N-Ch 30V Fast Switching MOSFETs ### **General Description** The 75N03 is N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. #### **Features** - Simple Drive Requirement - Fast Switching - Low On-Resistance # **Product Summery** | BVDSS | RDSON | ID | |-------|-------|-----| | 30V | 6mΩ | 75A | #### **Applications** - LED POWER CONTROLLER - DC-DC & DC-AC CONVERTERS - HIGH CURRENT, HIGH SPEED SWITCHING - SOLENOID AND RELAY DRIVERS - MOTOR CONTROL, AUDIO AMPLIFIERS ### TO263 / TO220/TO262 Pin Configuration TO-263 (CMB75N03) ## **Absolute Maximum Ratings** | Symbol | Parameter | Rating | Units | | |---------------------------------------|--|------------|-------|--| | V_{DS} | Drain-Source Voltage 30 | | V | | | V_{GS} | Gate-Source Voltage | ±20 | V | | | I _D @T _C =25°C | Continuous Drain Current, V _{GS} @ 10V ¹ | Α | | | | I _D @T _C =100°C | Continuous Drain Current, V _{GS} @ 10V ¹ | А | | | | I _{DM} | Pulsed Drain Current ² 220 | | А | | | EAS | Single Pulse Avalanche Energy ³ | 400 | mJ | | | I _{AS} | Avalanche Current | 50 | Α | | | P _D @T _C =25°C | Total Power Dissipation⁴ | 120 | W | | | T _{STG} | Storage Temperature Range -55 to 175 | | °C | | | TJ | Operating Junction Temperature Range | -55 to 175 | °C | | ### **Thermal Data** | Symbol | Parameter | Тур. | Max. | Unit | |------------------|---|------|------|------| | $R_{ heta JA}$ | Thermal Resistance Junction-ambient (Steady State) ¹ | | 62 | °C/W | | R _{θJC} | Thermal Resistance Junction-case | | 1.5 | °C/W | # CMB75N03/CMP75N03/CMI75N03 # **N-Ch 30V Fast Switching MOSFETs** # Electrical Characteristics (T_J=25 ℃, unless otherwise noted) | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |--------------------------------------|--|--|------|-------|------|------| | BV _{DSS} | Drain-Source Breakdown Voltage | V_{GS} =0V , I_D =250uA | 30 | | | V | | $\triangle BV_{DSS}/\triangle T_{J}$ | BVDSS Temperature Coefficient | Reference to 25℃, I _D =1mA | | 0.035 | | V/°C | | D | Static Drain-Source On-Resistance ² | V _{GS} =10V , I _D =40A | | | 6 | mΩ | | R _{DS(ON)} | | V_{GS} =4.5V , I_D =20A | | | 12 | | | $V_{GS(th)}$ | Gate Threshold Voltage | V_{GS} = V_{DS} , I_D =250uA | 1 | | 3 | V | | | Drain-Source Leakage Current | V _{DS} =24V , V _{GS} =0V | | | 1 | uA | | I _{DSS} | | V _{DS} =24V , V _{GS} =0V , T _C =125°C | | | 25 | | | I _{GSS} | Gate-Source Leakage Current | V_{GS} = $\pm 20 V$, V_{DS} = $0 V$ | | | ±100 | nA | | gfs | Forward Transconductance | V _{DS} =10V , I _D =40A | | 50 | | S | | R _g | Gate Resistance | V _{DS} =0V , V _{GS} =0V , f=1MHz | | | 3.3 | Ω | | Qg | Total Gate Charge (4.5V) | I _D =40A | | | 42 | | | Q_{gs} | Gate-Source Charge | V _{DS} =24V | | | 52 | nC | | Q_{gd} | Gate-Drain Charge | V _{GS} =5V | | | 26 | † | | T _{d(on)} | Turn-On Delay Time | V _{DS} =15V | | 9 | | | | T _r | Rise Time | I _D =40A | | 100 | | 20 | | $T_{d(off)}$ | Turn-Off Delay Time | $R_G=3.3\Omega, V_{GS}=10V$ | | 37 | | ns | | T _f | Fall Time | $R_D=0.37\Omega$ | | 60 | | | | Ciss | Input Capacitance | | | 1900 | | | | Coss | Output Capacitance | V _{DS} =25V , V _{GS} =0V , f=1MHz | | 800 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 300 | | | # **Diode Characteristics** | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |-----------------|--|--|------|------|------|------| | Is | Continuous Source Current ^{1,6} | V _G =V _D =0V , Force Current | | | 75 | Α | | I _{SM} | Pulsed Source Current ^{2,6} | | | | 220 | Α | | V _{SD} | Diode Forward Voltage ² | V _{GS} =0V , I _S =75 A , T _J =25℃ | | | 1.28 | V | #### Note - 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper. - 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$ - 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =50A - 4. The power dissipation is limited by 175°C junction temperature - 5. The Min. value is 100% EAS tested guarantee. - 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.