CMOSTEK

+ 20 dBm High Power Sub-1G RF Transmitter

Features

Frequency range: 127 - 1020 MHzModulation: OOK, (G)FSK and (G)MSK

Data rate: 0.5 - 300 kbpsVoltage range: 1.8 - 3.6 V

■ Transmitting current: 23 mA @ 13 dBm, 433.92 MHz, FSK

72 mA @ 20 dBm, 433.92 MHz, FSK

Support auto Tx mode

■ Sleep current

300 nA (deep sleep)

800 nA (automatic operating)

3-wire SPI interface

Support for direct mode and packet mode

■ Configurable packet processor and 64-byte FIFO

 Codec with supports for non-return-to-zero, Manchester and data whitening functions

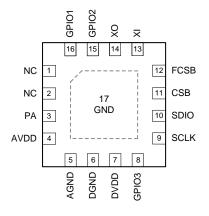
Support for forward error correction

16-pin QFN3x3 packaging

Application

- Home security and building automation
- ISM band data communication
- Industrial monitoring and control
- Remote control and security system
- Remote key entry
- Wireless sensor node
- Tag reader

Ordering Information


Product Model	Frequency	Package	Minimum Order Quantity
CMT2119B-EQR	433.92 MHz	QFN16	3,000 pcs
Refer to Section	9 for more orde	ring informat	ion.

Description

The CMT2119B is an OOK and (G)FSK based high performance RF transmitter with a transmitting power up to 20 dBm, applying to 127 - 1020 MHz band wireless applications. The product is part of the CMOSTEK NextGenRFTM product family which covers a complete product line consisting of transmitters, receivers and transceivers. Employed with high integration density and simplified peripheral designs, it can deliver up to 20 dBm power, improving application link performance remarkably. The support of multiple packet formats and codec makes it flexible to meet different application requirements per different packet formats and encoding methods. In addition, the CMT2119B provides functions such as 64-byte Tx FIFO, rich GPIO and interrupt configuration, auto Tx operation mode, low voltage detection, power-on reset, low-frequency clock output, manual fast frequency hopping, which helps fulfill flexible application design thus deliver differentiated products. Operating with a supply range of 1.8 - 3.6 V, it consumes only 23 mA and 77 mA current while delivering +13 dBm and +20 dBm power respectively.

QFN16 (3x3) Packaging

CMT2119B Top View

Table of Contents

1	Electrical Specifications	4
	1.1 Recommended Operating Conditions	4
	1.2 Absolute Maximum Ratings	4
	1.3 Power Consumption	5
	1.4 Transmitter	5
	1.5 Settling Time	6
	1.6 RF Frequency Synthesizer	6
	1.7 Low Battery Detection	7
	1.8 Crystals	
	1.9 Low-frequency Oscillator	
	1.10 Digital Interface	8
	1.11 Typical Parameter Chart	
	1.11.1 Tx Power and Supply Voltage Correlation	
	1.11.2 Tx Phase Noise	10
2	Pin Description	11
2	Typical Application Schematic	12
,	Function Description	12
4		
	4.1 Transmitter	
	4.2 Assisting Modules	14
	4.2.1 Crystal Oscillator	14
	4.2.2 Sleep Timer	
	4.2.3 Low Battery Detection	
	4.2.4 Fast Frequency Hopping	
5	Chip Operation	
	5.1 SPI Interface	15
	5.2 FIFO	
	5.2.1 FIFO Read Operation	
	5.2.2 FIFO Write Operation	16
	5.2.3 FIFO Associated Interrupt	16
	5.3 Operating State, Timing and Power Consumption	
	5.3.1 Startup Timing	
	5.3.2 Operating State	
	5.4 GPIO and Interrupt	19
6	Packet Handler	21
	6.1 Packet Format	21
	6.2 Data Mode	
	6.2.1 Direct Mode	
	6.2.2 Packet Mode	
7	Automatic Operating Mode	23
	User Registers	
•		
	8.1 CMT Bank	24

	8.2	System Bank	25
	8.3	Frequency Bank	25
	8.4	Data Rate Bank	
	8.5	Baseband Bank	
	8.6	Tx Bank	
	8.7	Control Bank 1	
	8.8	Control Bank 2	27
9	Orde	ring Information	28
10	Pack	aging Information	29
11	Top N	Marking	30
12	Relat	ed Documents	31
13	Revis	se History	32
14	Cont	acts	33

1 Electrical Specifications

 V_{DD} = 3.3 V, T_{OP} = 25 °C, F_{RF} = 433.92 MHz. All measurement results are obtained using the evaluation board CMT2119B-EM if nothing else stated.

1.1 Recommended Operating Conditions

Table 1. Recommended Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	V_{DD}		1.8		3.6	V
Operating temperature	T _{OP}		- 40		85	°C
Supply voltage slope			1			mV/us

1.2 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings[1]

Parameter	Symbol	Condition	Min.	Тур.	Max.
Supply voltage	V_{DD}		-0.3	3.6	V
Interface voltage	V _{IN}		-0.3	3.6	V
Junction temperature	TJ		-40	125	°C
Storage temperature	T _{STG}		-50	150	°C
Soldering temperature	T _{SDR}	Lasts for at least 30 seconds		255	°C
ESD rating ^[2]		Human body model (HBM)	-2	2	kV
Latch-up current		@ 85 ℃	-100	100	mA

Notes:

- [1]. Exceeding the Absolute Maximum Ratings may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.
- [2]. The CMT2119B is a high performance RF integrated circuit. The operation and assembly of this chip should only be performed on a workbench with good ESD protection.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

Rev0.5 | 4/33 www.cmostek.com

1.3 Power Consumption

Table 3. Power Consumption Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Class surrent		Sleep mode, sleep counter off		300		nA
Sieep current	I _{SLEEP}	Sleep mode ,sleep counter on		800		nA
Standby current	I _{Standby}	Sleep mode, sleep counter off Sleep mode ,sleep counter on 800		mA		
Sleep current Standby current TFS current		433 MHz		5.6		mA
TFS current	I _{TFS}	868 MHz		5.9		mA
		915 MHz		5.9	\	mA
		FSK, 433 MHz, +20 dBm	300			
		FSK, 433 MHz, +13 dBm		23		mA
		FSK, 433 MHz, +10 dBm		18		mA
		FSK, 433 MHz, -10 dBm		8		mA
		FSK, 868 MHz, +20 dBm		87		mA
		FSK, 868 MHz, +13 dBm		27		mA
TX current	I _{Tx}	FSK, 868 MHz, +10 dBm		19		mA
		FSK, 868 MHz, -10 dBm		8		mA
		FSK, 915 MHz, +20 dBm		70		mA
		FSK, 915 MHz, +13 dBm		28		mA
		FSK, 915 MHz, +10 dBm		19		mA
		FSK, 915 MHz, -10 dBm		8		mA

1.4 Transmitter

Table 4. Transmitter Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output power	Роит	Different frequency bands require specific peripheral materials + 20		dBm		
Output power step	P _{STEP}			1		dB
GFSK Gaussian filter factor	ВТ		0.3	0.5	1.0	-
Output power change at different temperatures	P _{OUT-TOP}	- 40 ~ + 85 °C 1			dB	
Transmission spurious		$P_{OUT} = +13 \text{ dBm}, 433\text{MHz}, F_{RF} < 1$ GHz			-42	dBm
emission		1 GHz ~ 12.75 GHz, including harmonic wave			-36	dBm
Harmonic output	H2 ₄₃₃	2 nd harmonic , +20 dBm P _{OUT}		- 46		dBm
for F _{RF} = 433 MHz	H3 ₄₃₃	3 rd harmonic, +20 dBm P _{OUT}		- 50		dBm
Harmonic output	H2 ₈₆₈	2 nd harmonic, +20 dBm P _{OUT}		- 43		dBm
for F _{RF} = 868 MHz	H3 ₈₆₈	3 rd harmonic, +20 dBm P _{OUT}		- 52		dBm
Harmonic output	H2 ₉₁₅	2 nd harmonic, +20 dBm P _{OUT}		- 48		dBm
for F _{RF} = 915 MHz	H3 ₉₁₅	3 rd harmonic, +20 dBm P _{OUT}		-53		dBm

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Harmonic output	H2 ₄₃₃	2 nd harmonic, +13 dBm P _{OUT}		-52		dBm
For F _{RF} = 433 MHz	H3 ₄₃₃	3 rd harmonic, +13 dBm P _{OUT}		-52		dBm
Harmonic output	H2 ₈₆₈	2 nd harmonic, +13 dBm P _{OUT}		-52		dBm
For F _{RF} = 868 MHz	H3 ₈₆₈	3 rd harmonic, +13 dBm P _{OUT}		-52		dBm
Harmonic output	H2 ₉₁₅	2 nd harmonic, +13 dBm P _{OUT}		-52		dBm
For F _{RF} = 915 MHz	H3 ₉₁₅	3 rd harmonic, +13 dBm P _{OUT}		-52		dBm

1.5 Settling Time

Table 5. Settling time

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	T _{SLP-TX}	From Sleep to TX		1000		us
Settling Time	T _{STB-TX}	From Standby to TX		300		us
	T _{TFS-TX}	From TFS to TX		10		us

1.6 RF Frequency Synthesizer

Table 6. RF Frequency Synthesizer Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
			760		1020	MHz
	_		380		510	MHz
Frequency range	F _{RF}		190		340	MHz
			127		170	MHz
Frequency resolution	F _{RES}			25		Hz
Frequency tuning time	t _{TUNE}			150		us
		10 kHz deviation		-94		dBc/Hz
Dhara maine @ 400		100 kHz deviation		-99		dBc/Hz
Phase noise @ 433	PN ₄₃₃	500 kHz deviation		-118		dBc/Hz
IVITZ		1MHz deviation		-127		dBc/Hz
		10 MHz deviation		-134		dBc/Hz
		10 kHz deviation		-92		dBc/Hz
PI (1 0 000		100 kHz deviation		95		dBc/Hz
Phase noise @ 868	PN ₈₆₈	500 kHz deviation		-114		dBc/Hz
MHz		1MHz deviation		-121		dBc/Hz
		10 MHz deviation		-130		dBc/Hz
		10 kHz deviation		-89		dBc/Hz
DI : 0.045		100 kHz deviation		-92		dBc/Hz
Phase noise@ 915 MHz	PN ₉₁₅	500 kHz deviation		-111		dBc/Hz
I IVIITZ		1MHz deviation		-121		dBc/Hz
		10 MHz deviation		-130		dBc/Hz

1.7 Low Battery Detection

Table 7. Low Battery Detection Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low battery detection	LDD			50		mV
resolution	LBD _{RES}			50		IIIV

1.8 Crystals

Table 8. Crystals Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal frequency ^[1]	F _{XTAL}			26		MHz
Crystal frequency tolerance ^[2]	ppm			20		ppm
Load capacitance	C _{LOAD}			15		pF
Crystal equivalent resistance	Rm			60		Ω
Crystal startup time ^[3]	t _{XTAL}			400		us

Notes:

- [1]. For CMT2119B, an external reference clock can be used to drive the XI pin directly through a coupling capacitor. The peak-to-peak level of the external reference clock is required between 0.3 and 0.7 V.
- [2]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired transmitter.
- [3]. This parameter is largely related to the crystal

1.9 Low-frequency Oscillator

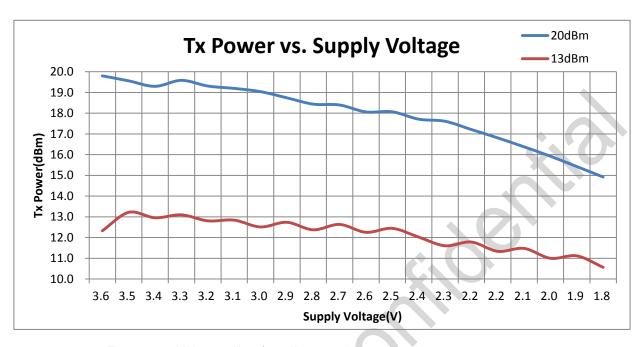
Table 9. Low-frequency Oscillator Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Calibration frequency [1]	FLPOSC			32		kHz
Frequency precision		After calibration		1		%
Temperature factor [2]				- 0.02		%/°C
Supply voltage factor ^[3]				+ 0.5		%/V
Initial calibration time	t _{LPOSC-CAL}			4		ms

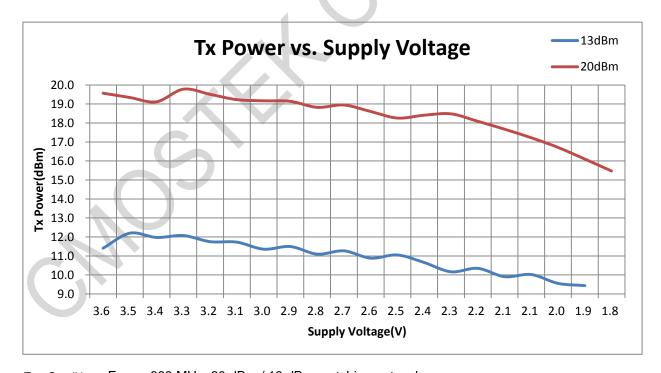
Notes:

- [1]. During the PUP phase, the low-frequency oscillator is calibrated automatically to the crystal oscillator frequency and the calibration is performed periodically.
- [2]. The frequency drifts with the temperature change after calibration.
- [3]. The frequency drifts with the supply voltage change after calibration.

1.10 Digital Interface

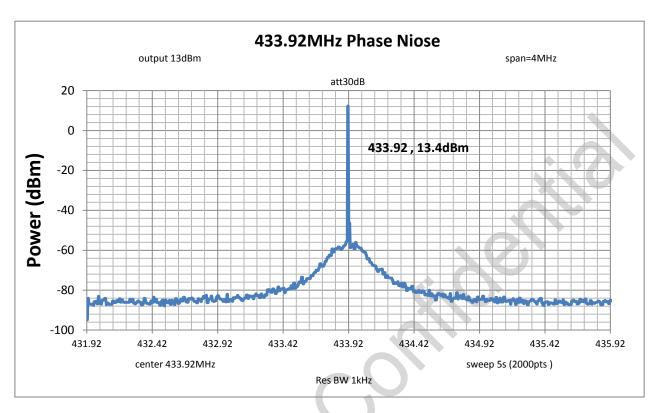

Table 10. Digital Interface Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Digital signal input high level	V_{IH}		0.8			V_{DD}
Digital signal input low level	V_{IL}				0.2	V_{DD}
Digital signal output high level	V _{OH}	@I _{OH} = -0.5 mA	Vdd-0.4			V
Digital signal output low level	V_{OL}	@I _{OL} = 0.5 mA			0.4	V
SCL frequency	F _{SCL}				5	MHz
Time for SCL high	T _{CH}		50			ns
Time for SCL low	T _{CL}		50		\	ns
Time for SCL rising edge	T _{CR}		50	1		ns
Time for SCL falling edge	T _{CF}		50			ns


Rev0.5 | 8/33 www.cmostek.com

1.11 Typical Parameter Chart

1.11.1 Tx Power and Supply Voltage Correlation


Test Conditions: Freq = 434 MHz, 20 dBm / 13 dBm matching network

Test Conditions: Freq = 868 MHz, 20 dBm / 13 dBm matching network

Figure 1. Tx Power and Supply Voltage Correlation Chart

1.11.2 Tx Phase Noise

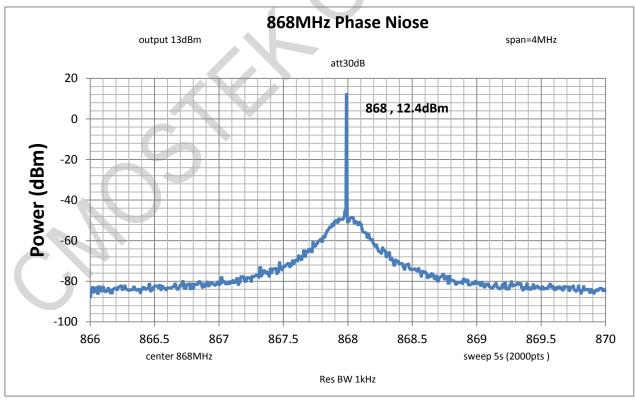


Figure 2. Tx Phase Noise Chart

2 Pin Description

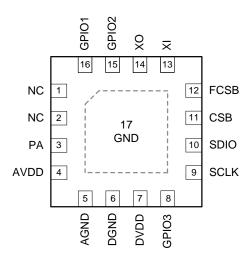


Figure 3. CMT2119B Pin Arrangement Diagram

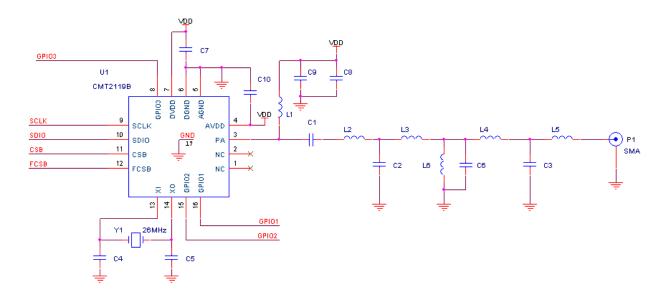

Pin #	Pin Name	1/0	Description
1	NC	-	Not connected
2	NC	-	Not connected
3	PA	0	PA output
4	AVDD	10	Analog VDD
5	AGND	0	Analog GND
6	DGND	Ю	Digital GND
7	DVDD	10	Digital VDD
8 ^[1]	GPIO3	10	Can configure as : CLKO, INT2 or DCLK (TX).
9	SCLK	_	Clock for SPI
10	SDIO	9	Data input and output for SPI
11	CSB	1	Chip selection for SPI register access
12	FCSB	I	Chip selection for SPI FIFO access
13	ΧI	- 1	Crystal circuit input
14	хо	0	Crystal circuit output
15 ^[1]	GPIO2	Ю	Can configure as : INT1, INT2 or DCLK (TX).
16 ^[2]	GPIO1	Ю	Can configure as : DIN, INT1, INT2 or DCLK (TX).
17	GND	Ĺ	Analog GND, must connect ground

Table 11. CMT2119B Pin Description

Notes:

- [1]. INT1 and INT2 refer to RF interrupts. DCLK (TX) refers to modulated data rate synchronous clock, which is switched automatically upon Tx mode switching.
- [2]. DIN is the external modulation data input port in the direct mode. Only the GPIO1 pin has this function.

3 Typical Application Schematic

Figure 4. Typical Application Schematic

Table 12. Typical Application BOM

		C	omponent Va	lue		
Label	Description	433 MHz	868 MHz	915 MHz	Unit	Supplier
		+20 dBm	+20 dBm	+20 dBm		
C1	±5%, 0603 NP0, 50 V	15	18	18	_	-
C2	±5%, 0603 NP0, 50 V	3 3.6		3.6	pF	-
C3	±5%, 0603 NP0, 50 V	6.2	3.3	3.3	pF	-
C4	±5%, 0603 NP0, 50 V	27	27	27	pF	-
C5	±5%, 0603 NP0, 50 V	27	27	27	pF	-
C6	±5%, 0603 NP0, 50 V	4.7	2	2 1.8		-
C7	±5%, 0603 NP0, 50 V		0.1		uF	-
C8	±5%, 0603 NP0, 50 V		4.7	uF	-	
C9	±5%, 0603 NP0, 50 V	470			pF	-
C10	±5%, 0603 NP0, 50 V		0.1		uF	-
L1	±5%, 0603 multilayer chip inductor	180	100	100	nΗ	Sunlord SDCL
L2	±5%, 0603 multilayer chip inductor,	22	12	12	nΗ	Sunlord SDCL
L3	±5%, 0603 multilayer chip inductor	15	15	15	nΗ	Sunlord SDCL
L4	±5%, 0603 multilayer chip inductor	33	6.2	6.2	nΗ	Sunlord SDCL
L5	±5%, 0603 multilayer chip inductor	33	6.2	6.2	nΗ	Sunlord SDCL
L6	±5%, 0603 multilayer chip inductor	27	15	15	nΗ	Sunlord SDCL
Y1	±10 ppm, SMD32*25 mm		26		MHz	EPSON
U1	CMT2119B, +20 dBm high power Sub-1GHz RF transmitter		-		-	CMOSTEK

4 Function Description

The CMT2119B is a high-performance transmitter suitable for 127 to 1020 MHz applications, which supports OOK, (G)FSK and (G)MSK modulation. The product is part of the CMOSTEK NextGenRFTM product family, which covers a complete product line consisting of transmitters, receivers and transceivers. The internal system block diagram of the CMT2119B is shown in the below figure.

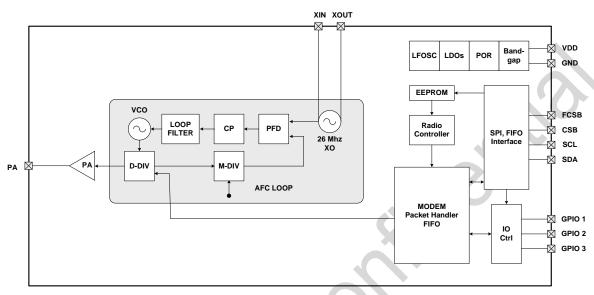


Figure 5. System Function Block Diagram

In the transmitter system, the digital circuit encodes and processes data, and sends the processed data to the modulator (data can also be sent directly to the modulator without encoding and packaging). The modulator directly controls PLL and PA to modulate the data with (G)FSK or OOK modulation then transmit it out.

4.1 Transmitter

The CMT2119B transmitter is synthesized directly based on RF frequencies with its carrier frequency generated by a low noise fractional frequency synthesizer.

The modulated data is transmitted by an efficient single-ended power amplifier (PA). The output power can be read and written from the register and can be configured to values between -10 to + 20 dBm in 1 dB step.

When PA switches quickly, its changed input impedance interferes instantaneously with the output frequency of VCO. This effect becomes a VCO pull that produces spur and glitch near the desired carrier. By slowly ramping the PA output power, it can help reduce the instantaneous glitch of PA to a minimal level. The CMT2119B has a built-in PA slow-and-drop mechanism. When the PA Ramp is turned on, the PA output power can be slowly increased and decreased at the set rate to reduce the unexpected spectral components.

Users can design a PA matching network to optimize the transmission efficiency at the required output power according to application requirements. Please refer to *Typical ApplicationSschematics* and *Typical Application BOM* in Section 3 for details. For more application schematic details and layout guidelines, please refer to *AN168 CMT2119B Schematic and PCB Layout Design Guide*.

The transmitter can operate in both direct mode and packet mode. In the direct mode, the data to be transmitted is sent to the chip directly through the DIN pin of the chip and transmitted directly. In the packet mode, data can be preloaded into the FIFO of the chip in STBY, TFS, and Tx states, and then transmitted out along with other packet elements.

4.2 Assisting Modules

4.2.1 Crystal Oscillator

The crystal oscillator provides a reference clock for the phase locked loop as well as a system clock for digital circuits. The value of load capacitance depends on the crystal specified CL parameter. The total load capacitance between XI and XO should be equal to CL, so as to make the crystal accurately oscillate at 26 MHz.

$$C_L = \frac{1}{1/C11 + 1/C12} + C_{par} + 2.5pF$$

C15 and C16 are the load capacitances placed at both ends of the crystal. Cpar is the parasitic capacitance on the PCB. Each crystal pin has 5 pF internal parasitic capacitance with a equivalent differential capacitance as 2.5 pF. The equivalent series resistance of the crystal must be within the specifications so that the crystal can have a reliable oscillation. Also, an external signal source can be connected to the XI pin to replace the conventional crystal. The recommended peak value of this clock signal is from 300 mV to 700 mV. In addition, the clock is coupled to the XI pin via a capacitor.

4.2.2 Sleep Timer

The CMT2119B integrates a sleep timer driven by 32 kHz low power oscillator (LPOSC). When this function is enabled, the timer wakes up the chip from sleep periodically. When the chip operates in the duty-cycle mode, the sleep time can be configured as a value between 0.03125 ms and 41922560 ms. Due to the low power oscillator frequency will change with the temperature and voltage drift, it will be calibrated automatically during power-on and will be calibrated periodically since then. These calibrations will make the frequency tolerance of the oscillator within + 1%.

4.2.3 Low Battery Detection

The chip supports low battery detection settings. The LBD test is performed once the chip is tuned to a certain frequency. Frequency tuning occurs when the chip switches from the SLEEP/STBY state to the RFS/TFS/TX/RX state. The test result can be read through the LBD_VALUE register.

If LBD_STOP_EN is set to 1, when the detected power supply voltage is lower than the preset value, the chip will stop at LOW_VDD (CHIP_MODE_STA<3:0> = 1000, Addr=0x61), waiting for the MCU sending the command to the chip via SPI then to switch to SLEEP or Standby. \cdot

4.2.4 Fast Frequency Hopping

In applications requiring multiple channels, users only need to configure a register on the base frequency with no need for complex register configuration upon each frequency change,.

FREQ = base frequency + 2.5 kHz
$$\times$$
 FH_OFFSET < 7:0 > \times FH_CHANNEL < 7:0 >

In general, users can configure FH_OFFSET<7:0> during the chip initialization process, then perform channel switching by changing FH_CHANNEL<7:0> in the application.

Rev0.5 | 14/33 www.cmostek.com

5 Chip Operation

5.1 SPI Interface

The chip communicates with outside through a 4-wire SPI interface. CSB is the active-low signal for accessing chip registers. FCSB is the active-low signal for accessing FIFO. They cannot be set to low at the same time. SCLK is a serial clock with a highest speed of 5 MHz..The chip itself and the external MCU send the data during the falling edge of SCLK and capture the data during the rising edge of SCLK. The SDA is a bidirectional pin for data input and output. The address and data are transferred starting from the MSB.

When accessing registers, CSB is pulled low. A R/W bit is sent first, followed by a 7-bit register address. After the external MCU pulls down CSB, it must wait for at least half a SCL cycle, and then sends the R/W bit. After the MCU sends out the last falling edge of SCLK, it must wait for at least half a SCLK cycle, and then pulls CSB high.

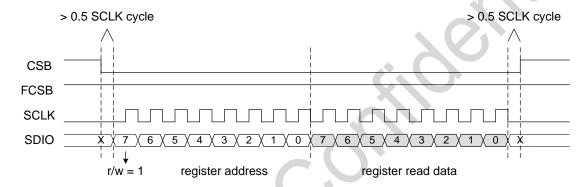


Figure 6. SPI Register Reading Timing

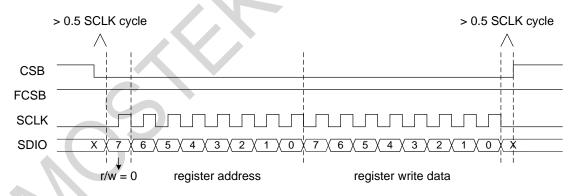


Figure 7. SPI Register Writing Timing

5.2 FIFO

FIFO is used to store the data to be transmitted. The FIFO can be accessed via the SPI interface. Users can clear FIFO by setting FIFO_CLR_TXor FIFO_CLR_RX to 1. Users can re-send the data filled previously by setting FIFO_RESTORE to 1, with no need for re-filling the data.

By setting the register FIFO_MERGE_EN (Addr=0x69), users can choose different FIFO depths, 32 bytes or 64 bytes. When the FIFO is 64-byte, it means that the maximum data that can be stored in the chip is 64 bytes.

5.2.1 FIFO Read Operation

During reading data from the FIFO, the internal read pointer is automatically increased by 1 each time a byte is read. The MCU must pull FCSB low for 1 SCLK cycle to release the first rising edge of SCLK. After sending the last SCLK falling edge, the MCU must wait at least 2 us then pulls back the FCSB to high. In addition, the FCSB needs to be pulled to high for at least 4 us before reading the next byte of the FIFO, which allows the chip to generate corresponding FIFO interrupts based on the current situation.

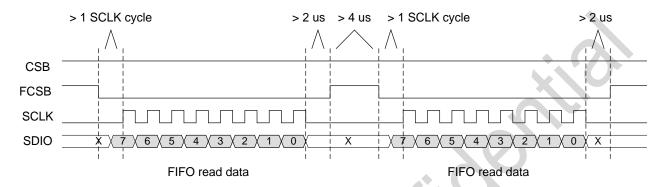


Figure 8. SPI FIFO Reading Timing

5.2.2 FIFO Write Operation

During writing to the FIFO, the internal reading pointer is automatically increased by 1 each time a byte is written. The data on SDIO is collected on the rising edge of SCLK. The MCU must pull FCSB low for 1 SCLK cycle to release the first rising edge of SCLK. After sending the last SCLK falling edge, the MCU must wait at least 2 us to pull back FCSB high. In addition, FCSB needs to be pulled high for at least 4 us before writing the next byte to the FIFO, which allows the chip to generate corresponding FIFO interrupts based on the current situation.

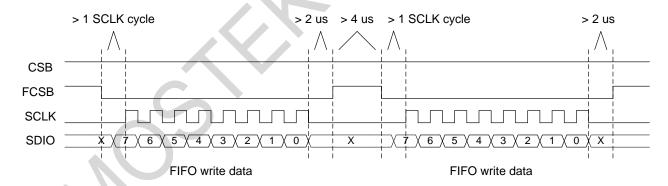


Figure 9. SPI FIFO Writing Timing

5.2.3 FIFO Associated Interrupt

CMT2119B provides rich interrupt sources associated with the FIFO. The interrupt timing for the Tx FIFO is shown in the below figure.

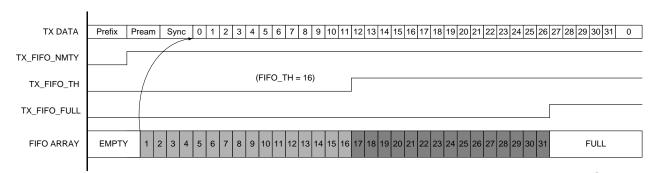


Figure 10. TX FIFO Interrupt Timing Diagram

5.3 Operating State, Timing and Power Consumption

5.3.1 Startup Timing

After chip power up, it usually needs to wait about 1 ms to let POR be released. The crystal will start after then with a default startup time of N ms (N is depends on the characteristics of the crystal itself). After crystal starting, it needs to wait for the crystal being settled, then the system starts operating. The default settling time is 2.48 ms. This time can be modified by writing XTAL_STB_TIME <2:0> afterward. The chip remains in the IDLE status until the crystal is settled. After then, the chip will leave the IDLE state and begin to perform the calibration of each module. When the calibration completes, the chip will stay in the SLEEP and wait until users perform initialization configuration. Whenever the soft reset is performed, the chip will go back to the IDLE and be powered up again.

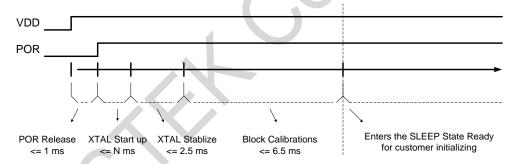


Figure 11. Power-up Timing

When the calibration completes, the chip enters the SLEEP mode. From now on, the MCU can switch the chip to different operating states by setting the register CHIP_MODE_SWT<7:0>.

5.3.2 Operating State

The CMT2119B supports 5 operating states: IDLE, SLEEP, STBY, TFS and TX, as listed in the below table.

State	Binary Code	Switching Command	Modules On	Optional Modules On		
IDLE	0000	soft_rst	SPI, POR	None		
SLEEP	0001	go_sleep	SPI, POR, FIFO	LFOSC, Sleep Timer		
STBY	0010	go_stby	SPI, POR, XTAL, FIFO	CLKO		
TFS	0100	go_tfs	SPI, POR, XTAL, PLL, FIFO	CLKO		
TX	0110	go_tx	SPI, POR, XTAL, PLL, PA, FIFO	CLKO		

Table 13. CMT2119B Operating State and Corresponding Modules On

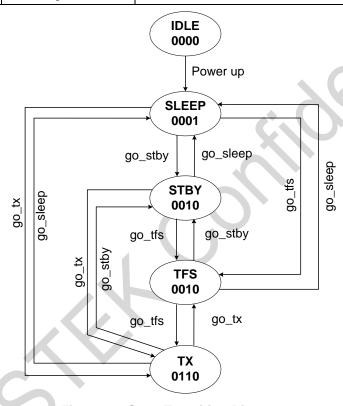


Figure 12. State Transition Diagram

■ SLEEP state

The chip power consumption remains the lowest in SLEEP state with almost all the modules off. SPI is on and the registers of the configuration bank and control bank 1 can be accessed. The contents filled in the FIFO before will remain unchanged. However, users cannot operate the FIFO. If users enable the wake-up function, LFOSC and the sleep counter will be turned on and start operating. The time required to switch from IDLE to SLEEP is the power-up time. Switching from the other states to SLEEP will be completed immediately.

■ STBY state

In the STBY state, the crystal is turned on, the LDO of the digital circuit will also be turned on, the current will be slightly increased, and the FIFO can be operated. Users can choose whether to output CLKO (system clock) to GPIOn pin. As the crystal and LDO are turned on, compared with the SLEEP, the time switching from the STBY to Tx or Rx will be relatively short. Switching from SLEEP to STBY will be completed after the crystal is turned on and settled. Switching from the other states to STBY will be completed immediately.

■ RFS state

RFS is a transition state before switching to Rx. Except that the receiver RF module is off, all the other modules are turned on, and the current will be larger than that tin STBY. Because PLL is locked in the Rx frequency, RFS cannot switch to Tx. Switching from STBY to RFS probably requires a PLL calibration and stability time of 350 us. Switching from SLEEP to RFS needs to add the crystal start-up and stability time. Switching from the other state to RFS will be completed immediately.

Tx State

All modules on the transmitter will be turned on in the Tx state. Switching from TFS to Tx requires only 20 us. Switching from STBY to Tx requires to add the PLL calibration and settling time of 350 us. Switching from SLEEP to Tx needs to add the crystal start-up and settling time.

5.4 GPIO and Interrupt

CMT2119B has 3 GPIO ports. Each GPIO can be configured as a different input or output. The CMT2119B has 2 interrupt ports. They can be configured as different GPIO outputs.

Pin# Name 1/0 **Function** 16 GPIO1 10 Configure as: DIN, INT1, INT2, DCLK (TX) 15 GPIO2 Ю Configure as: INT1, INT2, DCLK (TX) Configure as: CLKO, INT2, DCLK (TX) 8 Ю GPIO3

Table 14. CMT2119B GPIO

Interrupt mapping table is as below. INT1 and INT2 mapping is the same. It takes INT1 as an example in the below table..

INT1_SEL Name **Descriptions Clearing Methods** TX_ACTIVE 00001 Indicates the chip is entering TX and is already in TX. It is 1 in PLL Auto tuning RX_TMO 01001 Indicates that the RX counter timed out. by MCU TX DONE 01010 Indicates that the TX operation is completed. by MCU TX_FIFO_NMTY 10000 Indicates that the TX FIFO is not empty. Auto RX_FIFO_TH 10001 Indicates the number of unread bytes of the TX FIFO is over FIFO Auto RX_FIFO_FULL 10010 Indicates TX FIFO is full. Auto STATE IS STBY 10011 Indicates that the current state is STBY. Auto STATE_IS_FS 10100 Indicates that the current state is RFS or TFS. Auto STATE_IS_RX 10101 Indicates that the current state is RX. Auto STATE_IS_TX 10110 Indicates that the current state is TX. Auto BD 10111 Indicates that low battery is detected (VDD is lower than TH) Auto

Table 15. CMT2119B Interrupt Mapping Table

By default, an Interrupt is active high (logic 1 is valid). Users can set the INT_POLAR register bit to 1 to make all interrupts active low (logic 0 is valid). The control and selection of all the available interrupt sources is shown in the below figure (take INT1 as an example.). The control and mapping of INT1 and INT2 is the same.

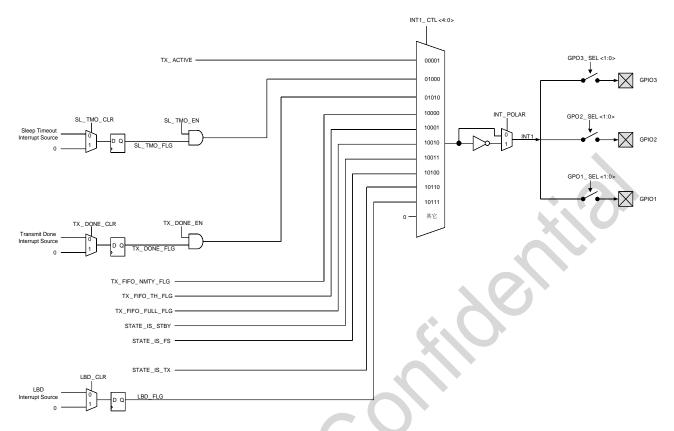


Figure 13. CMT2119B INT1 Interrupt Mapping Diagram

Packet Handler

6.1 Packet Format

The CMT2119B provides typical and flexible packet formats including variable packet with Length in front of Node ID, variable packet with Length behind Node ID and fixed packet. The 3 packet formats are shown in the below figures.

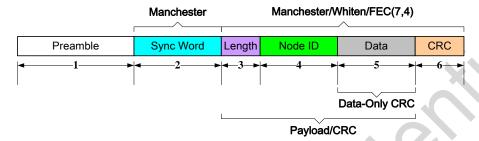
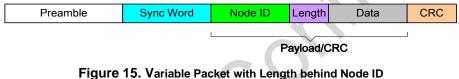



Figure 14. Variable Packet with Length in front of Node ID

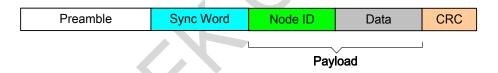


Figure 16. Fixed Packet

6.2 Data Mode

The CMT2119B supports direct mode and packet mode:

Data Mode refers to how the external MCU inputs transmitted data. The CMT2119B supports both the direct mode and the packet mode. The difference is as follows.

- Direct mode in the direct mode, FIFO does not operate
- Packet mode in the packet mode, it supports all the packet formats with FIFO operating.

6.2.1 Direct Mode

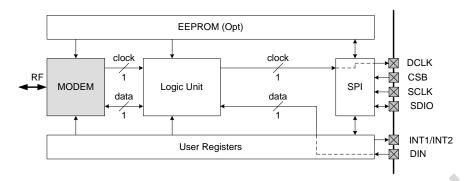


Figure 17. Direct Mode Data Path

In the direct mode, the data to be transmitted is sent directly to the chip from the external MCU via DIN pin. The MCU can specify data rates in the range of chip specification. If the GFSK modulation is used, the data rate of the chip needs to be configured in advance, and the data rate transmitted by the MCU should be within the specified tolerance range. The typical Tx operating flow in the direct mode is as follows.

- 1. Drive DIN (namely the GPIO1 pin) with logic 0 or 1 (the system uses GPIO1 pin as DIN pin by default. In fact, only the GPIO1 pin has DIN function. Keep register value of TX_DIN_EN and TX_DIN_SEL (Addr=0x69) as 0 by default.).
- 2. Send go_tx command, then the chip starts sending data of DIN pin.
- 3. Keep sending data to the DIN pin and the data is being transmitted immediately.
- 4. Send go_sleep/go_stby/go_rfs command to stop receiving for power saving.

6.2.2 Packet Mode

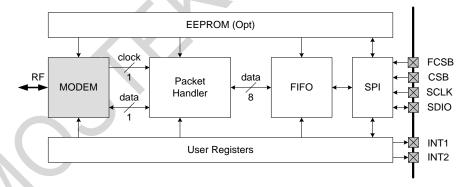


Figure 18. Packet Mode Data Path

In the packet mode, the MCU can fill the data in FIFO in advance in the STBY and TFS state, or fill them in FIFO while thechip sends the data, or use the combination of the above two methods. The typical Tx packet mode operating flow is as follows.

- 1. Configure GPIO using the CUS_IO_SEL (Addr=0x65) register.
- 2. Send go_stby/go_tfs command when the data is filled in FIFO in advance.
- 3. Send go_tx command.
- 4. Write the data into FIFO according to the relevant interrupt status.
- 5. Sends go_sleep/go_stby/go_rfs command to save power.

7 Automatic Operating Mode

The CMT2119B saves chip power by controlling the Tx function to run in the automatic operating mode through configuring relevant registers. It include 3 modes.

- 1. Automatically exit Tx
- 2. Automatically wake up from SLEEP and automatically exit Tx
- 3. Fully automatic Tx

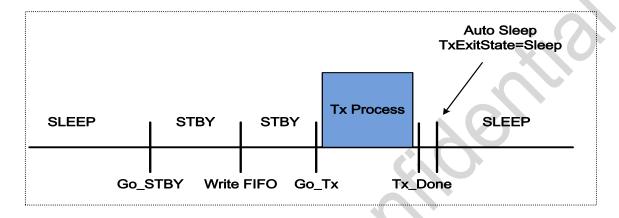


Figure 19. Automatically Exit Tx

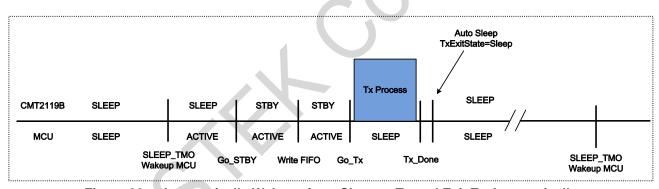


Figure 20. Automatically Wakeup from Sleep to Tx and Exit Tx Automatically

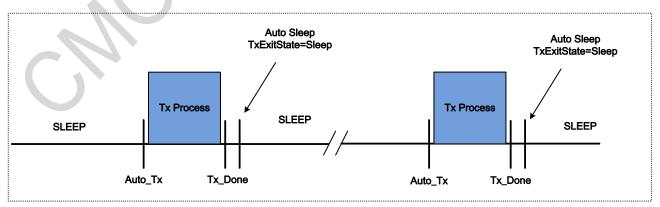


Figure 21. Fully Automatic Tx - fill data to be transmitted in advance and sends the same data each time

8 User Registers

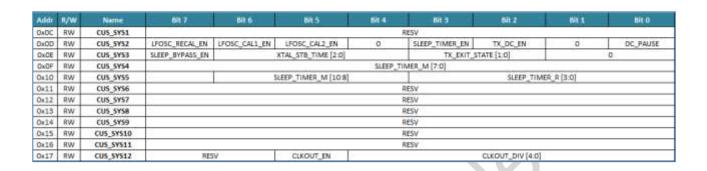
User registers are listed in the below table. Please refer to *AN167 CMT2119B Quick Start Guide* for more register details. All register banks can be accessed in the SLEEP state except for control bank 2.

Table 16. Register Bank Partitioning

			notor Barner artition	9		
Address	Bank	Name	Bank Name in RFPDK Export File	Function		
0x00-0x0B		CMT bank	CMT bank	Export through RFPDK. Not suggest users to change them.		
0x0C-0x17		System bank	System bank	Mainly for Duty-Cycle operating configuration.		
0x18-0x1F		Frequency bank Frequency bank		Mainly for Tx frequency configuration.		
0x20-0x37	Configuration bank (RFPDK exports the Data rate bank register values)		Data rate bank	Mainly related to communication data rate.		
0x38-0x54		Baseband bank		Mainly related to packet formats (encoding format, packet structure checksum, error correction, sync word, etc.).		
0x55-0x5F		TX bank	TX bank	Mainly related to Tx deviation and power.		
0x60-0x6A	Control bank 1 (set by not generated by RFF	••	Co	Mainly related to chip operating state, frequency hopping, GPIOs and interrupt source on/off control.		
0x6B-0x71	Control bank 2 (set by not generated by RFF	y MCU in application, PDK)		Mainly for interrupt source flags and RSSI value.		

8.1 CMT Bank

The CMT bank mainly stores product-related information and functional registers as well as some registers used by the chip internally.


Table 17. CMT Bank

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	RW	CUS_CMT1				•				
0x01	RW	CUS_CMT2								
0x02	RW	CUS_CMT3								
0x03	RW	CUS_CMT4								
0x04	RW	CUS_CMT5								
0x05	RW	CUS_CMT6						DED	DIZ	1.1.
0x06	RW	CUS_CMT7	Users	ao not nee	a to understa	and them. They	can be impor	tea from RFP	DK generated	data.
0x07	RW	CUS_CMT8								
0x08	RW	CUS_CMT9								
0x09	RW	CUS_CMT10								
0x0A	RW	CUS_CMT11								
0x0B	RW	CUS RSSI								

8.2 System Bank

The system bank mainly configures timer-related parameters to implement the duty cycle mode.

Table 18. System Bank

8.3 Frequency Bank

The frequency bank mainly stores registers implementing the frequency tuning function.

Table 19. Frequency Bank

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x18	RW	CUS_RF1								
0x19	RW	CUS_RF2								
0x1A	RW	CUS_RF3								
0x1B	RW	CUS_RF4	Users d	o not need t	 understand 	them. They ca	an be imported	from RFPDk	Caenerated da	ata.
0x1C	RW	CUS_RF5							3	
0x1D	RW	CUS_RF6								
0x1E	RW	CUS_RF7								
0x1F	RW	CUS_RF8								

8.4 Data Rate Bank

The data rate bank stores registers related to data rate, FSK and OOK.

Table 20. Data Rate Bank

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x20	RW	CUS_RF9								
0x21	RW	CUS_RF10								
0x22	RW	CUS_RF11								
0x23	RW	CUS_RF12								
0x24	RW	CUS_FSK1								
0x25	RW	CUS_FSK2								
0x26	RW	CUS_FSK3								
0x27	RW	CUS_FSK4								
0x28	RW	CUS_FSK5								
0x29	RW	CUS_FSK6								
0x2A	RW	CUS_FSK7								
0x2B	RW	CUS_CDR1	User	s do not ne	ed to underst	and them. The	y can be impo	rted from RFF	PDK generate	d data.
0x2C	RW	CUS_CDR2							ŭ	
0x2D	RW	CUS_CDR3								
0x2E	RW	CUS_CDR4								
0x2F	RW	CUS_AGC1								
0x30	RW	CUS_AGC2							7. 3	
0x31	RW	CUS_AGC3								
0x32	RW	CUS_AGC4								
0x33	RW	CUS_OOK1								
0x34	RW	CUS_OOK2								
0x35	RW	CUS_OOK3								
0x36	RW	CUS_OOK4								
0x37	RW	CUS_OOK5								

8.5 Baseband Bank

The baseband bank stores registers related to packet format settings.

Table 21. Baseband Bank

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0:38	RW	CUS_PKT1			RESY PREAM_LENG_UNIT DATA_MODE[1								
0:39	RW	CUS_PKT2				TX_PREAR	/_SCE [7:0]						
DallA	RW	CUS_PKTS				TX_PREAM	_312E [15:0]						
0138	RW	CUS_PKT4				PREAM_)	ALUE [7:0]						
Dx3C	RW.	CUS_PKTS	RESV	1	SYNC_TOL [2:0]			SYNC_SIZE [2:0]		DINC_MAN_EN			
0430	RW	CUS_PKTE		SYNC WALUE [7:0]									
0x3E	RW	CUS_PKT7		SYNC_VALUE [15:8]									
0x3F	RW	CUS_PKT8				SYNC_VAL	UE [23:16]						
0+40	RW.	CUS_PKT9				SYNC_VAL	UE[31:24]						
0x41	RW	CUS_PKT10				SYNC_VAL	UE [39:32]						
0+42	RW	CUS_PKT11				SYNC_VAL	UE [47:40]						
Ox43	RW.	CUS_PKT12		SYNC_VALUE [55:48]									
Ds44	RW	CUS_PKT13		SWC_VALUE [83:56]									
0:4\$	mir	CUS_PKT14	RESV		PAYLDAD_LENG[10:6]	71	AUTO_ACK_EN	NODE_LENG_POS_SEL	PAYLOAD_BIT_DROER	PKT_TYPE			
Dx46	RW	CUS_PKT1S				MAYLGAD	LENG [7:0]						
Di47	RW	CUS_PKT16	RESV	HESV	NODE_FREE_EN	NODE_ERR_MASK	NOO	E_SIZE [1:0]	NOOK_DET_	M006 [1:0]			
0:48	RW	CUS_PKT17				NOOE_V	ALUE [7:0]		100000000	200,900,000			
Dx49	RW	CUS_PKT18				NODE_W	LUE [15:8]						
QuáA	RW	CUS_PKT19				NODE_VA	LUE[27:16]						
0x48	RW	CUS_PKT20				NODE_VA	LUE[31:24]						
Ox4C	RW.	CUS_PKT21	PEC_TYPE	FEC_EN	CRC_BYTE_SWAP	CRC_BIT_INV	CRC_RANGE	CRC_TYS	E[1.0]	CRC_EN			
0+40	RW	CUS_PRT22				CRC_58	BED [7:0]						
Ox4E	RW	CUS_PKT23				CRC_SE	ED [15:8]						
Ox4F	RW	CUS_PKT24	CRC_BIT_DRDER	WHITEN_SEED [8]	WHITEN_SEED_TYPE	WHITEN	TYPE[1:0]	WHITEN_EN	MANCH_TYPE	MANCH_EN			
0x50	RW.	CUS_PKT25	1			WHITEN	SEED [7:0]			1. 2. codic. 1			
0:51	RW	CUS_PKT26			HI	žV.	0000 a00 a 6111		TX_PREFIX	TVPE[1:0]			
0:52	triv	CUS_PKT27				TX_FKT_	NUM [7:0]			- V.CT			
0:53	RW	CUS_PICTZB		TX_PKT_GAP [7:0]									
0:54	RW	CUS_PKT29	FIFD_AUTO_RES_EN				FIFO_TH [6:0]						

8.6 Tx Bank

The Tx bank stores registers related to transmission power and deviation.

Table 22. Tx Bank

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x55	RW	CUS_TX1		-		•				-
0x56	RW	CUS_TX2								
0x57	RW	CUS_TX3								
0x58	RW	CUS_TX4								
0x59	RW	CUS_TX5	Users	do not need	d to understar	nd them. They	can be import	ed from RFPD	K generated	data.
0x5A	RW	CUS_TX6							3	
0x5B	RW	CUS_TX7								
0x5C	RW	CUS_TX8								
0x5D	RW	CUS_TX9								
0x5E	RW	CUS_TX10								
0x5F	RW	CUS_LBD								

8.7 Control Bank 1

The control 1 bank stores registers for various function modules enabling and function selection.

Table 23. Control Bank 1

Addr	R/W	Name	Bit 7	Dit 6	Bit 5	Sit 4	Bit S	Bit 2	Hit 1	Bit 0	
0160	RW	CUS_MODE_CTL				CHIP_MODE	E_SWT [7:0]				
0x61	RW	CUS_MODE_STA	nesv	RESV	RSTN_IN_EN	CPG_RETAIN CHIP_MGDE_STA[3:0]					
Ox62	RW	CUS_EN_CTL	RESV	RESV	UNLOCK_STOP_EN	LBD_STOP_EN	RESV	RESV	RESV	RESV	
D+63	mv.	CUS_FREQ_CHNL	1100000	100000	ht—>000000000000000000000000000000000000	PH_CHAN	NSL [7:0]	11	10. 2000 2		
0:64	tov	CUS_FREQ_OFS				FH_DFF	HT[7:0]				
Dx65	RW	CUS_ID_SEL.	GP104_	SEL [1:0]	ghot_s	EL [1:0]	GP102,	SEL [1:0]	GFICS	_SEL [1:0]	
Dage	RW.	CUS_INTS_CTL	RF_SWT1_EN	RF_SWT2_EN	INT_POLAB		11200,413	INT3_SEL [4:0]			
0:67	RW	CUS_INT2_CTL	RESV	LFOSC_OUT_EN	TX_DIN_INV		an the same	INT2_SEL [4:0]	age towards to		
Oxes	RW.	CUS_INT_EN	SL_TMO_EN	0	TX_DONE_EN	0	0	0	0	0	
0:69	RW	CUS_FIFO_CTL	TH_DIN_EN	TK_DI	N_SEL [1:0]	FIFO_AUTO_CLR_DIS	FIFO_TX_RD_EN	1	FIFO_MERGE_EN	SPI_FIFD_RD_WR_SEL	
OxEA.	W	CUS_INT_CLR1	RESV	RESV	SL TMO FLG	RESV	TX_DONE_FLG	TX_DONE_CLA	SL_TMO_CLR	RESV	

8.8 Control Bank 2

The control area 2 stores the registers related to flag bits, RSSI and LBD. Note that registers in this bank cannot be accessed in the SLEEP state.

Table 24. Control Bank 2

Addr	R/W	Name	Bit 7	Bit 6	Bit 5	Sit 4	Bit 3	Bit 2	Hit 1	Bit 0
D+68	W	CUS_INT_CLR2	RESV	RESV	IBD_CLR	RESV			-711	
Datic	w	CUS_FIFO_CLR						FIFO_RESTORE	.0	PIPO_CLR_TX
0x60	R	CUS_INT_FLAG	180_715		0	RESV				
OxSE	. 11	CUS_FIFO_FLAG		RESY			TX_PIFO_FULL_FLS	TX_FIFO_NMTY_FLG	TX_FIFO_TH_FLG	
DoSF	R	CUS_RSSI_CODE	REDV							
0x70	R	CUS_RSSI_DBM	nesy							
0x71	R	CUS_LBD_RESULT	LRD_RESULT [7-0]							

9 Ordering Information

Table 25. CMT2119B Ordering Information

Model	Description	Packaging	Packaging Option	Operating Condition	Minimum Order Quantity
CMT2119B-EQR ^[1]	The CMT2119B, ultra-low power sub-1 GHz RF transmitter	QFN16 (3x3)	Tape and tray	1.8 to 3.6 V, - 40 to 85 °C	3,000

Notes:

[1]. E refers to extended Industrial product rating, which supports temperature range from -40 to +85 °C.

Q refers to the package type QFN16.

R refers to tape and tray type, and the minimum order quantity (MOQ) is 3,000 pieces.

Please visit $\underline{\text{www.cmostek.com}}$ for more product/product line information.

Please contact sales@cmostek.com or your local sales representative for sales or pricing requirements.

10 Packaging Information

The packaging information of the CMT2119B is shown in the below figure.

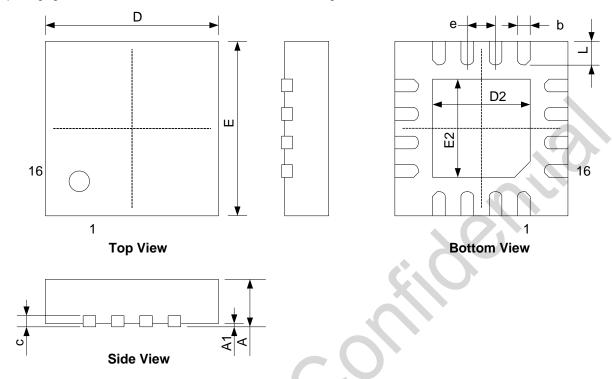


Figure 22. 16-Pin QFN 3x3 Packaging

Table 26. 16-Pin QFN 3x3 Packaging Scale

	Scale (mm)			
Symbol	Min.	Max.		
A	0.7	0.8		
A1	_	0.05		
b	0.18	0.30		
С	0.18	0.25		
D	2.90	3.10		
D2	1.55	1.75		
e	0.50	BSC		
E	2.90	3.10		
E2	1.55	1.75		
L	0.35	0.45		

11 Top Marking

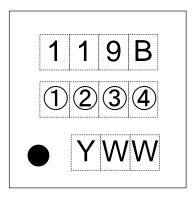


Figure 23. The CMT2119B Top Marking

Table 27. The CMT2119B Top Marking Information

Marking Method	Laser
Pin 1 Mark	Diameter of the circle = 0.3 mm
Font Size	0.5 mm, align right
Line 1 Marking	119B refers to model CMT2119B
Line 2 Marking	①②③④ is internal tracing code
Line 3 Marking	The date code is assigned by the package factory. Y is the last digit of the year. WW is the working week.

12 Related Documents

Table 28. Related Documents

Doc No.	Doc Name	Description
AN167	CMT2119B Quick Start Guide	Help users to understand and operate the CMT2119B
AN168	CMT2119B Schematic and PCB Layout Design Guide	Discuss CMT2119B PCB schematic and layout design rules and RF matching network & other layout design related design considerations

13 Revise History

Table 29. Revise History Records

Version No.	Chapter	Description	Date
Initial version	All	Initial version	2017-09-07
0.5	2, 5.4	Modify GPIO x pin description in table 11 and Table 14, remove the information for GPIO2 and GPIO3 multiplexing as DIN function. When the CMT2119B is used in direct mode, the external modulated data can only be input from the GPIO1 pin	2018-11-30

14 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong, China

Tel: +86-755-83231427

Post Code: 518071

 Sales:
 sales@cmostek.com

 Supports:
 support@cmostek.com

 Website:
 www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.