

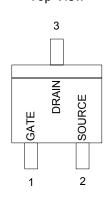
GENERAL DESCRIPTION

The CMT2301 is the P-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

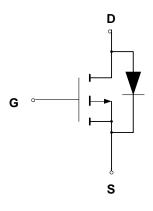
This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

FEATURES


- -20V/-2.3A ,R_{DS(ON)}=130 mΩ@VGS=-4.5V
- -20V/-1.9A ,R_{DS(ON)}=190 mΩ@VGS=-2.5V
- Super high density cell design for extremely low R_{DS(ON)}
- Exceptional on-resistance and maximum DC current capability
- SOT-23-3 package design

APPLICATIONS


- Power Management in Notebook
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

PIN CONFIGURATION

SYMBOL

P-Channel MOSFET

ORDERING INFORMATION

Part Number	Package
CMT2301M233	SOT-23-3
CMT2301GM233*	SOT-23-3

*Note: G : Suffix for Pb Free Product

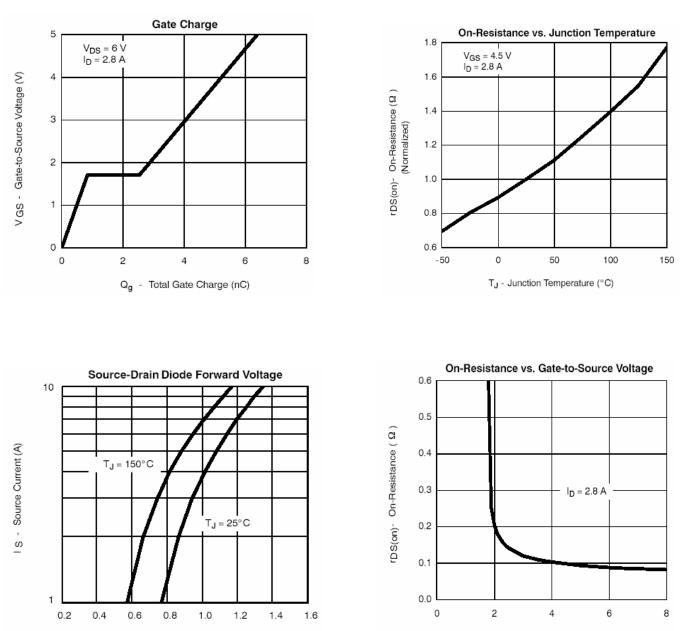
ABSOLUTE MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Drain- to- Source Voltage		V _{DSS}	-20	V
Gate-to-Source Voltage		V _{GSS}	±8	V
Continuous Drain Current(TJ=150°C)	T ⊢=25 ℃		-2.5	٨
	T ⊣=70 ℃	ID	-1.5	A
Pulsed Drain Current		I _{DM}	-10	А
Continuous Source Current(Diode Conduction)		Is	-1.6	А
Power Dissipation	T _ =25 ℃		1.25	14/
	T ⊢=70 ℃	- P _D	0.8	W
Operating Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	-55/150	°C
Thermal Resistance-Junction to Ambient		$R_{\theta JA}$	120	°C/W

ELECTRICAL CHARACTERISTICS

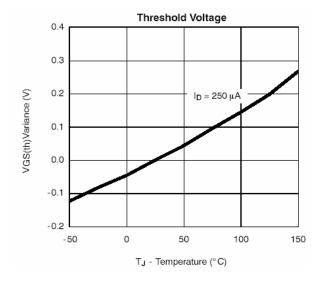
Unless otherwise specified, $T_{\rm J}$ = 25 $^\circ\!{\rm C}$.

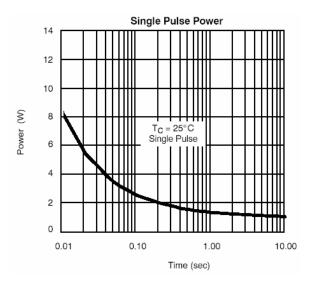
			CMT2301				
Char	acteristic	Symbol	Min	Тур	Max	Units	
Static							
Drain-Source Breakdown Voltage		V	-20			v	
$(V_{GS}$ = 0 V, I _D = -250 μ A)		$V_{(BR)DSS}$				v	
Gate Threshold Voltage		$V_{GS(th)}$	-0.45		-1.5	v	
$(V_{DS} = V_{GS}, I_D = -250 \mu A)$						v	
Gate Leakage Current		I _{GSS}			±100	nA	
$(V_{DS} = 0 V, V_{GS} = \pm 8 V)$		GSS					
Zero Gate Voltage Drain Current							
$(V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V})$		I _{DSS}			-1	μA	
$(V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}C)$					-10		
On-State Drain Current							
$(V_{DS} \le -5 V, V_{GS} = -4.5V)$		I _{D(on)}	-6			А	
$(V_{DS} \le -5 V, V_{GS} = -2.5V)$			-3				
Drain-Source On-Resistance							
$(V_{GS} = -4.5 \text{ V}, I_D = -2.8 \text{A})$				0.105	0.13	Ω	
(V _{GS} = -2.5 V, I _D = -2.0A)				0.145	0.19	32	
Forward Transconductance (V_{DS} = -5 V, I_D = -2.8V)		g _{FS}		6.5		S	
Diode Forward Voltage (I _S =-1.6A,V _{GS} =0V)		V _{SD}		-0.8	-1.2	V	
Dynamic							
Input Capacitance	$(V_{DS} = -6 V, V_{GS} = -0V,$	C _{iss}		415			
Output Capacitance	$(v_{DS} = -6 v, v_{GS} = -0 v, f = 1.0 \text{ MHz})$	C _{oss}		223		pF	
Reverse Transfer Capacitance	1 = 1.0 Wi12)	C _{rss}		87			
Turn-On Time	$(V_{DD} = -6 V, R_L = 6\Omega)$ $I_D = -1.0 A, V_{GEN} = -4.5 V,$	t _{d(on)}		13	25	ns	
		tr		36	60		
		$t_{d(off)}$		42	70		
$R_{G} = 6\Omega$		tf		34	60		
Total Gate Charge		Qg		5.8	10	1	
Gate-Source Charge	$(V_{DS} = -6 V, I_D = -2.8 A,$	Q _{gs}		0.85		nC	
Gate-Drain Charge	V _{GS} =-4.5V)	Q _{gd}		1.7			

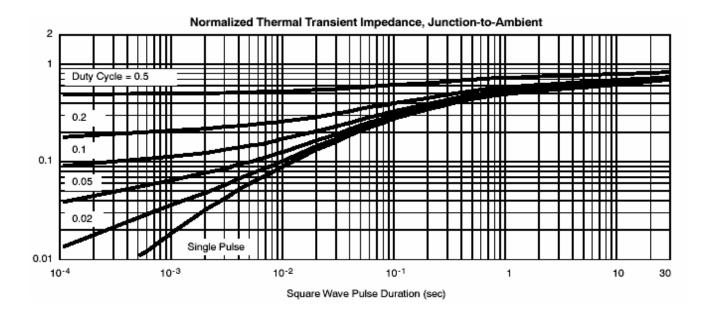


TYPICAL CHARACTERISTICS

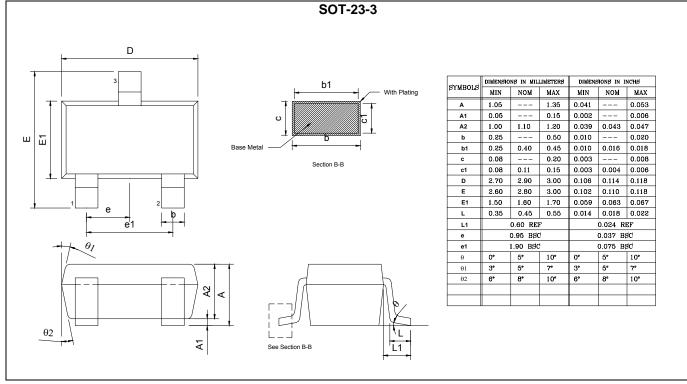
TYPICAL CHARACTERISTICS




VGS - Gate-to-Source Voltage (V)


VSD - Source-to-Drain Voltage (V)

TYPICAL CHARACTERISTICS



PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter	Sales & Marketing
5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan	7F-6, No.32, Sec. 1, Chenggong Rd., Nangang District, Taipei City 115, Taiwan
TEL: +886-3-567 9979 FAX: +886-3-567 9909	TEL: +886-2-2788 0558 FAX: +886-2-2788 2985