

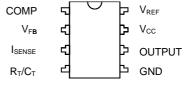
GENERAL DESCRIPTION

The CM3842/43 are fixed frequency current-mode PWM controllers specially designed for OFF-Line switching power supply and DC-to-DC converters with a minimum number of external components. These devices feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem pole output which is suitable for driving MOSFETs.

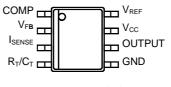
The under voltage lock-out (U.V.L.O.) is designed to operated with 200 μ A typ. start-up current, allowing an efficient bootstrap supply voltage design. The U.V.L.O. thresholds for the CM3842 are 16V (on) and 10V (off) which are ideal for off-line applications. The corresponding typical threshold for the CM3843 are 8.4V (on) and 7.6V (off). The CM3842/43 can operated within 100% duty cycle.

FEATURES

- Low Start-Up current (typ. 200μA)
- Optimized for Off-Line and DC-to-DC Converters
- Maximum Duty Cycle
- U.V.L.O. with Hysteresis
- Operating Frequency Up to 500KHz
 - Internal Trimmed Bandgap Reference
 - High Current Totem Pole Output
- Error Amplifier With Low Output Resistance
- Available in 8-Pin Plastic DIP and Surface Mount 8-Pin S.O.I.C.


APPLICATIONS

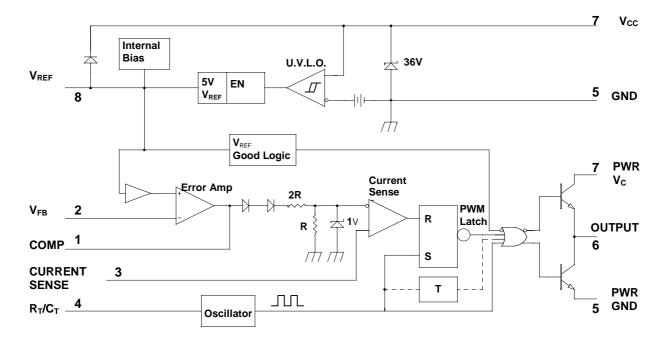
- Off-line flyback or forward converters.
- DC-to-DC buck or boost converter.
- Monitor Power Supply


AVAILABLE OPTIONS

Device	Start-UP Voltage	Hysteresis	Max. Duty Cycle
CM3842	16V	6V	< 100%
CM3843	8.4V	0.8V	< 100%

PIN CONFIGURATION

8-Pin PDIP (Top View)


8-Pin S.O.I.C. (Top View)

ORDERING INFORMATION

Part Number	Temperature Range	Package
CM3842/43CP	0°℃ to 70°℃	8-Pin PDIP(P08)
CM3842/43CS	0°℃ to 70°℃	8-Pin SOIC(S08)

BLOCK DIAGRAM

Note 1 $:V_{CC}$ and PWR V_C are internally connected for 8 pin packages.

Note 2 :PWR GND and GND are internally connected for 8 pin packages.

- Note 3 $\,$:U.V.L.O. is 16V for 3842 and 8.4V for 3843.
- Note 4 :Hysteresis is 6V for 3842 and 0.8V for 3843.

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{CC}	35V			
Output current, I _O	± 1A			
Analog inputs, V _I	-0.3V to 6.3V			
Error amp output sink current, I _{SINK(EA)}	10mA			
Power dissipation ($T_A = 25 ^{\circ}C$), P_D 1W				
Maximum junction temperature T _J 150°C				
Storage temperature range -65°C to 150				
Lead temperature (soldiering, 10 seconds) 260 °C				
Note 5: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground.				
Currents are positive into, negative out of the specified terminal.				

THERMAL DATA

PDIP PACKAGE:				
Thermal Resistance-Junction to Ambient, θ_{JA}	95 °C/W			
SOIC PACKAGE:				
Thermal Resistance-Junction to Ambient, θ_{JA}	165 °C/W			
Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.				
The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system.				
All of the above assume no ambient airflow.				

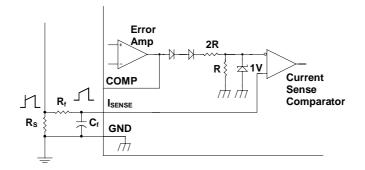
RECOMMENDED OPERATING CONDITIONS

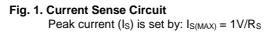
Parameter	Symbol	Recommended Operating		Units	
		Min.	Тур.	Max.	
Supply Voltage	V _{CC} / V _C			30	V
Input Voltage	$V_{I},R_{T}/C_{T}$	0		5.5	V
input voltage	VI.ISENSE/VER	0		0.0	v
Output Voltage	Vo. Output	0		30	V
Supply Current	Icc			25	mA
Average Output Current	Ι _ο			200	mA
Reference Output Current				-20	mA
Timing Capacitor	Ст	1			nF
Oscillator Frequency	fosc		100	500	KHz
Operating Free-air Temperature	T₄	0		70	°C

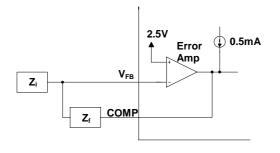
ELECTRICAL CHARACTERISTICS

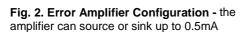
Unless otherwise specified, these specifications apply over the operating ambient temperature for CM384X with $0^{\circ}C \le T_A \le 70^{\circ}C$; $V_{CC} = 15V$ (note 7); $R_T = 10K$; $C_T = 3.3nF$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

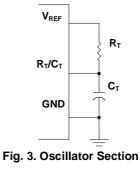
Parameter	Symbol	Test Conditions	CM384X		Units		
Falameter	Symbol	Symbol Test Conditions		Тур.	Max.	Units	
Reference Section							
Reference output Voltage	VRFF	T.I = 25 ^o C. Irff = 1mA	4.9	5.0	5.1	V	
Line Regulation		$12V \le V_{CC} \le 25V.T_{\rm H} = 25^{\circ}C$		6	20	mV	
Load Regulation		$1mA \le I_{RFF} \le 20mA$		6	25	mV	
Short Ciruit Output Current	lsc	$T_{\rm e} = 25 ^{\circ} \text{C}$	-30	-100	-180	mA	
Oscillator Section		-					
Oscillation Frequency	f	T.i = 25 °C	47	52	57	KHz	
Frequency Change with Voltage		$12V \leq V_{CC} \leq 25V$		0.2	1.0	%	
Frequency Change with Temperature (note 8)		$T_{MIN} \leq T_A \leq T_{MAX}$		5		%	
Peak-to-peak Amplitude At R_T/C_T	Vosc			1.7		V	
Current Sense Section							
Gain (note 9 & 10)	Ανοι		2.85	3.00	3.15	V/V	
Maximum Input Signal (note 9)		COMP = 5V	0.9	1.0	1.1	V	
Power Supply Rejection Ratio (note 9)	PSRR	$12V \le V_{CC} \le 25V$ (note 9)		70		dB	
Input Bias Current	RIAS			-3.0	-10	uА	


ELECTRICAL CHARACTERISTICS (Continued)


	BIAS			-0.1	-2	uА
Input Voltage	VI(FA)	COMP = 2.5V	2.42	2.50	2.58	V
Open Loop Voltage Gain	Gvo	$2V \le V_{\Omega} \le 4V$	65	90		dB
Unitv Gain Bandwidth (note 8)	UGBW	$T_{1} = 25 ^{\circ}C$	0.7	1		MHz
Power Supply Rejection Ratio	PSRR	$12V \leq V_{CC} \leq 25V$	60	70		dB
Output Sink Current	Isink	VFR = 2.7V. COMP = 1.1V	2	7		mA
Output Source Current		V _{FR} = 2.3V. COMP = 5.0V	-0.5	-1.0		mA
Hiah Output Voltage	V∩н	V_{FR} = 2.3V. R_I = 15K Ω to GND	5	6		V
Low Output Voltage	by Output Voltage V_{OI} $V_{FR} = 2.7V$. RL = 15K Ω to V _{RFF}			0.7	1.1	V
Dutput Section						
Output Low Level	V _{OL}	ISINK = 20mA		0.1	0.4	v
	VOL	I _{SINK} = 200mA		1.4	2.2	v
Output High Level	V _{OH}	ISOURCE = 20mA	13	13.5		V
Output High Level	VOH	ISOURCE = 200mA	12	13.0		V
Rise Time (note 8)	ise Time (note 8) $t_r = 25^{\circ}C. C_1 = 1nF$			50	150	ns
Fall Time (note 8)	tr	$T_{1} = 25^{\circ}C. C_{1} = 1nF$		50	150	ns
Jnder-Voltage Lockout Section			_			
Start Threshold	V _{TH(ST)}	CM3842	14.5	16.0	17.5	V
Start Theshold		CM3843	7.8	8.4	9.0	V
Min Operating Voltage		CM3842	8.5	10	11.5	v
Min. Operating Voltage		CM3843	7.0	7.6	8.2	V
PWM Section						
Maximum Duty Cycle		CM3842/43	94	97	100	%
Minimum Dutv Cvcle					0	%
Fotal Standby Current			1			I
Charles Coursent		CM3842		0.2	0.35	
Startup Current		CM3843		0.5	1.0	mA
		VER = ISENSE = 0V		14	17	mA
Operating Supply Current	lee					


note 10: Gain is measured between I_{SENSE} and COMP with the input changing from 0V to 0.8V




APPLICATION INFORMATION

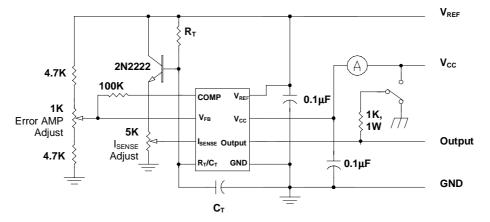


Fig. 4. Open-loop laboratory test fixture: Careful grounding techniques are necessary for high peak currents associated with capacitive loads. Timing and bypass capacitors should be connected to GND pin in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to the I_{SENSE} pin

APPLICATION INFORMATION (continued)

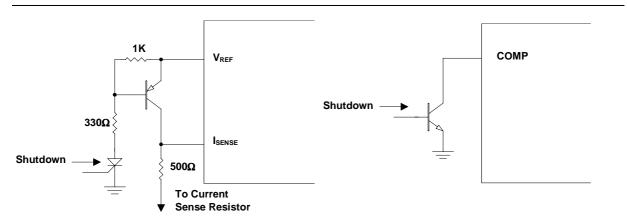


Fig. 5. Shutdown Techniques - there are two ways to shutdown the PWM controller: 1) raise the voltage at I_{SENSE} above 1V or, 2) pull the COMP below a voltage two diodes above ground.

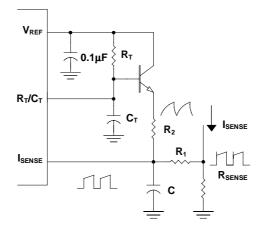
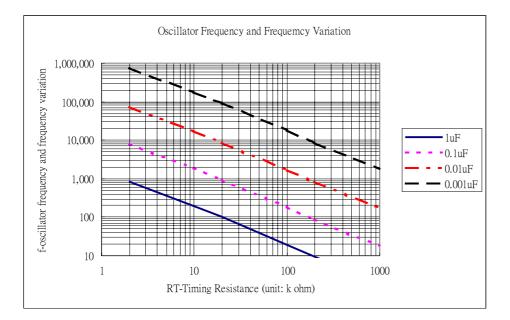
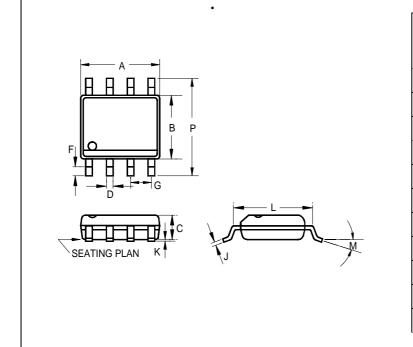
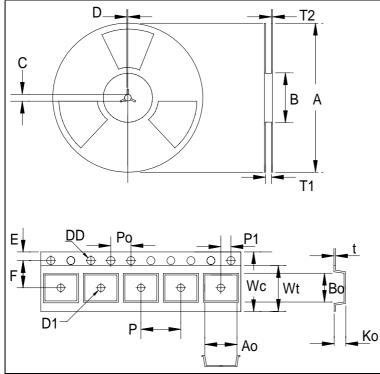



Fig 6. Slop Compensation – To achieve duty cycles over 50% for some applications , the above slope compensation technique is suggested by resistively summing a fraction of the oscillator ramp with the current sense signal.

TYPICAL CHARACTERISTICS



8-PIN PLASTIC DIP


8-PIN PLASTIC S.O.I.C

I	NCHES	6	MIL	LIMETE	RS	
MIN	TYP	MAX	MIN	TYP	MAX	
0.183	-	0.202	4.65	-	5.13	
0.144	-	0.163	3.66	-	4.14	
0.068	-	0.074	1.73	-	1.88	
0.010	-	0.020	0.25	-	0.51	
0.015	-	0.035	0.38	-	0.89	
			0.050 BSC			
0.007	-	0.010	0.19	-	0.25	
0.005	-	0.010	0.13	-	0.25	
0.189	-	0.205	4.80	-	5.21	
-	-	8º	-	-	8º	
0.228	-	0.244	5.79	-	6.20	
	MIN 0.183 0.144 0.068 0.010 0.015 0.007 0.005 0.189 -	MIN TYP 0.183 - 0.144 - 0.068 - 0.010 - 0.015 - 0.007 - 0.005 - 0.189 - - -	0.183 - 0.202 0.144 - 0.163 0.068 - 0.074 0.010 - 0.020 0.015 - 0.020 0.015 - 0.035 0.050 BSC 0.010 0.005 - 0.010 0.005 - 0.010 0.189 - 0.205 - - 8°	MIN TYP MAX MIN 0.183 - 0.202 4.65 0.144 - 0.163 3.66 0.068 - 0.074 1.73 0.010 - 0.020 0.25 0.015 - 0.035 0.38 0.050 BSC 0 0.13 0.005 - 0.010 0.13 0.005 - 0.010 0.13 0.189 - 0.205 4.80 - 8° - -	MIN TYP MAX MIN TYP 0.183 - 0.202 4.65 - 0.144 - 0.163 3.66 - 0.068 - 0.074 1.73 - 0.010 - 0.020 0.25 - 0.015 - 0.035 0.38 - 0.015 - 0.035 0.38 - 0.007 - 0.010 0.19 - 0.005 - 0.010 0.13 - 0.189 - 0.205 4.80 - - - 8° - -	

8-PIN PLASTIC S.O.I.C. CARRIER DIMENSIONS

MILLIMETERS							
А	330	± 1	DD	1.55 ± 0.1			
В	100	± 1	D1	1.5 ± 0.25			
С	13.0	+0.5 -1.0	Po	4.0 ± 0.1			
D	2.2 ± 1		P1	2.0 ± 0.1			
T1	12.5 ± 0.5		Ao	$\textbf{6.4}\pm\textbf{0.1}$			
T2	2.0 ±	2.0 ± 0.2		5.2 ± 0.1			
Wc	12.0	+0.3	Ko	2.1 ± 0.1			
Wt	9.3 TYP.		t	0.30 ± 0.013			
Ρ	8.0 ± 0.1						
Е	1.75 ± 0.1						
F	5.5 ± 0.1						

<//>
<//>
CHAMPION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

CMC assumes to no liability to customer product design or application support. CMC warrants the performance of its products to the specifications applicable at the time of sale.

HsinChu Headquarter	Hsin	Chu	Headq	uarter
---------------------	------	-----	-------	--------

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan TEL: +886-3-5679979 FAX: +886-3-5679909

Sales & Marketing

11F, No. 306-3, SEC. 1, Ta Tung Road, Hsichih, Taipei Hsien 221, Taiwan

TEL: +886-2-86921591 FAX: +886-2-86921596