Chunghwa Picture Tubes, Ltd. Technical Specification To: Date: 2010.04.06 # CPT TFT-LCD CLAA 185WA04 | ACCEPTED BY: | | | |--------------|--|--| | | | | | | | | | APPROVED BY | CHECKED BY | PREPARED BY | |-------------|------------|--| | Kevin Chen | Sean Lee | Product Planning
Management General
Division | Prepared by: Design General Division # CHUNGHWA PICTUER TUBES, LTD. No. 1, Huaying Rd., Sanho Tsun, Lungtan Shiang, Taoyuan, Taiwan, 325, R.O.C. TEL: +886-3-4805678 FAX: +886-3-4800589 | Doc. No: | CLAA185WA04 | -SPEC-Ver.1-20100406 | Issue Date: | 2010/04/06 | |----------|-------------|----------------------|-------------|------------| |----------|-------------|----------------------|-------------|------------| #### 1. OVERVIEW CLAA185WA04 is 18.51" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit and backlight. By applying 6bit+Hi-FRC digital data, 1366*768, 16.7M-color images are displayed on the 18.51" diagonal screen. Input power voltage is 5.0V for LCD driving. Converter for backlight is not included in this module. General specification are summarized in the following table: | ITEM | SPECIFICATION | |-------------------------|---| | Display Area(mm) | 409.8(H)x230.4(V) | | Number of Pixels | 1366(H)x768(V) | | Pixel Pitch(mm) | 0.3(H)x0.3 (V) | | Color Pixel Arrangement | RGB vertical stripe | | Display Mode | normally white, TN | | Number of Colors | 16.7M(6 Bit+Hi-FRC) | | Brightness(cd/m^2) | 250cd/m ² (Typ.)(center, 20mA) | | Viewing Angle(H/V) | 160/160 (Typ.) | | Surface Treatment | Anti-glare, 3H | | Power consumption(W) | 10W(typ)(Without Converter) | | Module Size(mm) | 430.37(W)x254.6(H)x11(D) | | Module Weight(g) | 1500(typ) | | Backlight Unit | LED (White-LED) | #### 2. ABSOLUTE MAXIMUM RATINGS | ITEM | SYMBOL | MIN. | MAX. | UNIT | REMARK | |------------------------------|--------------------|-------|------|------------------------|----------------| | Power Supply Voltage for LCD | VCC | 0 | 6 | V | | | Lightbar Input | V_{LED} | 3.0 | 40 | V | | | Lightbar Current | I_{LED} | 1 | 30 | mA | 2). 3). | | static electricity | VESDt | -200 | 200 | V | 7) | | static electricity | VESDc | -8000 | 8000 | V | | | Operation Temperature | Top | 0 | 50 | $^{\circ}\mathbb{C}$ | 4). 5). 6). 8) | | Storage Temperature | Tstg | -20 | 60 | $^{\circ}\!\mathbb{C}$ | 4). 5). 6). 8) | #### [Note] - 1).Product life-time relate to LED, please operate production follow statement at page 8 "(2)back light". - 2). When LED current over the definition of operating current ,product life-time will decay rapidly or operate unusual. - 3).LED current ripple peak-to-peak must be less then 1.5mA. - 4). The relative temperature and humidity range are as below sketch, 90% RHMax. (Ta \leq 40°C). - 5). The maximum wet bulb temperature $\leq 39^{\circ}$ (Ta>40°C) and without dewing. - 6). If you use the product in an environment which over the definition of temperature and humidity too long to effect the result of eye-etching. - 7) Test Condition: IEC 1000-4-2 VESDt: Contact discharge to input connector; VESD_C: Contact discharge to module - 8). If you operate the product in normal temperature range, the center surface of panel should be under 60° C. # 3. ELECTRICAL CHARACTERISTICS # (1).TFT-LCD Ta=25 °C | ITEM | | SYMBOL | MIN | TYP | MAX | UNIT | Remark | |---------------------|-------------------------------|--------|-------|------|-------|-------|----------| | Power Supply Volta | ge for LCD | Vcc | 4.5 | 5.0 | 5.5 | V | *1) | | Power Supply Curre | ent for LCD | Icc | - | 700 | 1000 | mA | *2) | | Permissive Input Ri | ipple Voltage | VRP | - | - | 100 | mVp-p | Vcc=5.0V | | Differential impeda | ınce | Zm | 90 | 100 | 110 | Ω | | | | Common
Mode Voltag | VCM | 1.125 | 1.25 | 1.375 | V | | | Logic input voltage | Differential
Input Voltage | VID | 250 | 350 | 450 | mV | | | LVDS:IN+ , IN- | Threshold
Voltage(High) | VTH | - | - | 100 | mV | *3) | | | Threshold
Voltage(Low) | VTL | -100 | - | - | mV | (3) | | LCD Inrush Current | | Inrush | | | 3 | A | *4) | | Power consumpti | on | P | | 3.5 | 5.5 | W | *2) | # [Note] #### 1).VCC-turn-on conditions: #### VCC-dip conditions: - (1) When $3.6V \le Vcc(min) < 4.5V$: $td \le 10 \text{ ms}$ - (2) When Vcc < 3.6 V, VCC-dip conditions should also follow the VCC-turn-on conditions. 2). Typical current situation: 256 gray scale level, VCC=5.0V, Fh=47.28KHz, Fv=60Hz, Fclk=67.1 MHz. Maxmum current situation: CS Open scale level, VCC=5.0V, Fh=47.28KHz, Fv=60Hz, Fclk=67.1 MHz. 3).LVDS Signal definition: $$VID = VIN_{+} - VIN_{-},$$ $$\triangle VCM = | VCM_{+} - VCM_{-} | ,$$ $$\triangle VID = | VID_{+} - VID_{-} | ,$$ $$VID_{+} = | VIH_{+} - VIH_{-} | ,$$ $$VID_{-} = | VIL_{+} - VIL_{-} | ,$$ $$VCM = (VIN_{+} + VIN_{-})/2,$$ $$VCM_{+} = (VIH_{+} + VIH_{-})/2,$$ $$VCM_{-} = (VIL_{+} + VIL_{-})/2,$$ VIN₊ = Positive differential DATA & CLK Input VIN- = Negative differential DATA & CLK Inpu #### 4). Irush Measurement Condition # (2).Backlight # 1. Electrical specification $Ta=25^{\circ}C$ (Ta:Ambient Temperature) | Symbol | Parameter | Min. | Typ. | Max. | Unit | REMARK | |--------------------|---------------------------------------|------|------|------|------|--------| | V_{LED} | LED Operation Voltage (for reference) | 1 | 36 | 40 | V | | | I_{LED} | LED Operation Current | - | 20 | 30 | mA | | | P _{out} | BLU Power | - | 5.76 | 9.6 | W | | #### 2. life time | ITEM | min | typ | max | UNIT | REMARK | |-----------|-------|--------|-----|------|--------------| | LIFE TIME | 20000 | 30,000 | 1 | hrs | 1) , 2) , 3) | #### [Note] - 1). Parameter guideline for LED driving is under stable conditions at 25C (Room Temperature) and I_{LED} =20mA - 2). Definition of the life time: Luminance (L) under 50% of specification. - 3). When the ambient temperature Ta overstep 25°C, it will serious damage life time. # 4. INTERFACE PIN CONNECTION (1)CN1 (Data Signal and Power Supply) Used connector: 093G30-B2001A (STARCONN) or compatible | PIN NO. | REMARK | FUNCTION | |---------|----------|---| | 1 | NC | NC | | 2 | NC | NC | | 3 | NC | NC | | 4 | GND | Power ground | | 5 | RXIN0- | Negative LVDS differential data input(0) | | 6 | RXIN0+ | Positive LVDS differential data input(0) | | 7 | GND | Power ground | | 8 | RXIN1- | Negative LVDS differential data input(1) | | 9 | RXIN1+ | Positive LVDS differential data input(1) | | 10 | GND | Power ground | | 11 | RXIN2- | Negative LVDS differential data input(2) | | 12 | RXIN2+ | Positive LVDS differential data input(2) | | 13 | GND | Power ground | | 14 | RXCLKIN- | Negative LVDS differential clock input(clock) | | 15 | RXCLKIN+ | Positive LVDS differential clock input(clock) | | 16 | GND | Power ground | | 17 | RXIN3- | Negative LVDS differential data input(3) | | 18 | RXIN3+ | Positive LVDS differential data input(3) | | 19 | GND | Power ground | | 20 | NC | NC | | 21 | NC | NC | | 22 | NC | NC | | 23 | GND | Power ground | | 24 | GND | Power ground | | 25 | GND | Power ground | | 26 | VCC | Power supply input voltage(5.0 V) | | 27 | VCC | Power supply input voltage(5.0 V) | | 28 | VCC | Power supply input voltage(5.0 V) | | 29 | VCC | Power supply input voltage(5.0 V) | | 30 | VCC | Power supply input voltage(5.0 V) | # (2) CN2 (BACKLIGHT) Used connector: 7083K-F10Y-00R(ENTERY) or compatible Flexible Flat Cable spec(reference): 10pin , pitch=0.5mm , thickness=0.3mm | Pin No | Symbol | Description | |--------|--------------|-------------| | 1 | $I_{ m LED}$ | LED Current | | 2 | I_{LED} | LED Current | | 3 | I_{LED} | LED Current | | 4 | I_{LED} | LED Current | | 5 | V_{LED} | LED Input | | 6 | V_{LED} | LED Input | | 7 | I_{LED} | LED Current | | 8 | I_{LED} | LED Current | | 9 | I_{LED} | LED Current | | 10 | I_{LED} | LED Current | Pin 1 Pin 10 # 5. INTERFACE TIMING # (1) Timing Characteristic | | | ITEM | SYMBOL | MIN | TYP | MAX | UNIT | |--------|------|------------------------|----------------|------|------|------|--------------------| | | DCLK | Frequency | f_{CLK} | 54.5 | 67.1 | 89.0 | MHz | | | DCLK | Period | t_{CLK} | 18.4 | 14.9 | 11.9 | ns | | LCD | | Horizontal Active Time | t_{HA} | 1366 | 1366 | 1366 | t_{CLK} | | Timing | | Horizontal Total Time | t _H | 1406 | 1420 | 1936 | t_{CLK} | | | DENA | Vertical Active Time | t_{VA} | 768 | 768 | 768 | t_{H} | | | | Vertical Total Time | t _V | 776 | 788 | 888 | t_{H} | | | | Vertical Frame Rate | Fr | 50 | 60 | 75 | Hz | # [Note] - 1) DENA should always be positive polarity as shown in the timing specification. - 2) CLK IN should appear during all blanking period - 3) As $t_H = 1936$, $t_V = 888$, f_{CLK} can't be over 89MHz. # (2) Timing Chart # a. Horizontal Timing # b. Vertical Timing # (3) LVDS DATA # (a) Timing Chart # (b) Data mapping | Cell | Input Pin*) | Data(6 bit+Hi-FRC) | |----------|---------------|--------------------| | RAO | Tx1N0 | RI0 | | RA1 | Tx1N1 | RI1 | | RA2 | Tx1N2 | RI2 | | RA3 | Tx1N3 | RI3 | | RA4 | Tx1N4 | RI4 | | RA5 | Tx1N6 | RI5 | | RA6 | Tx1N7 | GI0 | | RB0 | Tx1N8 | GI1 | | RB1 | Tx1N9 | GI2 | | RB2 | Tx1N12 | GI3 | | RB3 | Tx1N13 | GI4 | | RB4 | Tx1N14 | GI5 | | RB5 | Tx1N15 | BIO | | RB6 | Tx1N18 | BI1 | | RC0 | Tx1N19 | BI2 | | RC1 | Tx1N20 | BI3 | | RC2 | Tx1N21 | BI4 | | RC3 | Tx1N22 | BI5 | | RC4 | Tx1N24 | RSVD | | RC5 | Tx1N25 | RSVD | | RC6 | Tx1N26 | DENA | | RD0 | Tx1N27 | RI6 | | RD1 | Tx1N5 | RI7 | | RD2 | Tx1N10 | GI6 | | RD3 | Tx1N11 | GI7 | | RD4 | Tx1N16 | BI6 | | RD5 | Tx1N17 | BI7 | | RD6 | Tx1N23 | (RSVD) | | Ref-RCLK | TxCLKIN | DCLKI | ^{*):} DS90C383MTD # (4) Color Data Assignment | | | | | | | ATA | | | | | | | | ATA | | | | | | | ВD | | | | | |-------|------------|-----|----------|-----|----------|---------------|-----|---------|-----|-------|-----|----|-----------|-----|-------|----|-----|-----|-------|-----|------------|----|----|-----|-----| | COLOR | INPUT DATA | | R6 | R5 | R4 | R3 | R2 | R1 | | | G6 | G5 | <u>G4</u> | G3 | G2 | G1 | | | B6 | B5 | <u>B</u> 4 | В3 | B2 | В1 | | | | | MSB | l | | | I
 | I | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | BLACK | 0 | | | RED(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(255) | 0 | : ; | 0 | 0 | 0 | 0 | 0 | 0 | 1_ | _1_ | 1 | 1 | 1_ | _ 1 _ | 1 | 1 | 0 | 0_ | 0 | 0 | 0 | 0_ | 0 | 0 | | BASIC | BLUE(255) | 0 | | | 0 | | 0 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1_ | _ 1 _ | 1 | 1_1_ | 1_ | 1_ | _ 1 | 1 | | COLOR | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | _ 1 _ | _1_ | 1 | 1 | 1_ | _ 1 _ | 1 | 1 | 1_ | _ 1 _ | _1_ | 1 | 1_ | 1_ | _ 1 | 1 | | | MAGENTA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1_ | 1 | 1 | 1_ | 1_ | _1_ | 1 | | | YELLOW | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1_ | _ 1 _ | _1 | 1 | 1 | 1_ | 1 | 1 | 1 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | | | WHITE | 1 | | | RED(0) | 0 | | | RED(1) | 0 | | | | | 0 | | 1 | 0_ | _0_ | 0 | 0 | 0_ | 0 | 0 | 0 | 0_ | 0_ | 0 | 0 | 0 | 0_ | _0_ | 0 | | | RED(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | RED | | | ! | |
L | '
' | ! ! | !
!! | L | | | | | | | | | | | | | | L | | | | | | | ! | | !
L | '
' | ! | !
! | L | | | | | | | | | | | | | | L | | | | | RED(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | RED(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GREEN | | | | |
 |
i
l | i i | L | i
! | | i
 | L | | | | | | | | | | | | | | L | | | | | GREEN(254) | | 0 | | | !_ <u>-</u> _ | | l | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(0) | 0 | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE(1) | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | BLUE(2) | 0 | 1 | 0 | | BLUE | | | | | <u>.</u> | | | | L | | | | | L | | | | | | | | l | L | | | | | | | 1
! ! | | , | , ·
!
! | , 7 | | | | | | | | | | | | | | <u> </u> | | L | | | | | BLUE(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | BLUE(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | # [Note] - 1) Definition of gray scale: Color (n): n indicates gray scale level. Higher n means brighter level. - 2) Data: 1-High, 0-Low. - 3) This assignment is applied to both odd and even data. # (5) Color Data Assignment | D(1,1) | D(2,1) | | D(X,1) | | D(1365,1) | D(1366,1) | |----------|-----------|---|-----------|---|-------------|-------------| | D(1,2) | D(2,2) | | D(X,2) | | D(1365,2) | D(1366,2) | | | | + | | + | | | | D(1,Y) | D(2,Y) | | D(X,Y) | | D(1365,Y) | : | | | | + | •• | + | | | | D(1,767) | D(2, 767) | | D(X, 767) | | D(1365,767) | D(1366,767) | | D(1,768) | D(2, 768) | | D(X, 768) | | D(1365,768) | D(1366,768) | # 6. BLOCK DIAGRAM # 7. MECHANICAL SPECIFICATION (1) Front side (Tolerance is \pm 0.5mm unless noted) [Unit:mm] (2)Rear side (Tolerance is ±0.5mm unless noted) [Unit: mm] # 8. OPTICAL CHARACTERISTICS Ta=25°C, VCC=5.0V | ITEM | | SYMBOL | CONDITION | min | typ | max | UNIT | REMARK | | |-------------|-----------------------------------|------------|-----------------------------|----------------|----------------|----------------|-------------------|--------|--| | Contrast | Ratio | CR | $\theta = \psi = 0^{\circ}$ | 700 | 1000 | | | *1) 2) | | | Luminand | ce(CEN) | L | $\theta = \psi = 0^{\circ}$ | 200 | 250 | | cd/m ² | *1) 3) | | | 9P Unif | ormity | ΔL | $\theta = \psi = 0^{\circ}$ | 70 | | 1 | % | *1) 3) | | | Dagnang | a Tima | Tr | $\theta = \psi = 0^{\circ}$ | | 5 | 10 | ms | *5) | | | Respons | Response Time | | $\theta = \psi = 0^{\circ}$ | | 3 | 10 | ms |] .3) | | | Cross | talk | CT | $\theta = \psi = 0^{\circ}$ | 0 | | 1.5 | % | *6) | | | Viewing | Viewing Horizontal Angle Vertical | | CD > 10 | 140 | 160 | | Deg | *4) | | | Angle | | | CR ≥ 10 | 140 | 160 | | Deg | | | | White | | X
Y | | 0.254
0.289 | 0.304
0.339 | 0.354
0.389 | | | | | Color | Red | X
Y | θ=ψ= 0° | 0.589
0.295 | 0.639
0.345 | 0.689
0.395 | | *1\ | | | Coordinates | Green | X
Y | | 0.279
0.568 | 0.329
0.618 | 0.379
0.668 | | *1) | | | | Blue | X
Y | | 0.100
0.027 | 0.150
0.077 | 0.200
0.127 | | | | | Gam | ma | γ | VESA | 2.0 | 2.2 | 2.4 | | *7) | | #### [Note] All optical specification condition: Equipment: Color coordinate and color gamut are measured by SRUL1R, and all the other items are measured by BM-5A (TOPCON). Condition: I_{LED} =20 mA 1). The LCD module should be turn-on to a stable luminance level to be reached. The measurement should be executed after lighting Backlight for 20 minutes and in a dark room. 2). Definition of Contrast Ratio: CR=ON (White) Luminance/OFF (Black) Luminance 3). Definition of Luminance and Luminance uniformity: Center Luminance: measuring the luminance of the point no. 5 Average Luminance: measuring average luminance of points no.1-no.9 Uniformity: $\Delta L = [L (Min)/L (Max)] \times 100 \%$ # 4). Definition of Viewing Angle θ , ψ): # 5) Definition of Response Time: #### 6) Definition of crosstalk: $$CT = | Y_B - Y_A | / Y_A X 100 (\%)$$ Y_{A:} The luminance of measured position at pattern A Y_{B:} The luminance of measured position at pattern B with Gray level 0 Pattern A Pattern B 7) Definition of Gamma (y), follow VESA standard sampling every 16 gray level (0 16, 32,224,240,255) Gray level (LOG) # 9. RELIABILITY TEST CONDITIONS #### (1) Temperature and Humidity | TEST ITEMS | CONDITIONS | |----------------------------|--------------------------------------| | HIGH TEMPERATURE | 50°C; 90%RH; 240h | | HIGH HUMIDITY OPERATION | (No condensation) | | HIGH TEMPERATURE | 60°C; 90%RH;48h | | HIGH HUMIDITY STORAGE | (No condensation) | | HIGH TEMPERATURE OPERATION | 50°C; 240h | | HIGH TEMPERATURE STORAGE | 60°C; 240h | | LOW TEMPERATURE OPERATION | 0°C; 240h | | LOW TEMPERATURE STORAGE | -20°C; 240h | | THERMAL SHOCK | BETWEEN -20°C(1hr)AND 60°C(1hr); 100 | | THERWAL SHOCK | CYCLES | #### (2) Shock & Vibration | ITEMS | CONDITIONS | |---------------|---| | SHOCK | Shock level:1470m/s^2(150G) | | (NON-OPERATIO | Waveform: half sinusoidal wave, 2ms | | ` | Number of shocks: 1/2 shock input in each direction of three | | N) | mutually perpendicular axes for a total of six shock inputs | | | Vibration level: 9.8m/s^2(1.0G) zero to peak | | VIBRATION | Waveform: sinusoidal | | (NON-OPERATIO | Frequency range: 5 to 500 Hz | | ` | Frequency sweep rate: 0.5 octave/min | | N) | Duration: one sweep from 5 to 500Hz in each of three mutually | | | perpendicular axis(each x,y,z axis: 1 hour, total 3 hours) | #### (3) ESD | POSITION | CONDITION(MDL turn off) | | | | | | |-----------|--|--|--|--|--|--| | C | $1.200\mathrm{pF}$, 0Ω , $\pm 250\mathrm{V}$ | | | | | | | Connector | 2. contact mode for each pin | | | | | | | | 1. 150pF , 330Ω , $\pm 15 \text{K V}$ | | | | | | | Module | 2. Air mode, test 25 times for each test point | | | | | | | | 3. Contact mode, 25 times for each test point | | | | | | #### (4) Low Pressure test | TEST ITEM | CONDITION | |----------------------------|---------------------------| | Low Pressure test(storage) | 260HPa (30000 ft.); 24 Hr | #### (5) Judgment standard The judgment of the above test should be made as follow: Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored. Fail: No display image, obvious non-uniformity, or line defects. # 10. HANDLING PRECAUTIONS FOR TFT-LCD MODULE Please pay attention to the followings in handling- TFT-LCD products; #### (1) ASSEMBLY PRECAUTION - 1) Please use the mounting hole on the module side in installing and do not beading or wrenching LCD in assembling. And please do not drop, bend or twist LCD module in handling. - 2) Please design display housing in accordance with the following guide lines. - a) Housing case must be destined carefully so as not to put stresses on LCD all sides and not to wrench module. The stresses may cause non-uniformity even if there is no non-uniformity statically. - b) Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0 mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing. - c) When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure. - d) Keep sufficient clearance between LCD module and the others parts, such as speaker so as not to interface the LCD module. Approximately 1.0mm of the clearance in the design is recommended. - 3) Please do not push or scratch LCD panel surface with any-thing hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.) - 4) Please do not press any parts on the rear side such as source TCP, gate TCP, control circuit board and FPCs during handling LCD module. If pressing rear part is unavoidable, handle the LCD module with care not to damage them. - 5) Please wipe out LCD panel surface with absorbent cotton or soft cloth in case of it being soiled. - 6) Please wipe out drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change. - 7) Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well. - 8) Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules. - 9) Please pay attention to handling lead wire of backlight so that it is not tugged in connecting with power board. #### (2) OPERATING PRECAUTIONS - 1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable. - 2) Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the - characteristics specification. - 3) Please consider that LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature. - 4) A condensation might happen on the surface and inside of LCD module in case of sudden charge of ambient temperature. - 5) Please pay attention to displaying the same pattern for very long time. Image might stick on LCD. If then, time going on can make LCD work well. - 6) Please obey the same caution descriptions as ones that need to pay attention to ordinary electronic parts. #### (3) PRECAUTFONSWITHELECTROSTATICS - 1) This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and soon. - 2) Please remove protection film very slowly on the surface of LCD module to prevent from electrostatics occurrence. #### (4) STORAGE PRECAUTIONS - 1) When you store LCDs for a long time, it is recommended to keep the temperature between 0° C ~40°C without the exposure of sunlight and to keep the humidity less than 90%RH. - 2) Please do not leave the LCDs in the environment of high humidity and high temperature such as 60°C 90%RH. - 3) Please do not leave the LCDs in the environment of low temperature; below -20°C. #### (5) SAFETY PRECAUTIONS - 1) When you waste LCDS, it is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned. - 2) If any liquid leaks out of a damaged-glass cell and comes in contact with the hands, wash off thoroughly with soap and water. #### (6) OTHERS - A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight Land strong UV rays. - 2) Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone. - 3) For the. Packaging box, please pay attention to the followings: - a) Packaging box and inner case for LCD are designed to protect the LCDs from the damage or scratching during transportation. Please do not open except picking LCDs up from the box. - b) Please do not pile them up more than 5 boxes. (They are not designed so.) And please do not turn over. - c) Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up. d) Packing box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.) :