

N-Ch 30V Fast Switching MOSFETs

General Description

The 75N03 is N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

Features

- Simple Drive Requirement
- Fast Switching
- Low On-Resistance

Product Summery

BVDSS	RDSON	ID
30V	6mΩ	75A

Applications

- LED POWER CONTROLLER
- DC-DC & DC-AC CONVERTERS
- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- MOTOR CONTROL, AUDIO AMPLIFIERS

TO263 / TO220/TO262 Pin Configuration

TO-263 (CMB75N03)

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage 30		V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	Α		
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	А		
I _{DM}	Pulsed Drain Current ² 220		А	
EAS	Single Pulse Avalanche Energy ³	400	mJ	
I _{AS}	Avalanche Current	50	Α	
P _D @T _C =25°C	Total Power Dissipation⁴	120	W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range	-55 to 175	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient (Steady State) ¹		62	°C/W
R _{θJC}	Thermal Resistance Junction-case		1.5	°C/W

CMB75N03/CMP75N03/CMI75N03

N-Ch 30V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.035		V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =40A			6	mΩ
R _{DS(ON)}		V_{GS} =4.5V , I_D =20A			12	
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1		3	V
	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V			1	uA
I _{DSS}		V _{DS} =24V , V _{GS} =0V , T _C =125°C			25	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20 V$, V_{DS} = $0 V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =40A		50		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz			3.3	Ω
Qg	Total Gate Charge (4.5V)	I _D =40A			42	
Q_{gs}	Gate-Source Charge	V _{DS} =24V			52	nC
Q_{gd}	Gate-Drain Charge	V _{GS} =5V			26	†
T _{d(on)}	Turn-On Delay Time	V _{DS} =15V		9		
T _r	Rise Time	I _D =40A		100		20
$T_{d(off)}$	Turn-Off Delay Time	$R_G=3.3\Omega, V_{GS}=10V$		37		ns
T _f	Fall Time	$R_D=0.37\Omega$		60		
Ciss	Input Capacitance			1900		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		800		pF
C _{rss}	Reverse Transfer Capacitance			300		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			75	Α
I _{SM}	Pulsed Source Current ^{2,6}				220	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =75 A , T _J =25℃			1.28	V

Note

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =50A
- 4. The power dissipation is limited by 175°C junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.