 200 \text{ms} & t7 \end{array}$

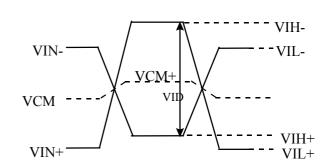
0 < t4 10ms



Data: RGB DATA, DCLK, DENA

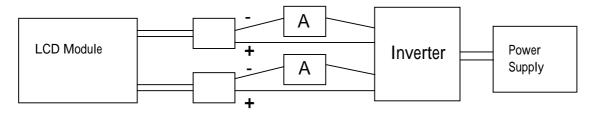
VCC-dip conditions


- 1)When 2.4V Vin(min)<3.0V td 10 ms
- 2)When Vin <2.4V, it works abnormal that must reset power.


VCC-dip conditions should also follow the VCC-turn-on conditions.

[Note 2] Typical current situation : 256 gray level, 1024 line mode, VCC=3.3V,Fh=48.5Khz,Fv=60Hz,Fclk=65 MHz .

[Note 3] LVDS Signal definition:

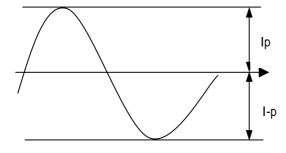

VID = VIN₊ - VIN-VCM = | VCM₊ - VCM- | VID = | VID₊ - VID- | VID₊ = | VIH₊ - VIH- | VID- = | VIL₊ - VIL- | VCM = (VIN₊ - VIN-)/2 VCM₊ = (VIH₊ - VIH-)/2 VCM- = (VIL₊ - VIL-)/2

VIN₊= Positive differential DATA & CLK Input VIN-= Negative differential DATA & CLK Input

b)Backlight Ta=25							
ITEM	SYMBOL	MIN	TYP	MAX	UNIT	REMARK	
Lamp Voltage	VL		610	-	V	IL= <mark>8.0</mark> mA	
Lamp Current	IL	6.0	8.0	8.5	mA	Note1	
Interter Frequency	FL	40	50	60	kHz	Note2	
Storting Lamp Valtage	VS			1,300	V	Ta=0	
Starting Lamp Voltage	VS			1,100	V	Ta=25	
Lamp life Time	LT	30,000	40,000	-	hr	Note3, IL=8.0mA	

* When Lamp Current is equal to 8.0mA, luminance at center point is 250 cd/m².

[Note 1] Lamp Current measurement method (The current meter is inserted in cold line)


[Note 2] Lamp frequency of inverter may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, please adjust lamp frequency, and keep inverter as far from module as possible or use electronic shielding between inverter and module to avoid the interference.

[Note 3] Lamp life time is defined as the time either when the brightness becomes 50% of the initial value, or when the starting lamp voltage does not meet the value specified in this table . Starting Lamp Voltage: VS < 1300V, Ta=0

VS < 1100V, Ta=25

The lamp shall be stably lighted. Slide up method shall be used for input voltage application. The voltage is applied voltage to both ends of the lamp as the established starting voltage.

[Note 4] The degrees of unbalance : < 10%The ratio of wave height : $< 2 \pm 10\%$

Ip: high side peak

I-p: low side peak

A: The degrees of unbalance = $| Ip - I-p | / Irms \times 100 (\%)$

B: The ratio of wave height = Ip (or I-p) / Irms

4. INTERFACE PIN CONNECTION

(a) CN1(Data Signal and Power Supply)

Used connector: DF14H-20P-1.25H (HIROSE) Matting cinnector: DF14-20S-1.25C (HIROSE)

Pin NO.	Symbol	Function
1	VCC	+3.3V power supply
2	VCC	+3.3V power supply
3	GND	GND (It must be connected ground)
4	GND	GND (It must be connected ground)
5	RXINO-	LVDS Receiver Signal(-)
6	RXINO+	LVDS Receiver Signal(+)
7	GND	GND (It must be connected ground)
8	RXIN1-	LVDS Receiver Signal(-)
9	RXIN1+	LVDS Receiver Signal(+)
10	GND	GND (It must be connected ground)
11	RXIN2-	LVDS Receiver Signal(-)
12	RXIN2+	LVDS Receiver Signal(+)
13	GND	GND (It must be connected ground)
14	RXCLK IN-	LVDS Clock Signal(-)
15	RXCLK IN+	LVDS Clock Signal(+)
16	GND	GND (It must be connected ground)
17	RXIN3-	LVDS Receiver Signal(-)
18	RXIN3+	LVDS Receiver Signal(+)
19	GND	GND (It must be connected ground)
20	NC	No connect (Don't connect ground or any signal)

(B)CN2,3(BACKLIGHT)

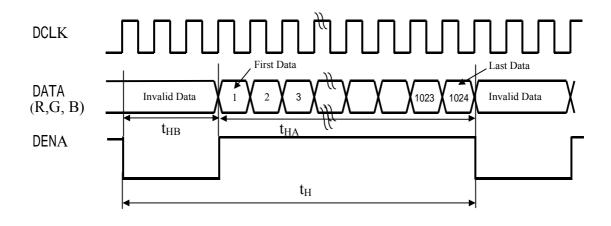
Backlight-side connector: BHR-03VS-1(JST)

Inverter-side connector: SM02(8.0)B-BHS-1(JST)

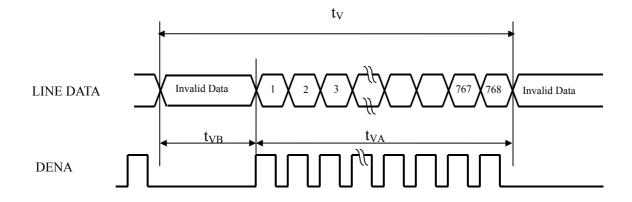
Pin No.	Symbol	Function
1	СТН	VBLH(High voltage)
2	NC	No connect
3	CTL	VBLL(Low voltage)

[Note]VBLH-VBLL = VL

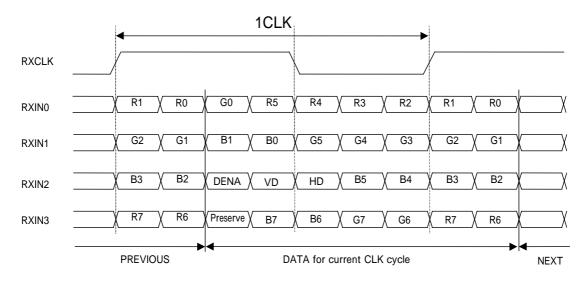
5. INTERFACE TIMING


(a)Timing Specifications

	ľ	ГЕМ	SYMBOL	MIN	TYP	MAX	UNIT
	DCI K	Frequency	f_{CLK}	-	65	80	MHz
	DCLK	Period	t_{CLK}	12.5	15.3	80 M - 1370 t - t 346 t 75 860	ns
		Horizontal Total Time	t_{H}	1150	1344 1370 t _{Cl} 1024 - t _{Cl}	t_{CLK}	
1.00		Horizontal Active Time	t_{HA}	-	1024	-	t_{CLK}
LCD Timing	DATA Enable	Horizontal Blank Time	$t_{ m HB}$	126	320	346	t_{CLK}
Timing	DENA	Frame Rate	Fr	55	60	75	Hz
		Vertical Total Time	t_{V}	794	806	860	$t_{\rm H}$
		Vertical Active Time	t_{VA}		768		$t_{\rm H}$
		Vertical Blank Time	$t_{ m VB}$	26	38	92	$t_{\rm H}$


[Note]

- 1)Polaritites of HD and VD are negative in this specification.
- 2)DENA (Data Enable) should always be positive polarity as shown in the timing specification.
- 3)DCLK should appear during all blanking period, and HD should appear during blanking period of frame cycle.


(b) Timing Chart a. Horizontal Timing Chart

b. Vertical Timing Chart

(C) Data mapping

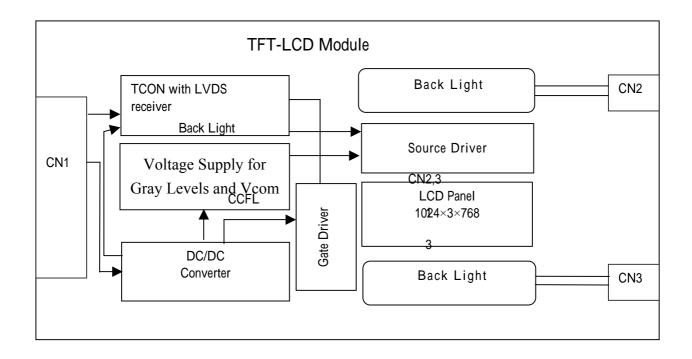
(D)Color Data Assignment

COLOR	INPUT DATA				R D	ATA							G D	ATA							B D.	ATA			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	В4	В3	В2	В1	В0
		MSB					(((·	LSB	MSB		-					LSB	MSB						-	LSB
BASIC	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLOR	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(255)			0			0		0	0	0	0	0	0	0	0	0	1	1_	1	1	1	1	1	1
	CYAN			0					0	1	1	1	11	1_	1	1	1	1	1_	1	1	1	1_	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1_	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RED	RED(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				i i		L	!	i :											L						
				() () , , , , , , , , , , , , , , , , , ,	L	L	! !	,																	
	RED(254)	1.5	1	1	1	1	1	1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GREEN	GREEN(0)		0		0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)			0					0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0_	0	0	0	0_	0	1_	0	0	0_	0	0	0	0_	0	_0_
							<u>.</u>	; ;																	
						<u>.</u>		. – – .																	
	GREEN(254)		;	0			(— i — —	ç — ·	0	1_	1	1	1	1_	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	_	_	0	_				0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BLUE	BLUE(0)		<u>`</u>	0		Lĭ.		, _ `	0	0_	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0
	BLUE(1)			0					0	0_	0	0	0	0_	0	0	0	0	0_	0	0	0	0_	0	_1_
	BLUE(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
			<u> </u>	 	<u> </u>	<u>.</u>	! !	! !		L					L				L						
					<u> </u>	<u>.</u>	! !	! !		L					L				L						
	BLUE(254)			0					0	0_	0	0	0	0_	0_	0	0	1	1_	1_	1	1_1	1_	1_	_0_
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

[Note]

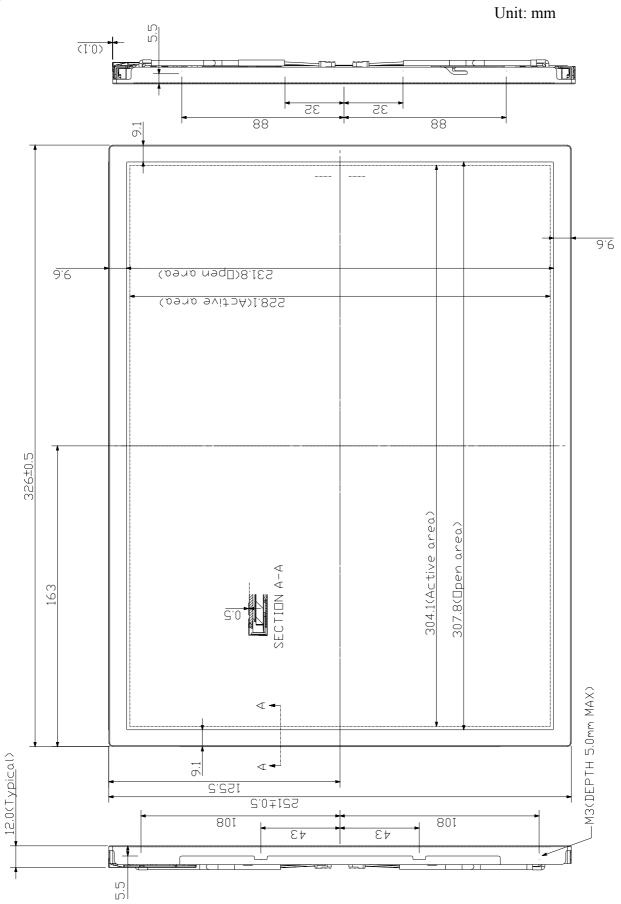
(1)Definition of gray scale:

Color(n): n indicates gray scale level.


Higher n means brighter level.

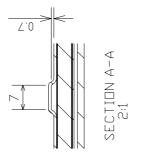
(2)Data:1-High,0-Low.

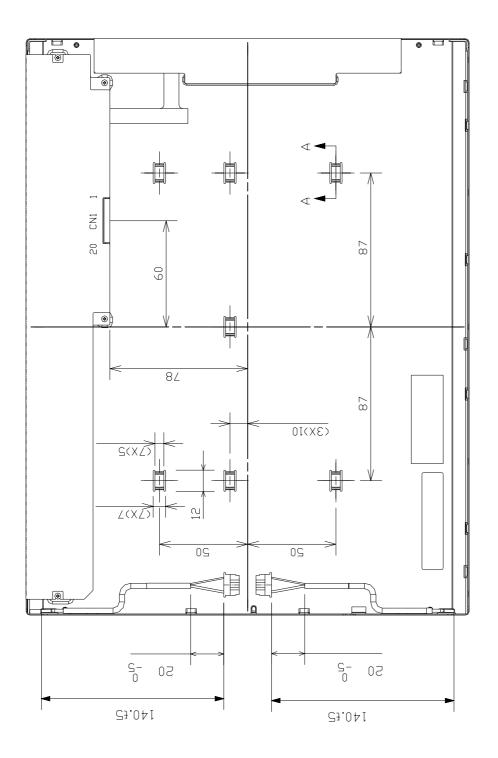
(E) Color Data Assignment


D(1,1)	D(2,1)		D(X,1)		D(1023,1)	` ′ ′
D(1,2)	D(2,2)		D(X,2)		D(1023,2)	D(1024,2)
		+		+		1
D(1,Y)	D(2,Y)		D(X,Y)		D(1023,Y)	D(1024,Y)
		+		+		
D(1,767)	D(2, 767)		D(X, 767)		D(1023,767)	D(1024,767)
	D(2, 768)		D(X, 768)		D(1023,768)	

6. BLOCK DIAGRAM

7. MECHANICAL SPECIFICATION


(a) Front side



[Note] Undefined tolerances to be ±0.5 mm

(b) Rear side

Unit: mm

CN1 HIROSE DF14H-20P-1.25H

[Note] Undefined tolerances to be ± 0.5 mm

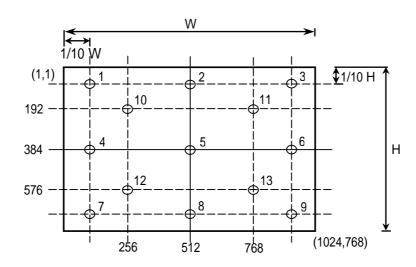
8.OPTICAL CHARACTERISTICS

┰-		$\Delta E \circ C$	
12	_	ソカッ	
1 (1		ZU	•

ITEM		SYMBO L	CONDITION	MIN.	TYP.	MAX.	UNIT
Contrast Ratio		CR	=φ=0°	300	400		
Luminance	Normal	LW	=φ=0°	200	250		cd/m ²
Lummance	Uniformity	LW	=φ=0°	75	80		%
Response Time		Tr	=φ=0°		9		ms
(Black/White)		Tf			16		ms
Viewing Angle	Horizontal	ф	CR 10	-55~55	-60~60		0
	Vertical	θ		-55~40	-60~45	-	0
	Horizontal	ф	CR 5	-80~80	-85~85		0
	Vertical	θ		-80~50	-85~55		0
Image sticking		tis	2hours			2	S
Cross talk		CMR	= =0			1	%
Color Coordinates	Red	Rx Ry	=φ=0°	0.613 0.314	0.643 0.344	0.673 0.374	
	Green	Gx Gy		0.274 0.536	0.304 0.566	0.334 0.596	
	Blue	Bx By		0.111 0.055	0.141 0.085	0.171 0.115	
	White	Wx Wy		0.282 0.288	0.312 0.318	0.342 0.348	

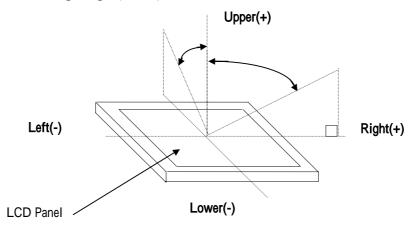
[Note]

These items are measured using CS-1000 (MINOLUTA) OR BM-5A(TOPCON)under the dark room condition(no ambient light) after more than 30 minutes from turning on the lamp unless noted. Inverter: CVT010330Bl31402, Condition: IL=8.0mA, Inverter Frequency=50kHz.

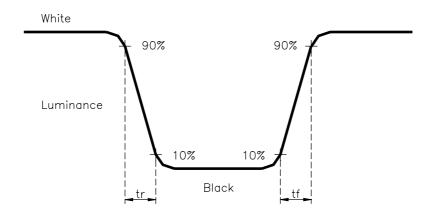

Definition of these measurement items are as follows:

- (1)Definition of Contrast Ratio: CR=ON(White)Luminance/OFF(Black)Luminance
- (2) Definition of Luminance and Luminance uniformity

Measure White Luminance on the below center(5), 5 point(5,10,11,12,13) and 9 point(1~9).

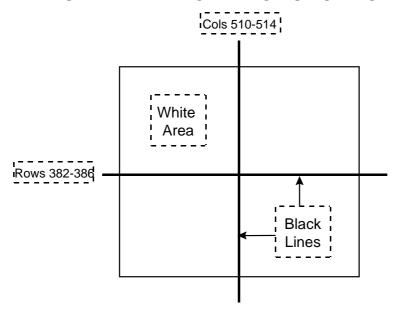

Uniformity: 5 point: $\Delta L = [(L_{MAX} - L_{MIN})/L_{MIN}] \times 100\%$

9 point : Δ L = (L_{MIN} /L_{MAX}) ×100%



.0

(3)Definition of Viewing Angle(,)


(4)Definition of Response Time

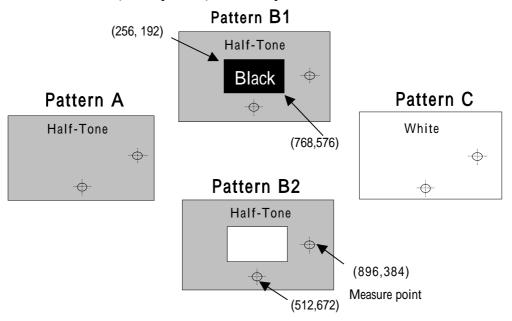
(5) Image sticking:

Continuously display the test pattern shown in the figure below for two-hours. Then display a completely white screen. The previous image shall not persist more than two seconds at 25

TEST PATTERN FOR IMAGE STICKING TEST

CPT Confidential

CLAA150XG09Y-Yih Hsing-Ver:1-2003/09/18


(6) Definition of Crosstalk Ratio

CMR = MAX $((/(LB1-LA)/LC/) \times 100, (/(LB2-LA)/LC/) \times 100)$

LA: Pattern A(Half-Tone pattern) Measure point Luminance

LB1,LB2: Pattern B1, Pattern B2 Measure point Luminance

LC: Pattern C(white pattern) Measure point Luminance

9.RELIABILITY TEST CONDITIONS

(1)Temperature and Humidity

j i omporatare and frammatty	
TEST ITEMS	CONDITIONS
HIGH TEMPERATURE	40 ; 95%RH; 240h
HIGH HUMIDITY OPERATION	(No condensation)
HIGH TEMPERATURE	60 ; 90%RH;48h
HIGH HUMIDITY STORAGE	(No condensation)
HIGH TEMPERATURE OPERATION	50 ; 240h
LOW TEMPERATURE STORAGE	-20 ; 240h
THERMAL SHOCK	BETWEEN -20 (1hr)AND 60 (1hr); 100 CYCLES
HIGH TEMPERATURE STORAGE	60 ; 240h
LOW TEMPERATURE OPERATION	0 ; 240h

(2)Shock & Vibration

ITEMS	CONDITIONS	
SHOCK	Shock level:1470m/s^2(150G)	
(NON-OPERATION)	Waveform: half sinusoidal wave, 2ms	
	Number of shocks: one shock input in each direction of three	
	mutually perpendicular axes for a total of six shock inputs	
VIBRATION	TION Vibration level: 9.8m/s^2(1.0G) zero to peak	
(NON-OPERATION)	Waveform: sinusoidal	
	Frequency range: 5 to 500 Hz	
	Frequency sweep rate: 0.5 octave/min	
	Duration: one sweep from 5 to 500Hz in each of three mutually	
	perpendicular axis(each x,y,z axis: 1 hour, total 3 hours)	

(3) Judgment standard

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial

transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.

10. HANDLING PRECAUTIONS FOR TFT-LCD MODULE

Please pay attention to the followings in handling- TFT-LCD products;

1. ASSEMBLY PRECAUTION

- (1) Please use the mounting hole on the module side in installing and do not beading or wrenching LCD in assembling. And please do not drop, bend or twist LCD module in handling.
- (2) Please design display housing in accordance with the following guide lines.
 - (2.1) Housing case must be destined carefully so as not to put stresses on LCD all sides and not to wrench module. The stresses may cause non-uniformity even if there is no non-uniformity statically.
 - (2.2) Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0 mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing.
 - (2.3) When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure.
 - (2.4) Design the inverter location and connector position carefully so as not to give stress to lamp cable, or not to interface the LCD module by the lamp cable.
 - (2.5) Keep sufficient clearance between LCD module and the others parts, such as inverter and speaker so as not to interface the LCD module. Approximately 1.0mm of the clearance in the design is recommended.
- (3) Please do not push or scratch LCD panel surface with any-thing hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.)
- (4) Please do not press any parts on the rear side such as source TCP, gate TCP, control circuit board and FPCs during handling LCD module. If pressing rear part is unavoidable, handle the LCD module with care not to damage them.
- (5) Please wipe out LCD panel surface with absorbent cotton or soft cloth in case of it being soiled.
- (6) Please wipe out drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change.
- (7) Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (8) Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules.
- (9) Please pay attention to handling lead wire of backlight so that it is not tugged in connecting wit inverter.

2. OPERATING PRECAUTIONS

- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification.
- (3) Please consider that LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature.
- (4) A condensation might happen on the surface and inside of LCD module in case of sudden charge of ambient temperature.
- (5) Please pay attention to displaying the same pattern for very long time. Image might stick on LCD. If then, time going on can make LCD work well.
- (6) Please obey the same caution descriptions as ones that need to pay attention to ordinary electronic parts.

3. PRECAUTFONSWITHELECTROSTATICS

- (1) This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and so on.
- (2) Please remove protection film very slowly on the surface of LCD module to prevent from electrostatics occurrence.

4. STORAGE PRECAUTIONS

- (1) When you store LCDs for a long time, it is recommended to keep the temperature between 0 ~40 without the exposure of sunlight and to keep the humidity less than 90%RH.
- (2) Please do not leave the LCDs in the environment of high humidity and high temperature such as 60*C 90%RH.
- (3) Please do not leave the LCDs in the environment of low temperature; below -20

5. SAFETY PRECAUTIONS

- (1) When you waste LCDS, it is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged-glass cell and comes in contact with the hands, wash off throughly with soap and water.

6. OTHERS

- (1) A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight Land strong UV rays.
- (2) Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone.
- (3) For the packing box, please pay attention to the followings:
 - (3.1) Packaging box and inner case for LCD are designed to protect the LCDs from the damage or scratching during transportation. Please do not open except picking LCDs up from the box.
 - (3.2) Please do not pile them up more than 5 boxes. (They are not designed so.) And please do not turn over
 - (3.3) Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
 - (3.4) Packing box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)