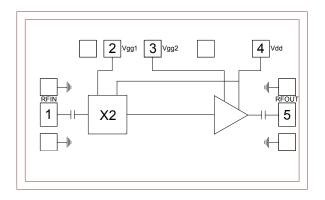
Let Performance Drive

Custom MMIC CMD213 30-40 GHz Active Frequency Doubler

Features

- ► High output power
- ► Excellent Fo isolation
- ► Broadband performance
- ► Small die size


Description

The CMD213 die is a broadband MMIC GaAs x2 active frequency multiplier. When driven by a +17dBm signal, the multiplier provides +17 dBm output power from 30 to 40 GHz. The Fo isolation is greater than 46 dBc at 35 GHz. The CMD213 is a 50 ohm matched design eliminating the need for external DC blocks and RF port matching.

Applications

- ► Point-to-point radios
- ► Point-to-multi-point radios
- Military and space
- Test instrumentation

Functional Block Diagram

<i>Electrical Performance</i> - $V_{dd} = 5 V$, $V_{gg1} = -1.8 V$, $V_{gg2} = -0.7 V$, $T_A = 25 °C$, Pin = 17 dBm				
Parameter	Min	Тур	Max	Units
Frequency Range, Input	15 - 20			GHz
Frequency Range, Output	30 - 40			GHz
Output Power		17		dBm
Fo Isolation (with respect to output level)		46		dBc
Input Return Loss		15		dB
Output Return Loss		7		dB
Supply Current		55		mA

Specifications

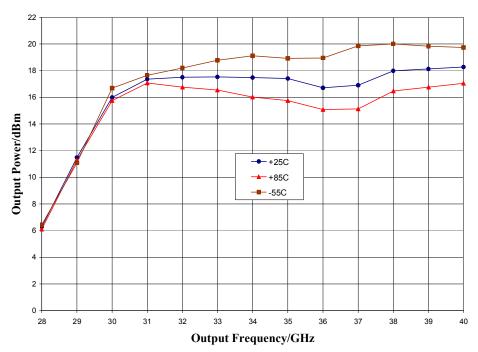
Absolute Maximum Ratings

Parameter	Rating
Drain Voltage, Vdd	6.0 V
RF Input Power	+20 dBm
Channel Temperature, Tch	150 °C
Power Dissipation, Pdiss	317 mW
Thermal Resistance	205 °C/W
Operating Temperature	-55 to 85 °C
Storage Temperature	-55 to 150 °C

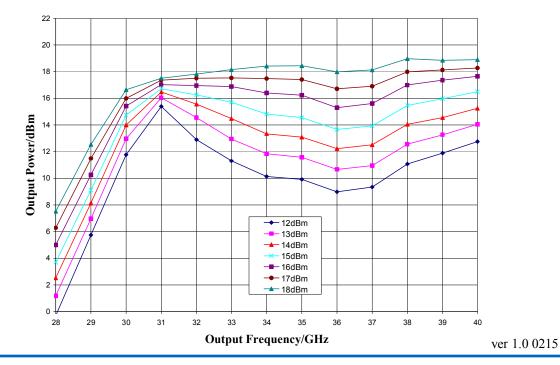
Operation of this device outside the maximum ratings may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Vdd	3.0	5.0	5.5	V
Idd		55		mA
Vgg1		-1.8		V
Vgg2		-0.7		V

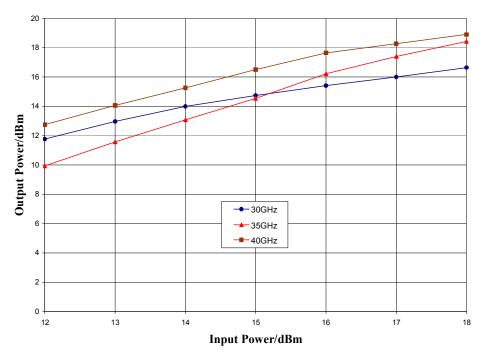

Electrical performance is measured at specific test conditions. Electrical specifications are not guaranteed over all recommended operating conditions.

Parameter	Min	Тур	Max	Units
Frequency Range, Input		15 - 20		
Frequency Range, Output		30 - 40 GHz		
Output Power	14	17		dBm
Fo Isolation (with respect to output level)	34	46		dBc
Input Return Loss		15		dB
Output Return Loss		7		dB
Supply Current		55		mA

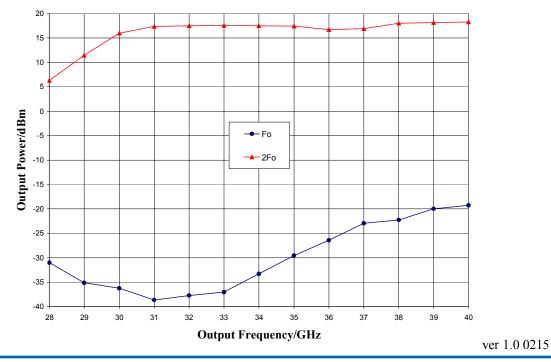

Electrical Specifications - $V_{dd} = 5 V$, $V_{gg1} = -1.8 V$, $V_{gg2} = -0.7 V$, $T_A = 25$ °C, Pin = 17 dBm

Output Power vs. Temperature @ 17 dBm Drive Level

Output Power vs. Drive Level, $T_A = 25 \ ^{\circ}C$

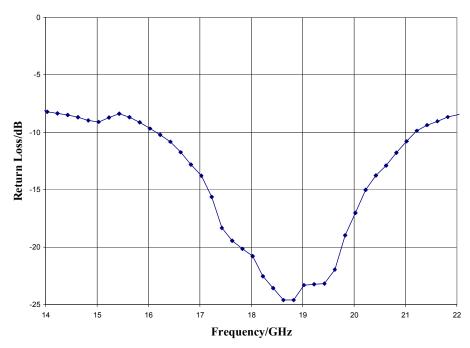


Custom MMIC 1 Park Drive Unit 12 Westford, MA 01886 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

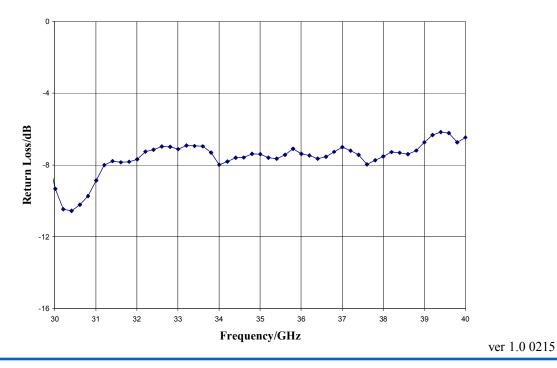


Typical Performance

Output Power vs. Input Power, $T_A = 25 \ ^{\circ}C$



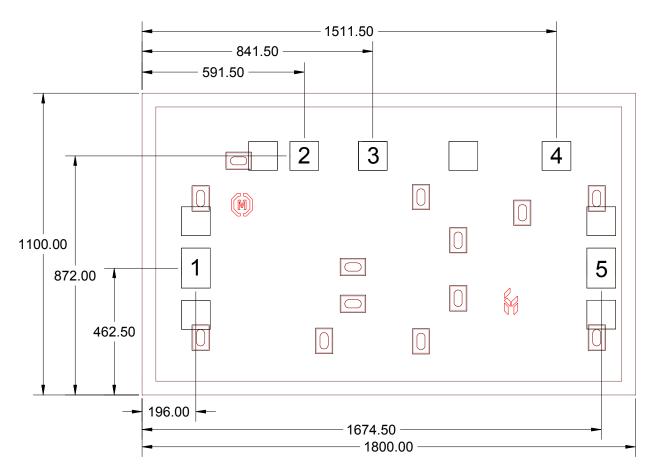
Custom MMIC 1 Park Drive Unit 12 Westford, MA 01886 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com



Typical Performance

Input Return Loss, T_A = 25 °C

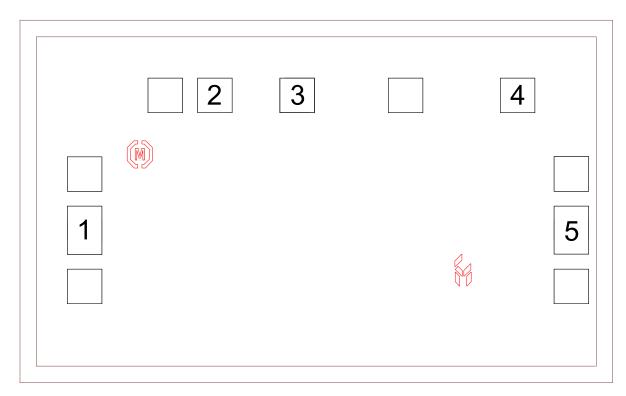
Output Return Loss, T_A = 25 °C



Custom MMIC 1 Park Drive Unit 12 Westford, MA 01886 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

Mechanical Information

Die Outline (all dimensions in microns)


Notes:

- 1. No connection required for unlabeled pads
- 2. Backside is RF and DC ground
- 3. Backside and bond pad metal: Gold
- 4. Die is 100 microns thick
- 5. DC bond pads are 100 microns square

Pin Description

Pad Diagram

Functional Description

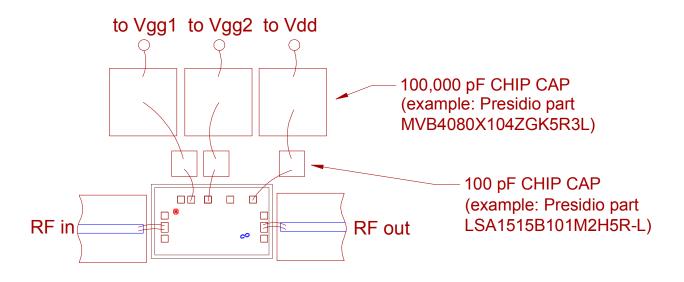
Pad	Function	Description	Schematic
1	RF in	DC blocked and 50 ohm matched	RF in O
2, 3	Vgg1, 2	Power supply voltage Decoupling and bypass caps required	vgg1.2 0
4	Vdd	Power supply voltage Decoupling and bypass caps required	Vdd ———————————————————————————————————
5	RF out	DC blocked and 50 ohm matched	C RF out
Backside	Ground	Connect to RF / DC ground	

ver 1.0 0215

Custom MMIC

1 Park Drive Unit 12 Westford, MA 01886 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

Applications Information


Assembly Guidelines

The backside of the CMD213 is RF ground. Die attach should be accomplished with electrically and thermally conductive epoxy or eutectic attach. Standard assembly procedures should be followed for high frequency devices. The top surface of the semiconductor should be made planar to the adjacent RF transmission lines, and the RF decoupling capacitors placed in close proximity to the DC connections on chip.

RF connections should be made as short as possible to reduce the inductive effect of the bond wire. Use of a 0.8 mil thermosonic wedge bonding is highly recommended as the loop height will be minimized. The RF input and output require a single bond wire as shown.

The semiconductor is 100 um thick and should be handled by the sides of the die or with a custom collet. Do not make contact directly with the die surface as this will damage the monolithic circuitry. Handle with care.

Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Applications Information

Biasing and Operation

The CMD213 is biased with a positive drain supply and two negative gate supplies. Performance is optimized when the V_{dd} is set to +5.0 V, V_{gg1} is set to -1.8 V and V_{gg2} is set to -0.7 V.

Turn ON procedure:

- 1.Apply gate voltages V_{gg1} and V_{gg2} and set to -1.8 V
- 2.Apply drain voltage V_{dd} and set to +5 V
- 3. Adjust gate voltage $V_{\rm gg2}$ and set to -0.7 V

Turn OFF procedure:

1. Turn off drain voltage V_{dd}

2.Turn off gate voltages V_{gg1} and V_{gg2}