

GENERAL DESCRIPTION

The CM7000 is a monolithic integrated circuit and suitable Dual amplifier for low power.

FEATURES

- Low Quiescent Current
- High Power Supply Ripple Rejection
- Low Voltage Operation
- A few of External Part Required
- Built in Power Save Switch & Mute Switch

APPLICATIONS

- Portable Compact Disk Player (DISCMAN)
- Portable Mini Disk Player (MD)
- Disc-Man
- MP3 Player
- CD-ROM
- Other Portable Compact Disk Media
- ♦ Fan Motor Drive

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Description
1	PS	Power Save Switch
2	INA	Signal Input A
3	GND	Signal Ground
4	IN _B	Signal Input B
5	REF	Reference Voltage
6	VCC	Supply Voltage
7	OUT _B	Signal Output B
8	GND	Power Ground
9	OUT _A	Signal Output A
10	MUTE	Mute On Switch

ORDERING INFORMATION

Part Number	Temperature Range	Package
CM7000IR	-20℃ to 75℃	10-Pin SSOP (R10)
CM7000GIR*	-20℃ to 75℃	10-Pin SSOP (R10)

Note: G : Suffix for Pb Free Product

INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Absolute Maximum ratings are those values beyond which the device could be permanently damaged.

Maximum Supply Voltage (V _{CC})	+4.5V
Storage Temperature (T _S)	-55℃ to +125℃
Operating Temperature (To)	20℃ to + 75℃
Power Dissipation (P _D)	300mW
Thermal Resistance (Θ_{Jc})	150℃/W

Power Dissipation Curve

RECOMMENDED OPERATING CONDITIONS $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Supply Voltage	V _{cc}	1.8	3.0	4.0	V
Recommended Load	R_L	16		32	Ω

ELECTRICAL CHARACTERISTICS (R_L =16 Ω ,Rg=600 Ω , T_A = 25°C)

				СМ7000		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ICC1	Quiescent Current 1	VCC=2.4V		5.5	10.0	mA
ICC2	Quiescent Current 2	VCC=4.5V, Mute=GND		1.0	2.0	mA
ICC3	Quiescent Current 3	VCC=4.5V,PS=GND			1.0	μA
GVC1	Close Loop Voltage Gain 1	VCC=2.4V,f=1KHz, VO=-10dBm	30	32	34	dB
GVC2	Close Loop Voltage Gain 2	VCC=1.8V,f=1KHz, VO=-20dBm	29	32	34	dB
∆GV1	Channel Balance 1	VCC=2.4V,f=1Hz VO=-10dBm			1.0	dB
∆GV2	Channel Balance 2	VCC=1.8V,f=1Hz VO=-20dBm			1.0	dB
THD	Total Harmonic Distortion	VCC=2.0V,f=1Hz PO=1mW		0.5	1.5	%
RR	Ripple Rejection Ratio	VCC=1.8V,f=100Hz Rg=1kΩ,VR=-20dBm, BPF=100Hz	43	60		dB
СТ	Crosstalk	VCC=2.4V,f=100Hz Rg=1kΩ,VR=-10dBm,	43	50		dB
VNOISE	Output Noise Voltage	VCC=4.5V,Rg=1kΩ, BPF=20Hz~20kHz		60	100	μVrms
POUT	Output Power	VCC=3.0V,f=1kHz THD=10%	20	40		mW
ATTPS	PS Attenuation Ratio	VCC=1.8V,f=100Hz PS=GND,VIN=-10dBm,			-80	dB
ATTMU	MUTE Attenuation Ratio	VCC=1.8V,f=100Hz MUTE=GND,VIN=-10dBm,			-80	dB
IPSON	PS ON Input Current	VCC=1.5V,VREF≥0.85V		0.2	1.0	μA
IMOFF	MUTE OFF Input Current	VCC=1.5V,VREF≥0.85V		0.2	1.0	μA
VHPS	PS ON High Level	VCC=1.5V,VREF≥0.85V	0.5	0.65		V
VHMU	MUTE OFF High Level	VCC=1.5V,VREF≥0.85V	0.5	0.65		V

APPLICATION INFORMATION

1. PS Block

This block diagram describes the power save switch circuits.

The drive block is controlled by PS pin, which can be derived from micro controller.

It controls bias of the internal circuits of CM7000, so that it makes CM7000 operate when input voltage level reaches high level.

2. Mute Block

The block diagram describes the mute on switch circuits.

The drive block is controlled by MUTE pin, which can be derived from micro controller.

When the pin of mute turns on, it makes reference voltage of internal circuits approximately 0V, so that it keeps the device of CM7000 off.

3. AMP Block

This block diagram describes the AMP block with resistances, which control gain of CM7000.

The gain of CM7000 is $~~\frac{V_{out}}{V_{IN}}\cong 40\cong 32$ (dB)

Output voltage of CM7000 can be 40 times as much as input voltage, so it eliminates the number of external circuits and offers headphone input.

4. Popping Noise Reduction

If PS pin (Pin1, Power save switch) connect the micro controller, the micro controller must follow the same sequence 1 in order to reduce popping noise on mute mode.

PS on \rightarrow Mute on \rightarrow PS off \rightarrow Mute operation \rightarrow PS on \rightarrow Mute off \rightarrow Normal operation (Sequence 1) If PS connect V_{CC}, the micro controller follow the sequence 2.

Mute on \rightarrow Mute Operation \rightarrow Mute off \rightarrow Normal operation (Sequence 2)

TEST CIRCUITS

TYPICAL APPLICATION CIRCUITS

PACKAGE DIMENSION

NUMBERING SCHEME

Ordering Number: CM7000XY (note1) Ordering Number: CM7000GXY (note2)

note1:

<u>X</u>: Suffix for Temperature Range (note 3) <u>Y</u>: Suffix for Package Type (note 4)

note2:

G : Suffix for Pb Free Product

 \overline{X} : Suffix for Temperature Range (note 3) \underline{Y} : Suffix for Package Type (note 4)

note 3:

X= I : -20°C ~+75°C

note 4: R: SSOP-10

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan

TEL: +886-3-567 9979 FAX: +886-3-567 9909 http://www.champion-micro.com

Sales & Marketing

11F, No. 306-3, Sec. 1, Ta Tung Rd., Hsichih, Taipei Hsien 221 Taiwan, R.O.C.

T E L : +886-2-8692 1591 F A X : +886-2-8692 1596