GENERAL DESCRIPTION

The CM8502 is a low cost switching regulator designed to provide a desired output voltage or termination voltage for various applications by converting voltage supplies ranging from 2.0V to 4.0V. The CM8502 can be implemented to produce regulated output voltages in two different modes. In the default mode, when the VIN/2 pin is open, the output voltage is 50% of the VCCQ. The CM8502 can also be used to produce various user-defined voltages by forcing a voltage on the VIN/2 pin. In this case, the output voltage follows the VIN/2 pin input voltage. The switching regulator is capable of sourcing or sinking up to 2A of current while regulating an output V $_{\rm TT}$ voltage to within 3% or less.

The CM8502 provides low profile 16-pin PSOP and PTSSOP packages that are pin-to-pin compatible to the previous CM8500.

FEATURES

- ◆ Patent Filed #6,452,366
- ♦ 16 pin PTSSOP and 16 pin PSOP power packages
- ♦ Source and sink up to 2A, no heat sink required
- ♦ Integrated Power MOSFETs
- Output voltage can be programmed by external resistors
- Separate voltages for VCCQ and PVDD
- ♦ V OUT of ±3% or less at 2A
- Minimum external components
- Shutdown for standby or suspend mode operation
- ◆ Thermal shutdown protection
- Soft start

24 Hours Technical Support---WebSIM

Champion provides customers an online circuit simulation tool called WebSIM. You could simply logon our website at www.champion-micro.com for details.

APPLICATIONS

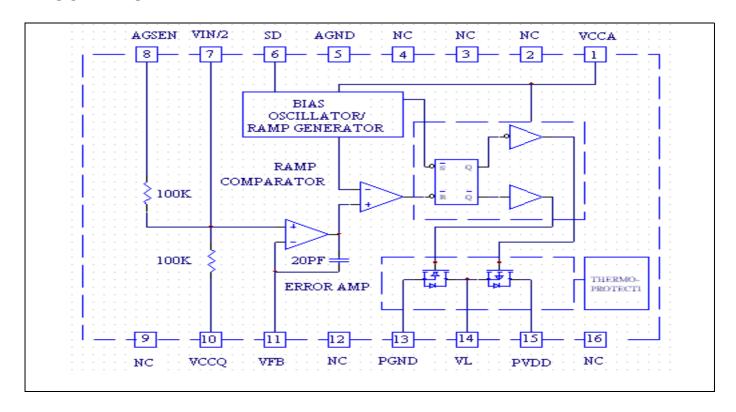
- Mother Board
- ♦ PCI/AGP Graphics
- ◆ Game/ Play Station
- ♦ Set Top Box

- ◆ IPC
- SCSI-III Bus terminator
- ♦ Buck Converter

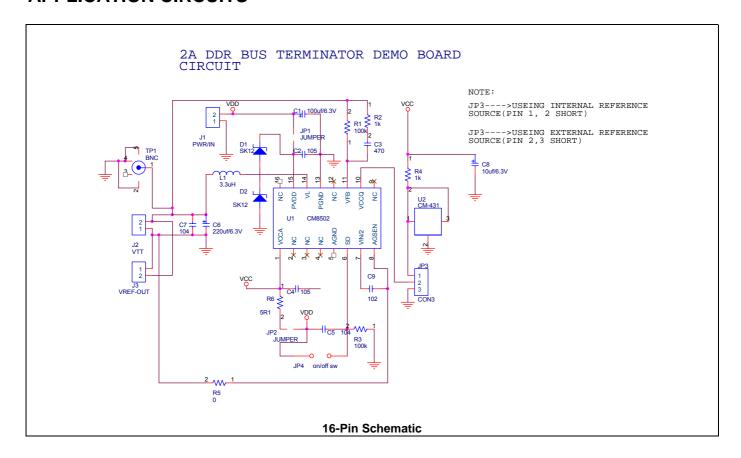
PIN CONFIGURATION

PSOP-16 (PS16)/PTSSOP-16 (PT16) Top View

1	VCCA	NC	16
2	NC	PVDD	15
3	NC	VL	14
4	NC	PGND	13
5	AGND	NC	12
6	SD	VFB	11
7	VIN/2	VCCQ	10
8	AGSEN	NC	9


PIN DESCRIPTION

Pin No.	Symbol	nbol Description - Voltage supply for internal circuits		Operating Rating			
FIII NO.	Syllibol			Тур.	Max.	Unit	
1	VCCA			2.5	4	V	
2,3,4,9,12,16	NC	No Connection					
5	AGND	Ground for internal reference voltage divider					
6	SD	Shutdown active high. CMOS input level	0.75 x		VCCA	V	
			VCCA		+ 0.3V		
7	VIN/2	Input for external reference voltage		VCCQ/2		V	
8	AGSEN	Ground for remote sensing					
10	VCCQ	Voltage reference for external voltage divider		2.5		V	
11	VFB	Feedback node for the V _{TT}		VCCQ/2		V	
13	PGND	Ground for output power transistors					
14	VL	Output voltage/inductor connection (IDD1+IDD2,				Α	
		Output RMS current)					
15	PVDD	Voltage supply for output power transistors	2	2.5	4	V	


ORDERING INFORMATION

Part Number	Temperature Range	Package		
CM8502IT	-40°C to 85°C	16-Pin PTSSOP (PT16)		
CM8502IS	-40°C to 85°C	16-Pin PSOP (PS16)		

BLOCK DIAGRAM

APPLICATION CIRCUITS

CM8502 2A Bus Terminator

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

Temperature Range-40°C to 85°C PVDD Operating Range2.0V to 4.0V

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply T_A=25°C; VCCA=+3.3V and PVDD=+3.3V) maximum ratings are stress ratings only and functional device operation is not implied. (Note 1)

0	Banamatan	Test Conditions		CM8502			
Symbol	Parameter			Min.	Тур.	Max.	Unit
SWITCHING	REGULATOR		•				
		IOUT = 0,	VCCQ = 2.3V	1.12	1.15	1.18	V
			VCCQ = 2.5V	1.22	1.25	1.28	V
		Note 2	VCCQ = 2.7V	1.32	1.35	1.38	V
VL	Output Voltage, SSTL_2	IOUT =	VCCQ = 2.3V	1.09	1.15	1.21	V
		±2A,	VCCQ = 2.5V	1.19	1.25	1.31	V
		Note 2 Note 3	VCCQ = 2.7V	1.28	1.35	1.42	V
	Internal Resistor Divider	IOUT = 0 Note 2	VCCQ = 2.3V	1.139	1.15	1.162	V
$V_{IN}/2$			VCCQ = 2.5V	1.238	1.25	1.263	V
			VCCQ = 2.7V	1.337	1.35	1.364	V
Z_{IN}	V _{IN} /2 Reference Pin Input Impedance	Note 2	VCCQ = 0		50		ΚΩ
fsw	Switching Frequency		//8502		1.2		MHz
I _{OUT(RMS)}	Maximum Output RMS Current	CN	CM8502			2.0	Α
I _{OUT(PEAK)}	Maximum Output Peak Current	CM8502				4.0	Α
MOSFETs							
RDS _(ON)	Drain to Source on-State Resistance	PVI	DD=5V		250		$\mathbf{m}\Omega$
SUPPLY							
IQ	Quiescent Current	IOUT = 0, no load	Icc + Idd			10	mA
I _{VCCA}	Quiescent Current	VFB = 1.4V LC unconnected			220		μA
I _{PVDD}		VFB = 1.4V LC unconnected			500		μA

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions

Note 2: VCCA, PVDD = $3.3V \pm 10\%$, VIN/2=open for CM8502

Note 3: Guaranteed by design, not 100% test

CM8502 2A Bus Terminator

FUNCTIONAL DESCRIPTION

The CM8502 is a switching regulator that is capable of sinking and sourcing 2A of current without an external heat sink.

CM8502 uses a standard surface mount PTSSOP and PSOP package with bottom metal exposed and the heat can be piped through the bottom of the device and onto the PCB.

The CM8502 integrates power MOSFETs that are capable of source and sink 2A of current while maintaining excellent voltage regulation. The output voltage can be regulated within 3% or less by using the external feedback. Separate voltage supply inputs have been added to fit applications with various power supplies for the databus and power buses.

OUPUTS

The output voltage pins (VL) are tied to the databus, address, or clock lines via an external inductor. Output voltage is determined by the VCCQ or VIN/2 inputs for CM8502.

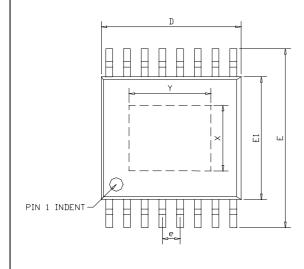
INPUTS

The input voltage pins (VCCQ & VIN/2 of CM8502) determine the output voltages (VL). At CM8502, when the VIN/2 pin is open, the output voltage is 50% of the VCCQ input. If a specific voltage is forced at the VIN/2 pin, the output voltage follows the voltage at the VIN/2 pin.

VCCQ is suggested to connect to VCCQ of memory module for better tracking with memory VCCQ.

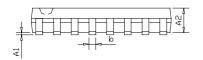
OTHER SUPPLY VOLTAGES

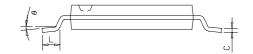
Several inputs are provided for the supply voltages: PVDD and VCCA

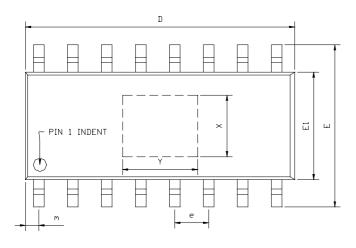

The PVDD provide the power supply to the power MOSFETs. VCCA provide the voltage supply to the logic section and internal error amplifiers of CM8502.

FEEDBACK

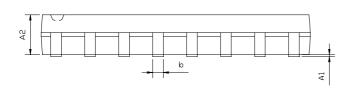
The VFB pin is an input that can be used for closed loop compensation. This input is derived from the voltage output. AGSEN pin is a contact node of internal resistor divider for remote sense (CM8502).

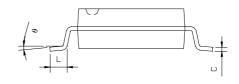

PACKAGE DIMENSION


16-PIN PTSSOP (PT16)


ara ipor a	DIMENSIO	NS IN MIL	LIMETERS	DIMENSIONS IN INCHS			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A1	0.05		0.15	0.002		0.006	
SA.	0.84		0.94	0.033		0.037	
b	0.20		0.30	0.008		0.012	
С	0.10		0.20	0.004		0.008	
D	4.88		5.13	0.192		0.202	
E	6.25		6.55	0.246		0.258	
E1	4.29		4.50	0.169		0.177	
е		0.65			0.026		
L	0.51		0.71	0.020		0.028	
θ	0°		8°	0°		8°	

EXPOSED PAD DIMENSION : (mm) PAD SIZE: X=2.4; Y=3.0




16-PIN PSOP (PS16)

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHS		
SIMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A1	0.05		0.15	0.002		0.006
A2	1.40		1.55	0.055		0.061
b	0.30		0.51	0.012		0.020
C	0.15		0.26	0.006		0.010
D	9.80		10.06	0.386		0.396
E	5.79		6.20	0.228		0.244
E1	3.76		4.01	0.148		0.158
e		1.27			0.050	
L	0.38		0.69	0.015		0.035
m	0.43		0.69	0.017		0.027
θ	0°		8°	0°		8°

EXPOSED PAD DIMENSION : (mm) PAD SIZE: X=2.3 ; Y=2.8

CM8502 2A Bus Terminator

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan 300

TEL: +886-3-567 9979 FAX: +886-3-567 9909

http://www.champion-micro.com

Sales & Marketing

11F, No. 306-3, Sec. 1, Ta Tung Rd., Hsichih, Taipei Hsien, Taiwan 221

TEL: +886-2-8692 1591 FAX: +886-2-8692 1596