

60V N-Channel MOSFET

General Description

The 20N06 combines advanced trench MOSFET technology .This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance.

These devices are well suited for low voltage applications such as automotive, DC/DC converters, and high efficiency switching for power management in portable and battery operated products.

Product Summery

BVDSS	RDSON	ID
60V	46mΩ	20A

Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

TO252 / TO251 Pin Configuration

Features

- 20A,60V.RDS(ON)=0.046Ω@VGS=10V
- Fast switching
- Low Threshold Drive

Absolute Maximum Ratings

G D S	G D S TOM	G
TO252 (CMD20N06L)	G D S TO251 (CMU20N06L)	s

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	60	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _A =25°C	Continuous Drain Current	A		
I _D @T _A =100°C	Continuous Drain Current	10	А	
I _{DM}	Pulsed Drain Current 60		А	
EAS	Single Pulse Avalanche Energy (Note 1)	170	mJ	
P _D @T _A =25°C	Total Power Dissipation	60	W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range -55 to 175		°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{0JA}	Thermal Resistance Junction-ambient (Note 2)		80	°C/W	
R _{θJC}	Thermal Resistance Junction -Case		2.5	°C/W	

60V N-Channel MOSFET

Electrical Characteristics (T_J=25 $^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250µA	60			V
$\triangle BV_{DSS} / \triangle T_J$	BVDSS Temperature Coefficient	Reference to 25 $^\circ\!\mathrm{C}$, $I_D\text{=}250\mu\text{A}$		0.07		V/° C
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V , I _D =10A (Note 3)			46	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	1		3	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =60V , V _{GS} =0V			1	
		$V_{\text{DS}}\text{=}60\text{V}$, $V_{\text{GS}}\text{=}0\text{V}$, $T_{\text{J}}\text{=}150\ ^{\circ}\text{C}$			10	uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm20V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =7V , I _D =6A		13		ms
Qg	Total Gate Charge			21		
Q _{gs}	Gate-Source Charge	V _{DS} =48V , V _{GS} =10V , I _D =20A (Note 3)		5.6		nC
Q _{gd}	Gate-Drain Charge			7.5		
T _{d(on)}	Turn-On Delay Time			10		
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_G =9.1 Ω		62		20
T _{d(off)}	Turn-Off Delay Time	I _D =20A (Note 3)		27		115
T _f	Fall Time			40		
Ciss	Input Capacitance			720		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		205		pF
C _{rss}	Reverse Transfer Capacitance			48		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	$V_G=V_D=0V$, Force Current			20	А
I _{SM}	Pulsed Source Current				60	А
V _{SD}	Diode Forward Voltage	V_{GS} =0V , I_{S} =20A (Note 3)			1.2	V

Notes :

1. VDD = 25 V, VGS = 10 V,L = 1.0 mH, IL(pk) = 18.4 A, VDS = 60 V, Starting TJ = 25 °C.

2. When surface mounted to an FR4 board using the minimum recommended pad size.

3. Pulse Test: Pulse Width \leq 300 us, Duty Cycle \leq 2%.