

January 28, 2012

PRODUCT	: CAMERA MODULE
MODEL NO.	: CM6696-B800BA-E
SUPPLIER	: TRULY OPTO-ELECTRONICS LTD.
DATE	: January 28, 2012

CERT. No. 946535 ISO9001 TL9000

SPECIFICATION

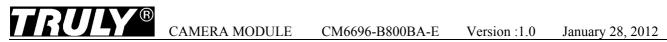
Revision: 1.0

СМ6696-В800ВА-Е

If there is no special request from customer, TRULY OPTO-ELECTRONICS LTD. will not reserve the tooling of the product under the following conditions:

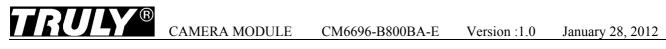
1. There is no response from customer in two years after TRULY OPTO-ELECTRONICS LTD. submit the samples;

2. There is no order in two years after the latest mass production.


And correlated data (include quality record) will be reserved one year more after tooling was discarded.

TRULY OPTO-ELECTRONICS LTD.: **CUSTOMER:**

Quality Assurance Department: Approved by:


Technical Department:

Approved by:

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2012-01-28	First release	

CONTENTS

- KEY INFORMATION
- AUTO-FOCUS SPECIFICATION
- PIN ASSIGNMENT
- SENSOR ELECTRICAL CHARACTERISTICS
- MECHANICAL DRAWING
- APPEARANCE SPECIFICATION
- IMAGE SPECIFICATION
- RELIABILITY SPECIFICATION
- PRECAUTIONS FOR USING CCM MODULES
- PACKAGE SPECIFICATION
- PRIOR CONSULT MATTER
- FACTORY CONTACT INFORMATION

WRITTEN BY	CHECKED BY	APPROVED BY
LIU XUE NA	WEI YOU XING	LIU TIE NAN

Key Information

Module No.			СМ6696-В800ВА-Е		
Module Size			8.50mm×8.50mm×5.70mm		
Sensor Type			OV8830		
Array Size	UX	GA	3264×2448		
D	Cor	e	1.14~1.32V(Internal regulator)		
Power Supply	Ana	log	2.6~ 3.0V		
Suppry	I/O		1.7~3.0V		
Lens			1/3.2 inch 4Plastic+ IR		
Focus(F.NO)			2.4 +/- 5%		
View Angle			66.1°+/-2°		
Image Area			4592µm×3450µm		
Object Distance			10cm-infinity		
Sensitivity			864mV/Lux-sec		
Pixel Size			1.4µm×1.4µm		
IR Cutter			650nm		
Sensor Temperatu	ıre	Operating	-30°C to 70°C		
Range		Stable Image	0°C to 50°C		
Output Formats	-		10-bit RGB RAW		
Manimum Incar	8M	pixel	24 fps		
Maximum Image Transfer Rate	EIS	1080p	30 fps		
Transfer Rate	EIS	720p	60 fps		
S/N Rate			36dB		
Dynamic Range			67 dB		
IC Package	IC Package		CSP		
Sensor Power	or Power Active		339mW		
Requirement	Requirement Standby		300 µA		
Scan Mode			Progressive		
Dark Current			0.26mV/sec @ 50°C		
Package			Antistatic Plastic		

Auto-Focus Specification

NO.	Item	Specification
1	Auto-Focus Type	VCM (Voice Coil Motor)
2	VCM Driver	DW9714
3	Power Supply	2.8~3.3 V
4	Rated Current	≪80mA
5	Resistance	16±3Ω
6	Settling Time	<30ms
7	Hysteresis	$\leq \pm 10 \mu m$
8	Focusing Range	10cm to infinity

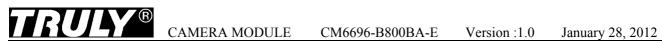
Pin Assignment

No.	Name	Pin type	Description	
1	DGND	Ground	Ground for digital circuit	
2	DGND	Ground	Ground for digital circuit	
3	DGND	Ground	Ground for digital circuit	
4	ID_NC			
5	AF_VDD	Power	Power for VCM	
6	AF_PWDN	Input	AF Driver IC power down control	
7	SDA	I/O	SCCB data I/O	
8	DOVDD	Power	power for I/O circuit	
9	SCL	Input	SCCB input clock	
10	DVDD(NC)			
11	DGND	Ground	Ground for digital circuit	
12	PWDN	Input	Power down, active low with internal pull-high resistor 0: Power down mode 1: Normal mode	
13	CLK_N	Output	Differential MIPI clock(sub-LVDS, negative)	
14	RESET	Input	Reset (active low with internal pull-up resistor) 1: Normal mode 0: Reset mode	
15	CLK_P	Output	Differential MIPI clock(sub-LVDS, positive)	
16	DGND	Ground	Ground for digital circuit	
17	DATA0_N	Output	MIPI TX first data lane negative output	
18	MCLK	Input	System input clock	
19	DATA0_P	Output	MIPI TX first data lane positive output	
20	DGND	Ground	Ground for digital circuit	
21	DATA1_N	Output	MIPI TX second data lane negative output	
22	FLASH	Output	Strobe control signal	
23	DATA1_P	Output	MIPI TX second data lane positive output	
24	AVDD	Power	Power for analog circuit	
25	VPP(NC)			
26	AGND	Ground	Ground for analog circuit	
27	DATA2_N	Output	MIPI TX third data lane negative output	
28	DATA3_N	Output	MIPI TX fourth data lane negative output	
29	DATA2_P	Output	MIPI TX third data lane positive output	
30	DATA3_P	Output	MIPI TX fourth data lane positive output	

Sensor Electrical Characteristics

1. Absolute maximum ratings

parameter		absolute maximum rating ^a
	V _{DD-A}	4.5V
supply voltage (with respect to ground)	V _{DD-D}	3V
	V _{DD-IO}	4.5V
cleater static discharge (FCD)	human body model	2000V
electro-static discharge (ESD)	machine model	200V
all input/output voltages (with respect to ground)		-0.3V to V _{DD-IO} + 1V
I/O current on any input or output pin	0	<u>+</u> 200 mA


a. exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

2. Functional temperature

parameter	range		
operating temperature ^a	-30°C to +70°C junction temperature		
stable operating temperature ^b	0°C to +50°C junction temperature		

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range

b. image quality remains stable throughout this temperature range

3. DC characteristics (-30°C<Tj<70°C)

symbol	parameter	min	typ	max	unit
supply					
V _{DD-A}	supply voltage (analog)	2.6	2.8	3.0	V
V _{DD-D} ^a	supply voltage (digital core for 2-lane MIPI up to 1 Gbps/lane)	1.27	1.3	1.32	V
V _{DD-D} ^a	supply voltage (digital core for 4-lane MIPI up to 700 Mbps/lane)	1.14	1.2	1.32	V
V _{DD-IO}	supply voltage (digital I/O)	1.7	1.8	3.0	V
I _{DD-A}	active (operating) current ^b		60	80	mA
I _{DD-IO}	active (operating) current		95	130	mA
I _{DDS-SCCB}	$\cdot $		300	3000	μA
IDDS-PWDN	standby current ^c		300	3000	μA
IDDS-XSHUTDOWN			10	30	μA
digital inputs (typ	pical conditions: AVDD = 2.8V, DVDD = 1	I.2V, DOVD)D = 1.8V)		
VIL	input voltage LOW			0.54	V
V _{IH}	input voltage HIGH	1.26			V
C _{IN}	input capacitor			10	pF
digital outputs (s	tandard loading 25 pF)				
V _{OH}	output voltage HIGH	1.62			V
V _{OL}	output voltage LOW			0.18	V
serial interface i	nputs				
V _{IL} ^d	SIOC and SIOD	-0.5	0	0.54	V
V _{IH}	SIOC and SIOD	1.28	1.8	3.0	V

using the internal regulator is strongly recommended for minimum power down currents а.

DVDD is generated by internal regulator. DVDD and EVDD are tied together. b.

C. standby current is measured at room temperature with external clock off

d. based on DOVDD = 1.8V

TRULY[®]

4. Timing characteristics

a. Timing characteristics

symbol	parameter	min	typ	max	unit
oscillator a	ind clock input				
f _{osc}	frequency (EXTCLK)	6	24	27	MHz
t _r , t _f	clock input rise/fall time			5 (10 ^a)	ns

a. if using internal PLL

b. SCCB interface timing

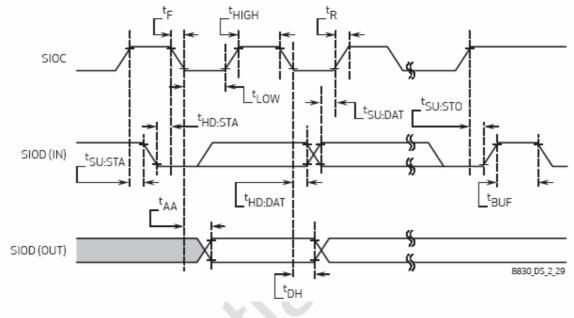
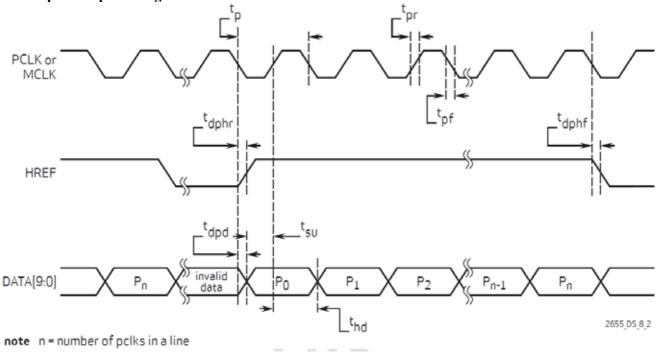


table 2-12 SCCB interface timing specifications^{ab}

TRULY® CAMERA MODULE CM6696

СМ6696-В800ВА-Е

Version :1.0


January 28, 2012

symbol	parameter	min	typ	max	unit
f _{SIOC} clock frequency				400	KHz
t _{LOW}	clock low period	1.3			μs
t _{HIGH}	clock high period	0.6			μs
t _{AA}	SIOC low to data out valid	0.1		0.9	μs
t _{BUF}	bus free time before new start	1.3			μs
t _{HD:STA}	start condition hold time	0.6			μs
t _{SU:STA}	start condition setup time	0.6			μs
t _{HD:DAT} data in hold time		0			μs
t _{SU:DAT}	data in setup time	0.1			μs
t _{SU:STO} stop condition setup time		0.6			μs
t _R , t _F SCCB rise/fall times				0.3	μs
t _{DH}	data out hold time	0.05			μs

a. SCCB timing is based on 400KHz mode

 timing measurement shown at the beginning of the rising edge or/and of the falling edge signifies 10%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge or/and of the falling edge signifies 90%

d. line/pixel output timing

a. timing measurement shown at the beginning of the rising edge or/and of the falling edge signifies 10%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge or/and of the falling edge signifies 90%

b. PCLK running at 56 MHz, CL = 15pF, and DOVDD = 1.8V

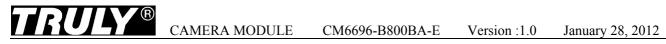
5. Format and frame rate

format ^a	resolution	max frame rate with MIPI	technology
full resolution (see figure 2-2 and table 2-3)	3264x2448	24 fps	full
16:9 6Mpixel	3264x1836	30 fps	crop
EIS1080p (see figure 2-3 and table 2-3)	2112x1188	30 fps	crop+scale 1.5 (3168x1782)
1080p (see figure 2-2 and table 2-3)	1920x1080	30 fps	crop+scale 1.7 (3264x1836)
EIS720p (see figure 2-3 and table 2-3)	1408x792	60 fps	crop+binningx2+scale 1.5 (3238x1822)
720p (see figure 2-3 and table 2-3)	1280x720	60 fps	crop+binningx2+scale 1.25 (3200x1800)
EISQ1080p	1056x594	60 fps	crop+binningx2+scale 1.5 (3168x1782)
Q1080p	960x540	60 fps	crop+binningx2+scale 1.7 (3264x1836)
EISVGA	704x528	60 fps	crop+binningx2+skipx2+scale 1.15 (3238x2428)
VGA (see figure 2-4 and table 2-3)	640x480	90 fps / (200 fps)	crop+binningx2+skipx2+scale 1.27 / (crop+skipx4) (3264x2448)
QVGA	320x240	400 fps	crop+skip

a. all formats with minimum 4 dummy lines and 4 dummy pixels

6. Power up sequence

The OV8830 can use either the internal regulator or an external power supply to provide digital core 1.2V DVDD. When an external 1.2V is used to provide DVDD power, EXTREG_EN must be pulled to DOVDD which is used to disable the internal regulator to avoid any unstable conflict between the external DVDD and output of the internal regulator. At the same time, the internal regulator must be turned off by a control register.


To avoid any glitch from a strong external noise source, OmniVision recommends controlling XSHUTDOWN or PWDNB by GPIO and tie the other pin to DOVDD.

Whether or not XSHUTDOWN is controlled by GPIO, the XSHUTDOWN rising cannot occur before AVDD or DOVDD.

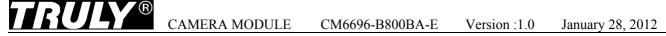
7. Standby and sleep

Two suspend modes are available for the OV2655:

- · hardware standby
- SCCB software sleep
- To initiate hardware standby mode (see figure 2-7):
- 1. Set 0x30AB=00 and 0x30AD=0A
- 2. Set 0x30AE = 27 and 0x363B = 01
- 3. PWDN pin must be tied to high

table 2-7 power down sequence

case	DVDD	XSHUTDOWN	PWDNB	power down sequence requirement
1	internal	GPIO	DOVDD	 Refer to figure 2-13 software standby recommended pull XSHUTDOWN low for minimum power consumption AVDD and DOVDD may fall in any order
2	internal	DOVDD	GPIO	 Refer to figure 2-14 software standby recommended pull PWDNB low for low power consumption pull DOVDD low for minimum power consumption or power off (XSHUTDOWN is connected to DOVDD) pull AVDD low
3	external	GPIO	DOVDD	 Refer to figure 2-15 software standby recommended pull XSHUTDOWN low for low power consumption cut off DVDD, then it will be in hardware standby state for minimum power consumption pull AVDD and DOVDD low in any order
4	external	DOVDD	GPIO	 Refer to figure 2-16 software standby recommended pull PWDNB low for low power consumption cut off DVDD, then it will be in hardware standby mode with minimum power consumption pull DOVDD low (XSHUTDOWN connected to DOVDD) pull AVDD low


power down sequence timing constraints table 2-8

constraint	label	min max	unit
enter software standby SCCB command device in software standby mode	tO	when a frame of MIPI data is output, wait for the MIPI end code before entering the software for standby; otherwise, enter the software standby mode immediately	
minimum of EXTCLK cycles after the last SCCB transaction or MIPI frame end	t1	512	EXTCL cycles
last SCCB transaction or MIPI frame end, XSHUTDOWN falling	t2	512	EXTCL cycles
XSHUTDOWN falling – AVDD falling or DOVDD falling whichever is first	t3	0.0	ns
AVDD falling – DOVDD falling	t4	AVDD and DOVDD may fall in any	ns
DOVDD falling – AVDD falling	t5	order, the falling separation can vary from 0 ns to indefinite	ns
PWDNB falling – DOVDD falling	t6	0.0	ns
XSHUTDOWN falling – external DVDD falling	t7	0.0	ns
external DVDD falling – AVDD falling or DOVDD falling whichever is first	t8	0.0	ns
PWDNB falling – external DVDD falling	t9	0.0	ns

Note: For more information of sensor please refer to the OV8830 specification.

VCM Specification

NO.	Item	Condition	Specification
1	Motor Size	Without terminal Including sensor space	8.5*8.5*4.2 mm
2	Absolute Max Current		≤100mA
3	Moving Tilt	0~0.26mm	<21′
4	Sensitivity		$\leq 10 \mu m/mA$
5	Starting Current	Optical Axis: +Z direction	≥15mA
6	Hysteresis	10mA-80mA-10mA Step by 5mA	≪±10μm
7	Torque (Thread gauge)		≤150gf-cm
8	Rated Stroke	Under 80mA input current and moving direction is upward	≥0.26mm
9	Lens Unit Weight		≤ 0.09 g nominal

Performance Diagram Download Horizontal Upward 0.35 0.3 0.25 0.2 mm 0.15 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 mA

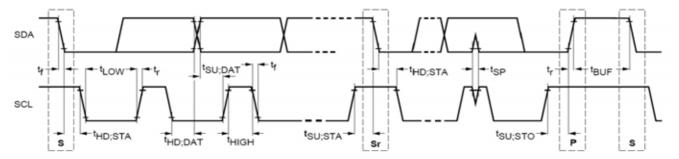
8. Driver IC Specification

Description

The DW9714 is single 10-bit DAC with 120mA output current sink capability. Designed for linear control of voice coil motors, the DW9714 is capable of operating voltage to 3.6V. The DAC is controlled via a I2C serial interface that operates DAC by clock rates up to 400kHz.

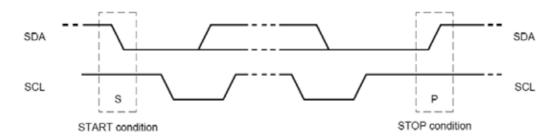
The DW9714 incorporates with a power-on reset circuit, power-down function, and exactly matched sense resistor. Power-on reset circuit ensure when supply power up, DAC output is to 0V until valid write-bit value takes place. It has a power down features that reduces the current consumption of the device to 1uA maximum.

The DW9714 is designed for auto focus and optical zoom camera phones, digital still cameras, and camcorders applications.

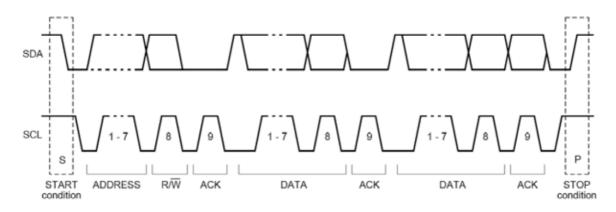

The I2C address for the DW9714 is 0x18.

IIC Timing Specification

Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	fscl	0	400	kHz
Hold time (repeated) START condition.	tHD;STA	0.6	-	us
Low period of the SCL clock	tLOW	1.3	-	us
High period of the SCL clock	thigh	0.6	-	us
Set-up time for a repeated START condition	tsu;sta	0.6	-	us
Data hold time	tHD;DAT ⁽¹⁾	-	0.9	us
Data set-up time	tsu;dat	100	-	ns
Rise time of both SDA and SCL signals	tr	20+0.1Cb ⁽²⁾	300	ns
Fall time of both SDA and SCL signals	tr	20+0.1Cb ⁽²⁾	300	ns
Set-up time for STOP condition	tsu;sто	0.6	-	us
Bus free time between a STOP and START condition	tBUF	1.3	-	us
Capacitive load for each bus line	Cb	-	400	pF
Pulse width of spike suppress	tsp	0	50	ns


(1) A master device must provide a hold time of at least 100ns for the SDA signal to bridge the undefined region of the falling edge of SCL. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.

(2) Cb is the total capacitance of one bus line in pF, tr and tf are measured between 0.3Voo to 0.7Voo.


I2C Protocol Specification

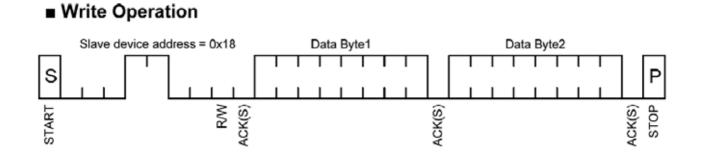
Start and Stop condition

Within the procedure of the I2C-bus, unique situations arise which are defined as START (S) and STOP (P) conditions. A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

Complete I2C Data Transfer

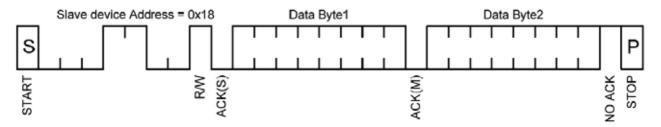
Data transfers follow the format. After the START condition (S), a slave address is sent. A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated

Electrical Specification


(VDD	0=2.3 to 3.6	V, Vin=1.8V to VDD, Ta= -35 to 85°C, u	nless otherwi	se specified.	Typical values	are at 25°C
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
		Overall				
Supply Voltage	VDD		2.3		3.6	V
	I _{SD}	Shutdown mode	-1		+1	uA
V _{DD} Current	IPD	Power down mode	-1		+1	uA
	la	Quiescent mode	0.24	-	0.35	mA
		Logic input / output (XSD)				
Input current			-1		+1	uA
Low Level Input Voltage	VIL				0.54	V
High Level Input Voltage	VIH		1.26			V
		Logic input / output (SCL,SD/	A)			
Input current			-1		+1	uA
Low Level Input Voltage	VIL				0.54	V
High Level Input Voltage	VIH		1.26			V
Glitch rejection				50		ns
	· · ·	VCM driver	·			
Current resolution		117.3uA/LSB		10		bits
INL	INL		-4		+4	LSB
DNL	DNL		-1		+1	LSB
Zero code error	ZCE	Zero data loaded to DAC	-1		+1	mA
IOUT compliance voltage (1)		Output current = 100mA	150			mV
Maximum output current	Imax			120 ⁽³⁾		mA
Power on time (2)	TPON			12		ms

(1) The output compliance voltage is guaranteed by design and characterization, not mass production test.

(2) DW9714 requires waiting time of 12ms after power on. During this waiting time, the offset calibration of internal amplifier is operating for minimization of output offset current.


(3) Maximum output current can be set 60mA to 140mA.

Register Specification

Read Operation

Register Format

			By	te1							By	te2			
PD	FL AG	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	S3	S2	S1	S0

PD : Power down mode

- 1: Power down mode (active high)
- 0: Normal operation mode
- FLAG : FLAG must keep "L" at writing operation.
- D[9:0] : Data input

Output current = (D[9:0]/1023) X 120mA Max current = 120mA +/- 5%

S[3:2] : Codes per step for "Linear slope control"

S[3:2]	Codes per step
0	0 (no SRC) – direct driving
1	1
2	2
3	4

S[1:0] : Step period is determined by S[1:0] and T_SRC[4:0] for "Linear slope control"

SRCT[1:0]	Period [us]
0	Refer "Linear slope control"
1	Refer "Linear slope control"
2	Refer "Linear slope control"
3	Refer "Linear slope control"

Mechanical Drawing

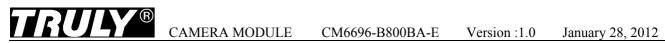
20111017 DATE
修改影像方向及PIN定义 20111018
修改PIN定义及CAM_ID接法 20111019
AMEND
0x21 (read) ;
·**
0,40±0,05
3-30K6417
8-R0.20
0,
下=0.20mm 下=0.20mm 脖子胺 MAX0.80 2-Ø0.50(REF
不锈钢加强板 接地
3.32±0.20(曾理由按状态) 5.72±0.20(微距拍摄状态)
r roto 20 20 20 20 20 20 20 20 20 20 20 20 20
CM6696-B800BA-E Camera Module

Appearance Specification

NO.	Item	Standard	Importance Class
1	Top side of Lens	No obvious impurity and oil impurity on the front of lens within the half area; The defect(unfeeling) limitation: width≤1mm, length≤2mm, the defect number≤2; No feeling defect; The width of defects and gaps on the outside of Lens≤0.3mm. Others are unlimited.	А
2	Screw glue	Normally screw glue shall be symmetrical distributed around lens circle side. Particular circs, glue distribution must not disturb customer's assembly operation.	А
3	Holder	No obvious impurity and distortion of outline. The width and length of defect is unlimited, the depth≤0.1mm and ≤1/4 of the thickness of Holder.	В
4	Sealed glue	Sealed glue distributing between holder and FPC must be symmetrical and smooth. Not allow glue leakage and asymmetric thickness. After holder assembly, the thickness distance between one side and its opposite side shall be less than 0.2mm. Excess glue over the holder shall not make the outside dimension be out of control.	А
5	FPC/PCB	Edge defect limitation: width≤1/2H (H is minimum.) length≤1mm defect numbers per edge≤2(No tearing gap inby edge for FPC); Edge outshoot limitation (width≤0.3mm, length≤1mm). No obvious impurity and crease on the surface. If there was shield film on the surface, the spot size of the film shall be less than 0.3mm×1mm and no line is exposed. If it was not be cleaned and did not influence the total thickness, it would be permitted. Label and mark shall be clear enough to be discerned.	А
6	Connector	No dust, fingerprint, and not allows to turning colors, distortion; Solder must be well; No open circuit or short circuit	А

CAMERA MODULE CM6696-B800BA-E Version :1.0 January 28, 2012

7	Gold finger	No dust, fingerprint, and not allows to turning colors, burned, unsmoothed and peeled; No open circuit or short circuit; The defect width shall be smaller than 20% of gold finger's width. No copper/nickel exposed in defect. Numbers of defected pin shall be less than 3. The defect limitation:width≤0.08mm,length≤5mm.	А
8	Stiffener	Holder anchor pole length overtopping the steel plate shall be less than 0.2mm. No dust, rust and deep scratch on the steel surface without Double coated tapes.	В
9	Double coated tapes	Adhered direction shall be right. Not allows to excess steel plate edge. No alveoli and stick. Not allows to peel glue and rip protective paper when tear the protective paper.	В
10	Protective film	No dust in the glue side. Not allows to float or drop.	В


Remark:

╎╎╎╹╎╹

- 1. The definition of the appearance importance class
 - A: The defect can be found in the finished product, or have obvious visual differences from good products, such as crack, defect and dust, or influence image quality, or are appointed by the customer. We will emphasize these items and check all products.
 - B: The defect can be found in the finished product and has visual difference from the good one, but will not affect customer's aesthetic judgement. Or the defect can not be found in the finished product and will not generate functional problem, but will slightly influence sequential manufacture process or condition. We will supervise these items in the manufacturing process and check products selectively.

2. Sampling standard

Referenced standard: GB/T 2828.1-2003/ISO 2859-1:1999 and ANSI/ASQC.4-1993

Image Specification

NO.	Item	Standard	Important Class
1	TV Line	Center≥1400 0.7 viewing field ≥1000	А
2	Shading	TBD	А
3	Blemish II 1/4 1/4	I area: Blemish number≤1 II area: Blemish number≤4	В
4	Color	TBD	В
5	Gray Scale	TBD	В
6	Distortion	<1%	В

Reliability Specification

No.	Test item	Test condition	Judgment	
1	Temperature strike cycle [Power off]	Low temperature:-30°C±2 for 30 min High temperature:+80°C±2 for 30 min Cycle:10 times		
2	High temperature and high humidity storage	Temperature:60°C Humidity:90%RH Time:96 hours		
3	Low temperature operating	Temperature:-20°C±2 Time:96 hours		
4	High temperature operating	Temperature:70°C±2 Time:96 hours	1.Function: Resolution: difference<20%	
5	Low temperature storage	Temperature:-30°C±2 Time:96 hours	after test Shading:	
6	High temperature storage	Temperature:80°C±2 Time:96 hours	difference<20% after test	
7	ESD test [Power off]	C:150pF R:330Ω Voltage:±2KV Air discharge: Cycle:10 times	2.Appearance: Do not exit NG after test	
8	Vibration Test [Packaged]	Frequency:10Hz~55Hz~10Hz Amplitude:1.5 mm Times: each X,Y,Z directions for 30mins		
9	Dropping test [Packaged]	Product dropping from 150cm height to smooth marble Drop style:1 coner,3 arris,6 faces Test times:10		

Precautions For Using CCM Modules

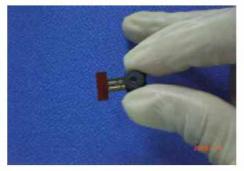
Handing Precautions

—DO NOT try to open the unit enclosure as there is no user-serviceable component inside. To prevent damage to the camera module by electrostatic discharge, handling the camera module only after discharging all static electricity from yourself and ensuring a static-free environment for the camera module.

- -DO NOT touch the top surface of the lens.
- -DO NOT press down on the lens.
- —DO NOT try to focus the lens.
- -DO NOT put the camera module in a dusty environment.

—To reduce the risk of electrical shock and damage to the camera module, turn off the power before connect and disconnect the camera module.

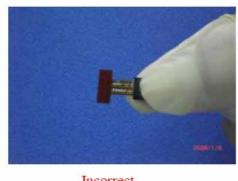
- -DO NOT drop the camera module more than 60 cm onto any hard surface.
- -DO NOT expose camera module to rain or moisture.
- -DO NOT expose camera module to direct sunlight.
- -DO NOT put camera in a high temperature environment.
- —DO NOT use liquid or aerosol cleaners to clean the lens.
- -DO NOT make any charges or modifications to camera module.
- -DO NOT subject camera module to strong electromagnetic field.
- -DO NOT subject the camera module to excessive vibration or shock.
- -DO NOT Impact or nip CCM module with speculate things
- —DO NOT alter, modify or change the shape of the tab on the metal frame.


-DO NOT make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

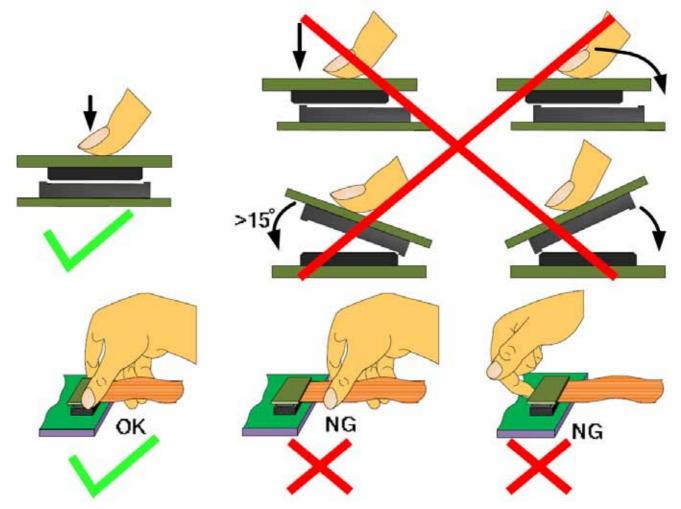
-DO NOT damage or modify the pattern writing on the printed circuit board.

-Absolutely DO NOT modify the zebra rubber strip (conductive rubber) or heat seal connector

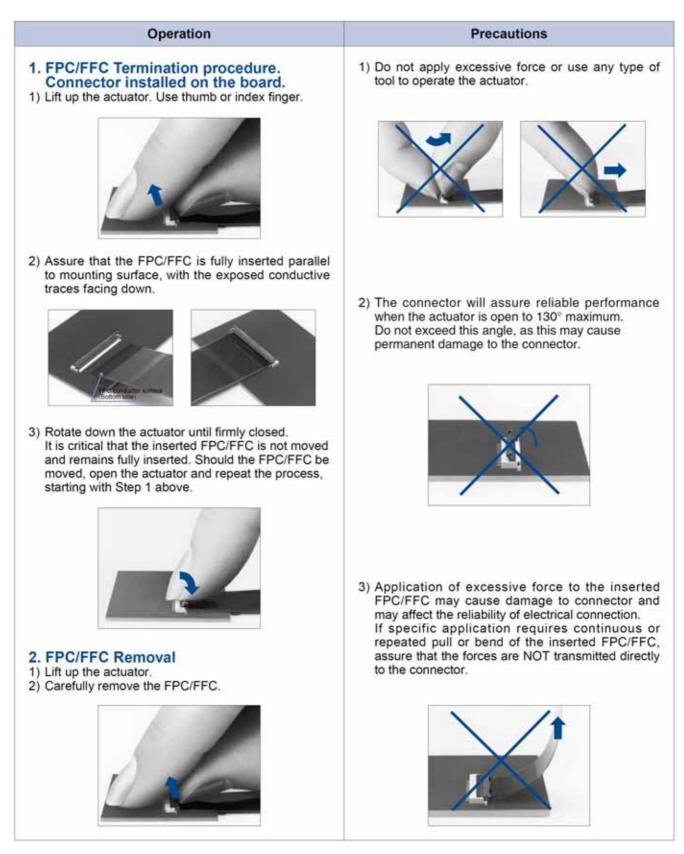
-Except for soldering the interface, DO NOT make any alterations or modifications with a soldering iron.


-DO NOT twist FPC of CCM.

Correct



Incorrect


Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows

Precaution for assemble the module with ZIF connector:

[{**/**]

Precaution for soldering the CCM:

	Manual soldering	Machine drag soldering	Machine press soldering
No ROHS	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
product	Time: 3-5S.	Speed: 4-8 mm/s.	Time: 3-6S. Press: 0.8~1.2Mpa
ROHS		350°C ~370°C.	330°C ~360°C.
product	Time: 3-58.	Speed: 4-8 mm/s.	Time: 3-6S. Press: 0.8~1.2Mpa

(1) If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the lens surface with a cover during soldering to prevent any damage due to flux spatters.

(2) The CCM module and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.

Other precautions

For correct using please refer to the relative criterions of electronic products.

Limited Warranty

Unless agreed between TRULY and customer, TRULY will replace or repair any of its CCM modules which are found to be functionally defective when inspected in accordance with TRULY CCM acceptance standards for a period of one year from date of shipments. Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of TRULY limited to repair and/or replacement on the terms set forth above. TRULY will not be responsible for any subsequent or consequential events.

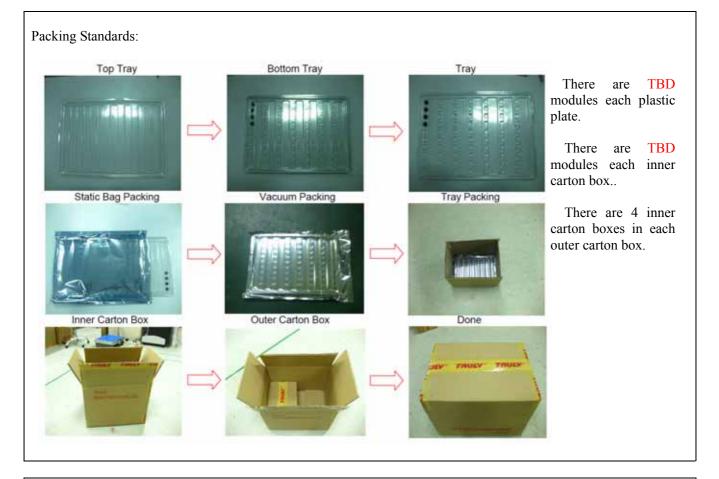
Return CCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

-Holder is apart from module.

-Holder or Connector is anamorphic.

-Connector is turnup.


-FPC is lacerated or discon-nexion, and so on.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

Pakage Specification

Packaging Design One

Product No.	СМ6696-В800ВА-Е	Release date		
Product name	Compact Camera Module	Releaser		
Supplier	TRULY OPTO-ELECTRONICS LTD.	Recycle	□YES	■ NO
Quantity/ each box	TBD	Material for box	■ paper	D plastic
Outer carton box size	405mm*290mm*290mm	Box type		
Quantity / inner box * Quantity / outer box	TBD	box type	∎new	Lupdate

Requirements of outer carton box :

- 1. Weight(Max): 0.75 Kg
- 2. Height (Max): 0.29 M
- 3. Prohibition: Box made by log

Material for Plastic tray

It is made of antistatic polystyrene which has no chemical pollution. Surface resistivity : 10^{6} ohm/sq

Packaging Design Two

Product No.	СМ6696-В800ВА-Е	Release date		
Product name	Compact Camera Module	Releaser		
Supplier	TRULY OPTO-ELECTRONICS LTD.	Recycle	U YES	■ NO
Quantity/ each box	TBD	Material for box	■ paper	□ plastic
Outer carton box size	405 mm *280 mm *170 mm	Box type	∎new	
Quantity / inner box * Quantity / outer box	TBD			Lupdate

Requirements of outer carton box :

- 4. Weight(Max): 0.65 Kg
- 5. Height (Max): 0.17 M
- 6. Prohibition: Box made by log

Material for Plastic tray

It is made of antistatic polystyrene which has no chemical pollution. Surface resistivity : 10^{6} ohm/sq

CAMERA MODULE CM6696-B800BA-E Version :1.0 January 28, 2012

PRIOR CONSULT MATTER

- For Truly standard products, we keep the right to change material, process for improving the product property without notice on our customer.
 For OEM products, if any change needed which may affect the product property, we will consult with our customer in advance.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.

FACTORY CONTACT INFORMATION

FACTORY NAME: TRULY OPTO-ELECTRONICS LTD. **FACTORY ADDRESS:** Truly Industrial Area, ShanWei City, GuangDong, China **FACTORY PHONE:** 86-0660-3380061 FAX: 86-0660-3371772