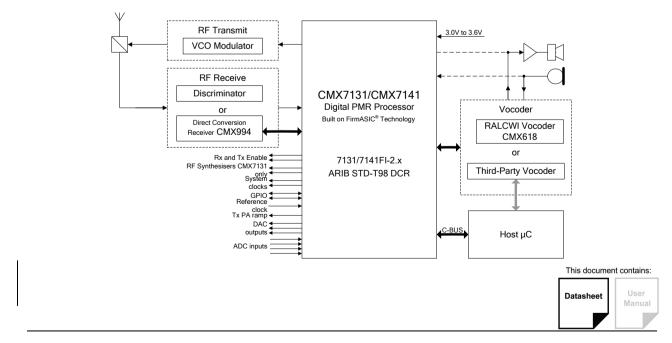


CMX7131/CMX7141 Digital PMR Processor DCR Operation

D/7131/41 FI-2.x/11 May 2016

DATASHEET

Advance Information


7131/7141FI-2.x: DCR Baseband Data Processor with Auxiliary System Clocks, ADCs and DACs

Features

- Digital PMR
 - ARIB STD-T98 DCR Compliant
 - Air Interface Physical Layer (Layer 1)
 - Air Interface Data Link Layer (Layer 2)
- 4FSK Modem
 - 4.8 and 9.6 kbps Data Rates
 - Soft-decision Data Output Option
 - AFSD (Automated Frame Sync Detection)
 - Raw Data Mode

- Tx Outputs for Two-Point or I/Q Modulation
- Rx Inputs for CMX994 Direct Conversion (I/Q) Receiver
- Two RF Synthesisers (CMX7131 only)
- Two Auxiliary ADCs (4 Multiplexed Inputs)
- Four Auxiliary DACs
- Two Auxiliary System Clock Outputs
- Flexible Powersave Modes
- Available in Small LQFP or VQFN Packages
- Low-power (3.0 to 3.6 V) Operation
- C-BUS Serial Interface to Host µController

- Vocoder Connectivity
 - Vocoder Management and Control (RALCWI Vocoders CMX608 and CMX618)
 - Vocoder Data Transport (Third-party Vocoders e.g. AMBE3000)

1 Brief Description

The CMX7131/CMX7141 with 7131/7141FI-2.x implements a half-duplex 4FSK modem and a large proportion of the DCR Air Interface, Data Link and Call Control layers. In conjunction with a suitable host and a limiter/discriminator based RF transceiver or CMX994 Direct Conversion (I/Q) receiver, a compact, low cost, low power digital PMR radio conforming to ARIB's T98 Digital Convenience Radio standard can be realised. The 7131/7141FI-2.3.x has two receiver interface modes: Limiter/Discriminator (LD) mode is selected by default and is compatible with 7131/7141FI-2.2.x for conventional limiter/discriminator receivers; I/Q mode is tailored for operation with the CMX994 Direct Conversion receiver IC. Dual mode, analogue/digital PMR operation can also be achieved with the CMX7131/CMX7141.

The embedded functionality of the CMX7131/CMX7141 allows managing voice and data systems autonomously including CMX6x8 Vocoder control and minimises host microcontroller interactions enabling the lowest operating power and therefore the longest battery life for a DCR radio. The CMX7131/CMX7141 can also provide audio codec functionality for vocoders under direct host control.

The device utilises CML's proprietary $FirmASIC^{\otimes}$ component technology. On-chip sub-systems are configured by a Function ImageTM: this is a data file that is uploaded during device initialisation and defines the device's function and feature set. The Function ImageTM can be loaded automatically from an external serial memory or host μ Controller over the built-in C-BUS serial interface. The device's functions and features may be enhanced by subsequent Function ImageTM releases, facilitating in-the-field upgrades. This document refers specifically to the features provided by Function ImageTM 7131/7141Fl-2.3.

Other features include two auxiliary ADCs with four selectable inputs and four auxiliary DAC interfaces (with an optional RAMDAC on the first DAC output, to facilitate transmitter power ramping). The CMX7131 features two on-chip RF synthesisers, with easy Rx/Tx frequency changeover.

The CMX7141 is identical in functionality to the CMX7131 with the exception that the two on-chip RF Synthesisers have been deleted, which enables it to be supplied in a smaller package. This document refers to both parts generically as the CMX7141, unless otherwise stated.

The device has flexible powersaving modes and is available in both LQFP and VQFN packages.

Note that text shown in pale grey indicates features that will be supported in future versions of the Function $Image^{TM}$.

This Datasheet is the first part of a two-part document comprising Datasheet and User Manual: the User Manual can be obtained by registering your interest in this product with your local CML representative.

RALCWITM and Function ImageTM are trademarks of CML Microsystems Plc. $FirmASIC^{@}$ is a registered trademark of CML Microsystems Plc. AMBE 3000 is a registered trademark of Digital Voice Systems Inc.

CONTENTS

<u>Sect</u>	<u>ion</u>		<u>Page</u>
1	Brief D	Description	2
	1.1	History	8
2	Block I	Diagram	10
		-	
3	•	List	
	3.1	Signal Definitions	13
4	Extern	nal Components	14
	4.1	Recommended External Components	16
	4.2	PCB Layout Guidelines and Power Supply Decoupling	17
	4.3	CMX994 Interface	19
5	Genera	al Description	21
	5.1	7131/7141FI-2.x Features	
	5.2	System Design	
	5.2		
	5.2	·	
	5.2	·	
	5.2	2.4 RSSI Measurement (LD Mode)	25
	5.2	2.5 Serial Memory Connection (LD Mode only)	25
	5.2	2.6 CMX994 Connection (I/Q Mode only)	25
	5.2	2.7 Hardware AGC - AuxADC1 Connection	26
	5.2	2.8 RSSI Measurement (I/Q Mode)	26
	5.3	Introduction	27
	5.3	3.1 Modulation	27
	5.3		
	5.3	,	
	5.3	ŭ	
	5.3	3	
	5.3	3.6 Radio Performance Requirements	34
6	Detaile	ed Descriptions	35
	6.1	Xtal Frequency	35
	6.2	Host Interface	35
	6.2	2.1 C-BUS Operation	35
	6.3	Function Image™ Loading	37
	6.3	3.1 FI Loading from Host Controller	38
	6.3	,	
	6.4	CMX618/CMX608 C-BUS Interface	
	6.5	DCR Standard Vocoder Interface	
	6.5	' '	
	6.6	Device Control	
	6.6		
	6.6	• •	
	6.6	5 5	
	6.6	6.4 Modem Control	45

	6.6.5	Tx Mode DCR Formatted	46
	6.6.6	Tx Mode DCR Raw	46
	6.6.7	Tx Mode PRBS	49
	6.6.8	Tx Mode Preamble	49
	6.6.9	Tx Mode Mod Set-up	49
	6.6.10	Tx Sequencer	49
	6.6.11		
	6.6.12	Rx Mode Raw	49
	6.6.13	Rx Mode Eye	51
	6.6.14	Rx Pass-through Mode	51
	6.6.15	Rx Mode with CMX994 AGC (I/Q Mode only)	51
	6.6.16	Rx Mode with CMX994 I/Q Cal (I/Q Mode only)	51
	6.6.17	Rx Mode with Powersave (I/Q Mode only)	52
		Reset/Abort	
	6.6.19	Data Transfer	52
		CMX6x8/CMX994 Pass-through Mode	
	6.7 DC	CR Formatted Operation	54
	6.7.1	Frame Format	54
	6.7.2	Addressing	54
	6.7.3	Tx Mode (DCR Formatted)	
	6.7.4	Rx Mode (DCR Formatted)	
	6.8 Sq	quelch Operation	57
		PIO Pin Operation	
	6.10 Au	ıxiliary ADC Operation	58
	6.11 Au	xiliary DAC/RAMDAC Operation	59
		Synthesiser (CMX7131 only)	
	6.13 Di	gital System Clock Generators	63
	6.13.1	Main Clock Operation	64
	6.13.2	System Clock Operation	64
	6.14 Sig	gnal Level Optimisation	64
	6.14.1	Transmit Path Levels	64
	6.14.2	Receive Path Levels	64
	6.15 Tx	Spectrum Plots	65
	6.16 C-	BUS Register Summary	66
7	Dorformor	nce Specification	67
,		ectrical Performance	
	7.1	Absolute Maximum Ratings	
	7.1.1	Operating Limits	
	7.1.2	Operating Characteristics	
	7.1.3	Parametric Performance	
		BUS Timing	
		ackaging	
	7.0 га		
Table	<u>e</u>		<u>Page</u>
Ta	ble 1 Defini	tion of Power Supply and Reference Voltages	13
		mmended External Components when using CMX994	
		codec Format	25

Table 4 C	CMX994 Connections	25
Table 5 D	OCR Frame Format	31
Table 6 X	Stal/Clock Frequency Settings for Program Block 3	35
Table 7 B	SOOTEN Pin States	37
Table 8 C	CMX6x8 Vocoder Connections	41
Table 9 D	OCR Standard Vocoder Connections	43
Table 10	Modem Mode Selection	46
Table 11	Modem Control Selection	46
Table 12	Frequency Response for Rx Pass-through Mode	51
	C-BUS Data Registers	
Table 14	RxData 0/TxData 0 Block ID settings	55
Table 15	C-BUS Registers	66
Figure		Page
Figure 1	Block Diagram	10
-	CMX7141 Recommended External Components	
Figure 3 (CMX7131 Recommended External Components	15
Figure 4 (CMX7141 Power Supply and Decoupling	17
Figure 5 (CMX7131 Power Supply and Decoupling	18
Figure 6 (CMX994 Interface	19
Figure 7 (CMX618 Vocoder Connection	23
Figure 8 (CMX608 Vocoder Connection	24
Figure 9 [DCR Vocoder Connection	24
Figure 10	RSSI in I/Q Mode	26
•	4FSK PRBS Waveform - Modulation	
_	4FSK PRBS Waveform - Spectrum	
•	Modulation Characteristics	
-	Internal Data Blocks (LD Mode)	
•	Additional Internal Data Processing in I/Q Mode	
•	FS Detection	
•	C-BUS Transactions	
-	FI Loading from Host	
_	FI Loading from Serial Memory	
-	Digital Voice Rx and Tx Blocks	
_	I ² S Mode Support	
-	Tx Data Flow (Raw Data Mode)	
	Automatic Tx Sequencer	
•	Rx Data Flow (Raw Data Mode)	
•	AuxADC IRQ Operation	
-	Example RF Synthesiser Components	
-	Single RF Synthesiser Block Diagram	
•	Digital Clock Generation Schemes	
•	Tx Modulation Spectra - 4800bps	
-	Tx Modulation Spectra - 9600bps	
•	C-BUS Timing	
•	Mechanical Outline of 64-pin VQFN (Q1)	
Figure 33	Mechanical Outline of 64-pin LQFP (L9)	/ /

Figure 34	Mechanical Outline of 48-pin LQFP (L4)	78
Figure 35	Mechanical Outline of 48-pin VQFN (Q3)	78

This is Advance Information; changes and additions may be made to this specification. Parameters marked TBD or left blank will be included in later issues. Items that are highlighted or greyed out should be ignored. These will be clarified in later issues of this document.

Information in this datasheet should not be relied upon for final product design.

It is always recommended that you check for the latest product datasheet version from the CML website: [www.cmlmicro.com].

1.1 History

Version	Changes	Date
11	Section 6.6.10: Added Tx Repeated Word command (\$C1=0062) Section 8.1.3: RxENA and TxENA logic level invert function added to register \$A7:b1 Section 8.1.10: Added manual enable/disable of SPI codec using \$B1:b0 Section 8.1.24: Entire description of register \$C3 restructured to improve clarity. Includes the following additions: SPI/PCM Rx voice level scaling RAMDAC scaling feature Ability to change FS error tolerance Tx symbol level adjustment Section 8.1.27: FS2 reacquisition enable added to \$C7:b13 Section 8.2.1: Entire description of Program Block 0 restructured to improve clarity. Includes the following additions: Invert the sense of the SACCH "Front Unit" flag bit in P0.0 FS2 error tolerance programmed in P0.1 Repeated header and end frames in a DCR burst programmed in P0.2 Digital scrambler seed value programmed in P0.3 Section 8.2.2: Added P1.0:b11 – when set, allows the last 144 bits of PICH (shown as undefined in the specification) to be accessed as Data Type 2 (80 bits). Section 8.2.2: Added P1.28 – CMX6x8 Voice encryption key mismatch detection bit error threshold	May 2016
10	Datasheet/User Manual updated for FI-2.3, which adds support for an I/Q Rx interface and a CMX994 interface in sections 4.3 and 5.2.6. CMX994 Pass-through mode added in section 6.6.20. Updated RAMDAC, tone generator and AGC I/Q Mode descriptions, see Figure 10 and sections 5.2.8, 8.1.4 and 8.2.4. Added RSSI - signal strength graph for I/Q mode, Figure 15 and section 5.2.4. Updated data formats in Tables 10 and 11, sections 8.1.14 and 8.1.17. Expanded description of Fine Level adjustment of outputs in section 6.14, 8.1.9, 8.1.24 and 8.2.4. Various typographical and editorial changes and update to version history.	Apr 2013
9	Section 5.3.3: Added text to describe suppression of vocoder silence frames that can cause false FS2 detections. Section 8.1.27: In 'Open Receiver' mode, the CMX7131/7141 will no longer check for the 'Front Unit' flag bit in the SACCH block. In this mode, the check needs to be performed by the host. Section 9: Other enhancements and bug fixes documented.	Aug 2012
8	Change 618_DIS to VOC_DIS, update description in 6.2, figs 6, 7, 8, delete fig 9 Correct RxData and TxData bit allocations	Oct 2011
7	Clarification of BOOTEN states and corrections to RF Synthesiser specification Correction to SPI bus Chip Select pin definition.	Sep 2011

	Total Cardia Cardia Discoulta 1975 and State and a late attact of	NA 0044
6	Section 9.1.21: IP enable bit is available, so should be black text.	Mar 2011
	Section 6.2: Tx (with SPI and Codec enabled) should route MIC/ALT signals	
	through Input 2, not Input 1.	
	Section 7.7.4: "set to 10 (payload)" should be "set to 01 (payload)".	
	Section 9.2: change reference to "bits 0 and 1" to "b3-0 = 0000".	
	Section 7.10: change "default state is output, high level" to "default state is input,	
	with a weak pullup resistor".	
	Section 9.2.1: P0.1 description added from section 10.	
	Section 9.1.9: Add \$B0 b7 = 1 has the effect of inverting the input signal.	
5	Input1 and Output1 routing added	Feb 2011
	SPI-Codec operation description and routing clarified	
	Editorial corrections	
	FS detection flowchart corrected	
	Order of CSM data fields corrected	
4	Added "Open Rx" mode	Nov 2009
	Added text and figures for SPI-Codec mode operation (6.2.1 and 6.2.2)	
	Expanded descriptions of P1.9 to 1.12	
	Added Vocoder 2 Enable fields and SCLK polarity bits as P1.13/14	
	Added SPI-Codec ENA mode for alternate Vocoders	
	Added DCR Standard Vocoder Interface section 7.5	
3	Added section 7.7.1 – Frame Formats	Aug 2009
	Extended RAMDAC scan time table	
	Tx and Rx Formatted modes added	
	CSM section in Program Block Added	
	SACCH InfoType field masks added to Program Block	
	C-BUS table updated	
	Numerous editorials to meet company standards and typo corrections.	
	6x8 support added	
	Corrected wrong pinout for CMX7131	
	Hyperlinked C-BUS Register Details and section 8.1.2 rewritten.	
2	Various Typos corrected	May 2009
	Function Image History updated	
	References to GPIO1 & 2 replaced with RxENA and TxENA	
1	Original document, prepared for internal use.	Mar 2009

2 Block Diagram

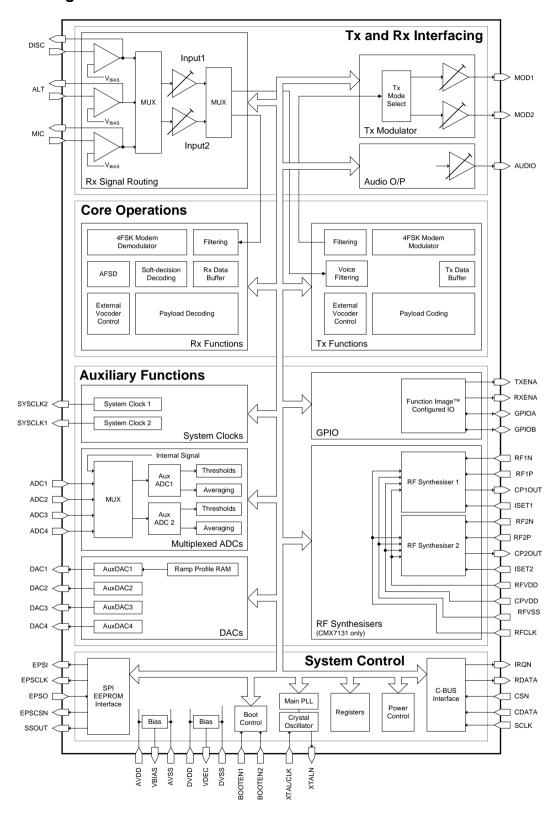


Figure 1 Block Diagram

3 Signal List

CMX7131 64-pin Q1/L9	CMX7141 48-pin Q3/L4	Pin Name	Туре	Description	
1	8	IRQN	ОР	C-BUS: A 'wire-ORable' output for connection to the Interrupt Request input of the host. Pulled down to DV _{SS} when active and is high impedance when inactive. An external pull-up resistor (R1) is required.	
2	-	RF1N	IP	RF Synthesiser 1 Negative Input	
3	-	RF1P	IP	RF Synthesiser 1 Positive Input	
4	-	RFVSS	PWR	The negative supply rail (ground) for RF Synthesiser 1	
5	-	CP1OUT	OP	RF Synthesiser 1 Charge Pump output	
6	-	ISET1	IP	RF Synthesiser 1 Charge Pump Current Set input	
7	-	RFVDD	PWR	The 2.5V positive supply rail for both RF Synthesisers. This should be decoupled to RFV _{SS} by a capacitor mounted close to the device pins.	
8	-	RF2N	IP	RF Synthesiser 2 Negative Input	
9		RF2P	IP	RF Synthesiser 2 Positive Input	
10	ı	RFVSS	PWR	The negative supply rail (ground) for RF Synthesiser 2	
11	ı	CP2OUT	OP	RF Synthesiser 2 Charge Pump output	
12	ı	ISET2	IP	RF Synthesiser 2 Charge Pump Current Set input	
13	-	CPVDD	PWR	The 3.3V positive supply rail for the RF Synthesiser charge pumps. This should be decoupled to RFV _{SS} by a capacitor mounted close to the device pins.	
14	-	RFCLK	IP	RF Clock Input (common to both RF Synthesisers) ¹	
15	11	GPIOA	OP	General Purpose I/O pin	
16	12	GPIOB	OP	General Purpose I/O pin	
17	-	NC	NC	Reserved – do not connect this pin	
18	9	VDEC	PWR	Internally generated 2.5V digital supply voltage. Must be decoupled to DV _{SS} by capacitors mounted close to the device pins. No other connections allowed, except for optional connection to RFV _{DD} .	
19	10	RXENA	OP	Rx Enable – active low when in Rx mode (\$C1:b0 = 1)	
20	13	SYSCLK1	OP	Synthesised Digital System Clock Output 1	
21	14	DVSS	PWR	Digital Ground	
22	-	NC	NC	Reserved – do not connect this pin	
23	15	TXENA	OP	Tx Enable – active low when in Tx mode (\$C1:b1 = 1)	
24	16	DISC	IP	Discriminator inverting input or I input from CMX994	
25	17	DISCFB	OP	Discriminator input amplifier feedback	
26	18	ALT	IP	Alternate inverting input or Q input from CMX994	

 $^{^{1}}$ To minimise crosstalk, this signal should be connected to the same clock source as XTAL/CLK input.

CMX7131 64-pin Q1/L9	CMX7141 48-pin Q3/L4	Pin Name	Туре	Description		
27	19	ALTFB	OP	Alternate input amplifier feedback		
28	20	MICFB	OP	Microphone input amplifier fee	edback	
29	21	MIC	IP	Microphone inverting input		
30	22	AVSS	PWR	Analogue Ground		
31	23	MOD1	OP	Modulator 1 output		
32	24	MOD2	OP	Modulator 2 output		
33	25	VBIAS	OP	Internally generated bias volta when the device is in 'Powers discharge to AV _{SS} . Must be decapacitor mounted close to the connections allowed.	ave' mode when V _{BIAS} will ecoupled to AV _{SS} by a	
34	26	AUDIO	OP	Audio Output in SPI-Codec m	ode	
35	27	ADC1	IP	Auxiliary ADC input 1	Each of the two ADC blocks	
36	28	ADC2	IP	Auxiliary ADC input 2	can select its input signal from any one of these input	
37	29	ADC3	IP	Auxiliary ADC input 3	pins, or from the MIC, ALT or DISC input pins. See section	
38	30	ADC4	IP	Auxiliary ADC input 4	8.1.3 for details.	
39	31	AVDD	PWR	Analogue +3.3V supply rail. Levels and thresholds within the device are proportional to this voltage. This pin should be decoupled to AV _{SS} by capacitors mounted close to the device pins.		
40	32	DAC1	OP	Auxiliary DAC output 1/RAMDAC		
41	33	DAC2	OP	Auxiliary DAC output 2		
42	34	AVSS	PWR	Analogue Ground		
43	35	DAC3	OP	Auxiliary DAC output 3		
44	36	DAC4	OP	Auxiliary DAC output 4		
-	37	DVSS	PWR	Digital Ground		
45	38	VDEC	PWR	to DV _{SS} by capacitors mounted	ply voltage. Must be decoupled ed close to the device pins. No cept for the optional connection	
46	39	XTAL/CLK	IP	Input from the external clock s	source or Xtal	
47	40	XTALN	OP	The output of the on-chip Xtal NC if external clock used.	oscillator inverter.	
48	41	DVDD	PWR	Digital +3.3V supply rail. This DV _{SS} by capacitors mounted of		
49	42	CDATA	IP	C-BUS Command Data: Seria	I data input from the μC	
50	43	RDATA	TS OP	C-BUS Reply Data: A 3-state C-BUS serial data output to the μ C. This output is high impedance when not sending data to the μ C.		
51	-	NC	NC	Reserved – do not connect this pin		

CMX7131 64-pin Q1/L9	CMX7141 48-pin Q3/L4	Pin Name	Туре	Description	
53	44	SSOUT	OP	SPI bus Chip Select/Frame Sync (used for CMX6x8)	
52	45	DVSS	PWR	Digital Ground	
54	46	SCLK	IP	C-BUS Serial Clock: The C-BUS serial clock input from the μC	
55	47	SYSCLK2	OP	Synthesised Digital System Clock Output 2	
56	48	CSN	IP	C-BUS Chip Select: The C-BUS chip select input from the μC - there is no internal pullup on this input	
57	-	NC	NC	Reserved – do not connect this pin	
58	1	EPSI	OP	CMX994 or Serial Memory Interface: Output; SPI bus Output	
59	2	EPSCLK	OP	CMX994 or Serial Memory Interface: Clock; SPI bus Clock	
60	3	EPSO	IP+PD	D CMX994 or Serial Memory Interface: Input; SPI bus Input	
61	4	EPSCSN	OP	CMX994 or Serial Memory Interface: Chip Select	
62	5	BOOTEN1	IP+PD	Used in conjunction with BOOTEN2 to determine the operation of the bootstrap program.	
63	6	BOOTEN2	IP+PD	Used in conjunction with BOOTEN1 to determine the operation of the bootstrap program.	
64	7	DVSS	PWR	Digital Ground	
EXPOSED METAL PAD	EXPOSED METAL PAD	SUBSTRATE	~	On this device, the central metal pad (which is exposed on Q1 and Q3 packages only) may be electrically unconnected or, alternatively, may be connected to Analogue Ground (AV _{SS}). No other electrical connection is permitted.	

Notes: IP = Input (+ PU/PD = internal pullup/pulldown resistor)

OP = Output
BI = Bidirectional
TS OP = 3-state Output
PWR = Power Connection

NC = No Connection - should NOT be connected to any signal.

3.1 Signal Definitions

Table 1 Definition of Power Supply and Reference Voltages

Signal Name	Pins	Usage
AV_{DD}	AVDD	Power supply for analogue circuits
DV_DD	DVDD	Power supply for digital circuits
V_{DEC}	VDEC	Power supply for core logic, derived from DV _{DD} by on-chip regulator
V_{BIAS}	VBIAS	Internal analogue reference level, derived from AV _{DD}
AV _{SS}	AVSS	Ground for all analogue circuits
DV_SS	DVSS	Ground for all digital circuits
RFV _{DD}	RFVDD	Power supply for RF circuits
RFV _{SS}	RFVSS	Ground for RF circuits
CPV _{DD}	CPVDD	Power supply for charge pump circuits

4 External Components

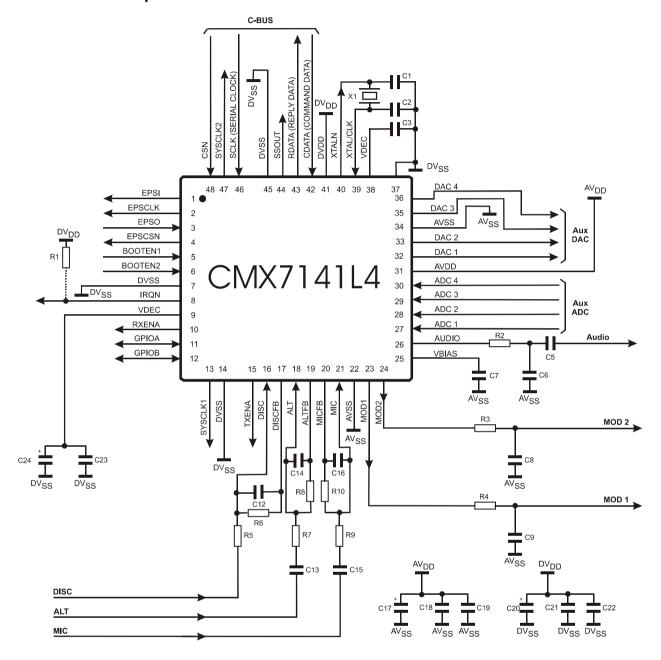


Figure 2 CMX7141 Recommended External Components

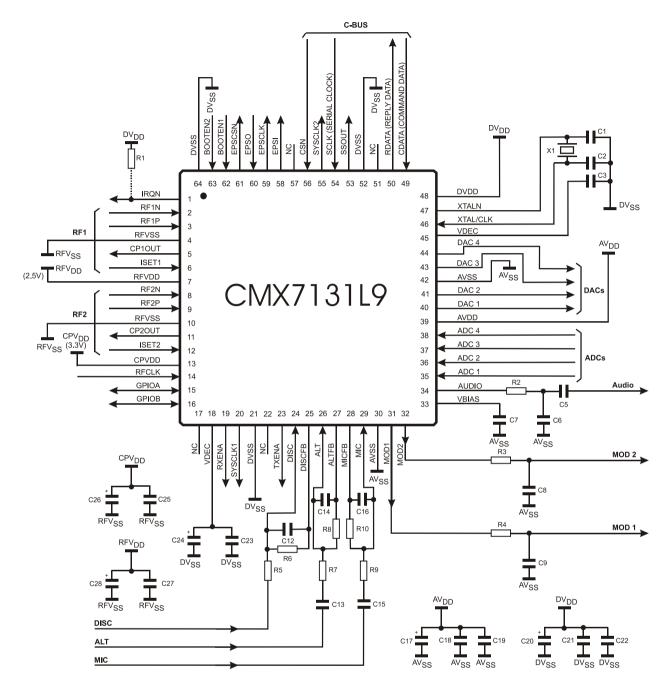


Figure 3 CMX7131 Recommended External Components

4.1 Recommended External Components

R1	100k Ω	C1	18pF	C11	not used	C21	10nF
R2	100k Ω	C2	18pF	C12	100pF	C22	10nF
R3	100k Ω	C3	10nF	C13	See note 5	C23	10nF
R4	100k Ω	C4	not used	C14	100pF	C24	10μF
R5	See note 2	C5	1nF	C15	See note 5	C25	
R6	100k Ω	C6	100pF	C16	200pF	C26	
R7	See note 3	C7	100nF	C17	10μF	C27	
R8	100k Ω	C8	100pF	C18	10nF	C28	
R9	See note 4	C9	100pF	C19	10nF	X1	6.144MHz
R10	100k Ω	C10	not used	C20	10µF		See note 1

Resistors $\pm 5\%$, capacitors and inductors $\pm 20\%$ unless otherwise stated.

Notes:

- X1 can be a crystal or an external clock generator; this will depend on the application. The tracks between the crystal and the device pins should be as short as possible to achieve maximum stability and best start up performance. By default, a 19.2MHz oscillator is assumed (in which case C1 and C2 are not required), other values could be used if the various internal clock dividers are set to appropriate values.
- 2. R5 should be selected to provide the desired dc gain of the discriminator input, as follows:

$$|GAIN_{DISC}| = 100k\Omega / R5$$

The gain should be such that the resultant output at the DISCFB pin is within the DISC input signal range specified in 6.14.2. For 4FSK modulation, this signal should be DC coupled from the Limiter/Discriminator output.

R7 should be selected to provide the desired dc gain (assuming C13 is not present) of the alternative input as follows:

$$|\mathsf{GAIN}_{\mathsf{ALT}}| = 100 \mathrm{k}\Omega / \mathsf{R7}$$

The gain should be such that the resultant output at the ALTFB pin is within the alternative input signal range specified in 6.14.

4. R9 should be selected to provide the desired dc gain (assuming C15 is not present) of the microphone input as follows:

$$|GAIN_{MIC}| = 100k\Omega / R9$$

The gain should be such that the resultant output at the MICFB pin is within the microphone input signal range specified in 6.14.1. For optimum performance with low signal microphones, an additional external gain stage may be required.

C13 and C15 should be selected to maintain the lower frequency roll-off of the MIC and ALT inputs as follows:

C13
$$\geq$$
 1.0 μ F \times | GAIN_{ALT} |
C15 \geq 30nF \times | GAIN_{MIC} |

- ALT and ALTFB connections allow the user to have a second discriminator or microphone input.
 Component connections and values are as for the respective DISC and MIC networks. If this input is
 not required, the ALT pin should be connected to AV_{SS}.
- 7. AUDIO output is only used in this Function ImageTM when SPI-Codec mode has been selected. It may also be used by analogue Function Images which may also be used on this device.
- 8. A single 10µF electrolytic capacitor (C24, fitted as shown) may be used for smoothing the power supply to both VDEC pins, providing they are connected together on the pcb with an adequate width power supply trace. Alternatively, separate smoothing capacitors should be connected to each VDEC pin. High frequency decoupling capacitors (C3 and C23) must always be fitted as close as possible to both VDEC pins.

4.2 PCB Layout Guidelines and Power Supply Decoupling

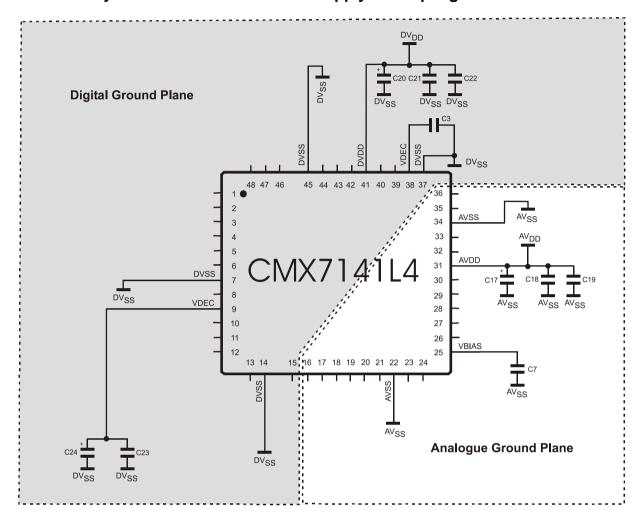


Figure 4 CMX7141 Power Supply and Decoupling

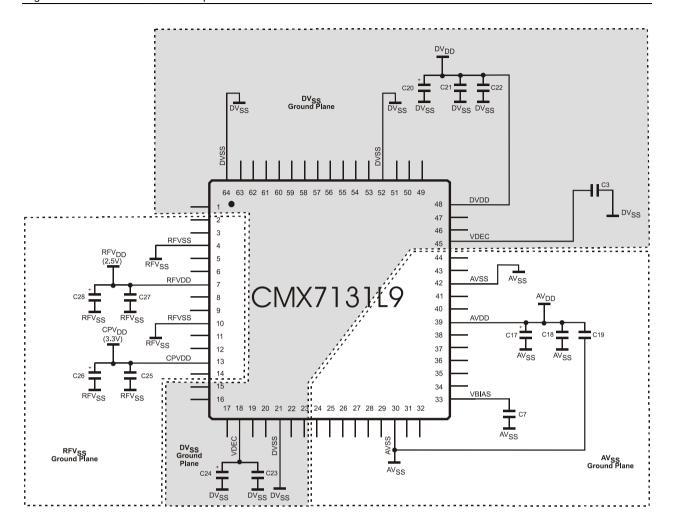


Figure 5 CMX7131 Power Supply and Decoupling

Component Values as per Figure 2

Notes:

It is important to protect the analogue pins from extraneous in-band noise and to minimise the impedance between the CMX7131/CMX7141 and the supply and bias decoupling capacitors. The decoupling capacitors C3, C7, C18, C19, C21, C22 and C24 should be as close as possible to the CMX7131/CMX7141. It is therefore recommended that the printed circuit board is laid out with separate ground planes for the AV_{SS} and DV_{SS} supplies in the area of the CMX7131/CMX7141, with provision to make links between them, close to the CMX7131/CMX7141. Use of a multi-layer printed circuit board will facilitate the provision of ground planes on separate layers.

 V_{BIAS} is used as an internal reference for detecting and generating the various analogue signals. It must be carefully decoupled, to ensure its integrity, so apart from the decoupling capacitor shown, no other loads should be connected. If V_{BIAS} needs to be used to set the discriminator mid-point reference, it should be buffered with a high input-impedance buffer.

The single ended microphone input and audio output must be ac coupled (as shown), so that their return paths can be connected to AV_{SS} without introducing dc offsets. Further buffering of the audio output is advised.

The crystal, X1, may be replaced with an external clock source.

4.3 CMX994 Interface

When operating the 7131/7141FI-2.3.x.x in I/Q mode the interface to the CMX994 shown in Figure 6 should be used. Component values are shown in Table 2, where values not shown refer to the CMX994 datasheet.

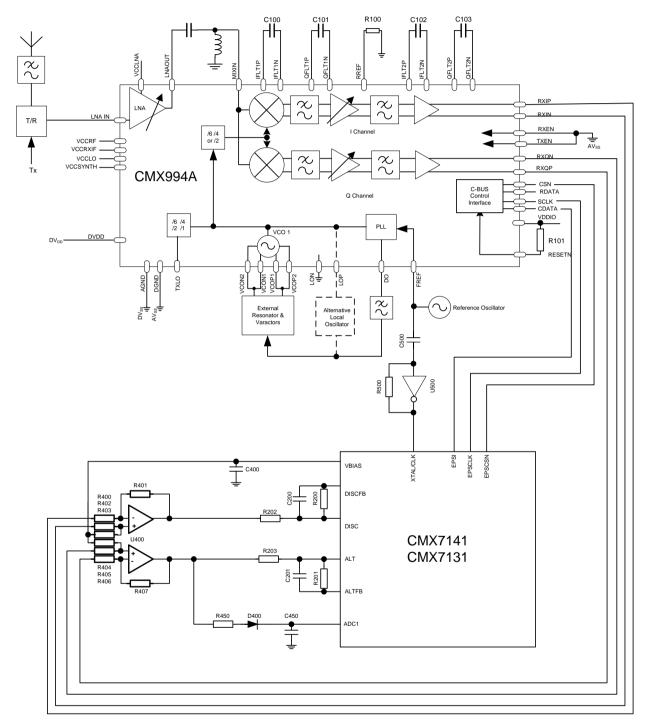


Figure 6 CMX994 Interface

Table 2 Recommended External Components when using CMX994

R100	10 k Ω	C100	1.5nF	C500	1nF
R101	100k Ω	C101	1.5nF	R500	100kΩ
		C102	3.9nF	D400	MMBD1503A
R200	100k Ω	C103	3.9nF	U500	e.g. SN74AHC1G04DRL
R201	100k Ω				
R202	100k Ω	C201	100pF		
R203	100k Ω	C202	100pF		
		C450	3.3pF	U400	e.g. LM6132
R450	$22k\Omega$	C400	100nF	R400-407	10kΩ

5 General Description

5.1 7131/7141FI-2.x Features

7131/7141FI-2.x for the CMX7131/CMX7141 is intended for use in half-duplex digital PMR equipment using 4FSK modulation at 4800 or 9600 bps suitable for 6.25kHz and 12.5kHz channel systems.

Much of the ARIB T98 DCR standard air interface protocol is embedded within the CMX7131/CMX7141 operation namely:

Air Interface - Physical Layer 1

- 4FSK modulation and demodulation
- Bit and symbol definition
- Frequency and symbol synchronisation
- Transmission burst building and splitting

Air Interface - Data Link Layer 2

- Channel coding (FEC, CRC)
- Interleaving, de-interleaving and bit ordering
- · Frame building and synchronising
- · Burst and parameter definition
- Link addressing (source and destination)
- · Interfacing of voice applications (voice data) with the Physical Layer
- Data bearer services
- Exchanging signalling and/or user data with the Call Control Layer
- Automatic Own-ID detection

The 7131/7141FI-2.3 has two receiver interface modes: Limiter/Discriminator (LD) mode is selected by default and is compatible with 7131/7141FI-2.2.x for conventional limiter/discriminator receivers; I/Q mode is tailored for operation with the CMX994 Direct Conversion receiver IC. The transmitter can provide a conventional output suitable for 2-point modulation or for an I/Q interface.

A flexible power control facility allows the device to be placed in its optimum powersave mode when not actively processing signals.

The device includes a crystal clock generator, with buffered output, to provide a common system clock if required.

A block diagram of the device is shown in Figure 1.

The signal processing blocks can be routed from any of the three DISC/ALT/MIC input pins.

Other functions include:

- Automatic Tx sequencer simplifies host control
- RAMDAC operation
- TXENA and RXENA hardware signals
- Two-point or I/Q modulation outputs
- Hard or Soft data output options

Auxiliary Functions:

- Two programmable system clock outputs
- Two auxiliary ADCs with four selectable external input paths
- Four auxiliary DACs, one with built-in programmable RAMDAC
- Two RF PLLs (CMX7131 only)

Interface:

- Optimised C-BUS (4 wire high speed synchronous serial command/data bus) interface to host for control and data transfer
- · Open drain IRQ to host
- C-BUS interface to CMX618/CMX608 with pass-through mode from host
- SPI bus interface for Speech Codec to support third-party Vocoders
- Two GPIO pins
- Serial memory boot mode
- C-BUS (host) boot mode
- Auxiliary C-BUS interface to CMX994 Direct Conversion receiver

5.2 System Design

A number of system architectures can be supported by the device. The most highly integrated solution uses a CMX618 Vocoder under full control of the CMX7131/CMX7141, relieving the host of all vocoder management duties. In this mode audio codec functions are provided by the CMX618. The presence of the CMX618 is detected by the device automatically following power-up.

CMX618 detected	VOC_DIS	SPI- Codec	Port mode	activity
yes	0	0	C-BUS	CMX618 under automatic control. MIC and AUDIO signals routed via CMX618
yes	1	0	C-BUS	CMX618 disabled. All data passed over host C-BUS as payload data.
no	х	0	C-BUS	CMX618 disabled. All data passed over host C-BUS as payload data.

The presence of the CMX6x8 device can be verified by using the "pass-through" feature, see section 6.6.21.

Other architectures using third-party vocoders are supported using SPI-Codec mode, in which the CMX7131/CMX7141 acts as an external audio codec attached to the vocoder. In this mode, the host must issue all control commands to the vocoder and also transfer coded data packets between the vocoder and CMX7131/CMX7141. The device will automatically enable/disable the activity on the SPI-Codec port when a voice call is in progress.

In SPI-Codec mode, signed 16-bit linear PCM audio samples are transferred at 8ksps. When this mode is selected:

In Tx: the microphone input should be routed from MIC to Input2. This signal is low-passed filtered, converted to PCM data and output on the EPSI pin for the external Vocoder to process

In Rx: the Audio output should be routed from Output1. PCM data samples are read from the EPSO pin, then filtered and output via the Audio Output attenuator.

CMX618 detected	VOC_DIS	SPI- Codec	Port mode	activity
no	0	1	SPI	SPI Port enabled during Rx or Tx, PCM data from MIC/to AUDIO passed over SPI bus

The automatic enable/disable of the SPI-Codec port during Rx and Tx may be overridden by setting the VOC_DIS bit in the Modem Configuration register, \$C7:b7. In this situation, the activity on the SPI-Codec port is determined by the host setting/clearing the SPI-Codec ENA, \$B1:b0.

CMX618 detected	VOC_DIS	SPI- Codec	Port mode	activity
no	1	0	SPI	SPI Port disabled
no	1	1	SPI	SPI Port enabled, PCM data from MIC/to AUDIO passed
				over SPI bus

5.2.1 Implementation with the CMX6x8

Figure 7 shows the configuration using the CMX618 RALCWI Vocoder, where all control and data is handled by the CMX7131/CMX7141 with minimal host CPU involvement:

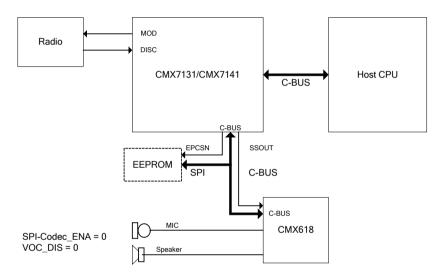


Figure 7 CMX618 Vocoder Connection

If the CMX608 is to be used then there are two possible architectures available. If an external Audio Codec is available then the CMX7131/CMX7141 can take full control over the CMX608 as in Figure 7. Otherwise the Audio Codecs within the CMX7131/CMX7141 can be used at the expense of additional host activity. In this case, all Channel data (control, addressing and payload) is transferred from the CMX7131/CMX7141 to the host over the main C-BUS interface, and the host must then transfer the Voice payload (TCH) data to the CMX608 using another C-BUS interface, as shown in Figure 8.

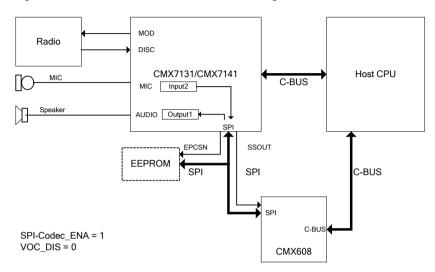


Figure 8 CMX608 Vocoder Connection

5.2.2 Implementation with Third-party Vocoders

As an alternative to the integrated architecture using the CMX618, it is possible to use a third-party Vocoders by routing all payload data (including voice traffic channel data) through the main C-BUS to the host. The host can then transfer it to/from the third party Vocoder over a suitable port supported by the chosen Vocoder. Typically these Vocoders do not include Audio Digital-to-Analogue and Analogue-to-Digital converters, so the CMX7131/CMX7141 can be configured to use its auxiliary C-BUS as an SPI interface and use its built-in DAC/ADC's as audio converters. This architecture is shown in Figure 9.

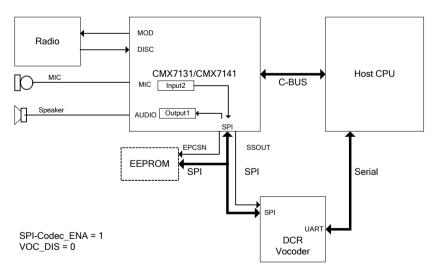
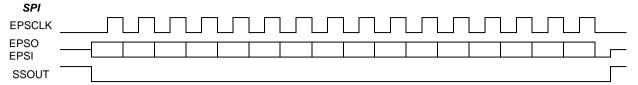



Figure 9 DCR Vocoder Connection

Table 3 SPI-Codec Format

Note: There are 16 SCLK pulses per data transfer. The default SCLK rate is 2MHz.

5.2.3 Data Transfer

When transmitting, an initial block of payload or control channel data will need to be loaded from the host into the C-BUS TxData registers. The CMX7131/CMX7141 can then format and transmit that data while at the same time loading in the following data blocks from the host or CMX618.

When receiving, the host needs to consider that when a signal is received over the air there will be a processing delay while the CMX7131/CMX7141 filters, demodulates and decodes the output data before presenting it to the host or CMX618. For best performance voice payload data can be output in soft-decision LLR (4-bit log-likelihood ratio) format compatible with the CMX618/CMX608 and other third-party vocoders, although this mode increases the data transfer rate over C-BUS by a factor of four.

5.2.4 RSSI Measurement (LD Mode)

The AuxADC provided by the CMX7131/CMX7141 can be used to detect the Squelch or RSSI signal from the RF section while the device is in Rx or Idle mode. This allows a significant degree of powersaving within the CMX7131/CMX7141 and avoids the need to wake the host up unnecessarily. The host programmable AuxADC thresholds allow for user selection of squelch threshold settings.

5.2.5 Serial Memory Connection (LD Mode only)

In all cases, the auxiliary C-BUS/SPI-Codec bus is shared with the serial memory bus which may be used to load the contents of the Function Image. Bus conflicts are avoided by the use of an additional Chip Select signal (SSOUT). If this feature is not used then the EPCSN pin should be left un-connected. Serial Memory may not be used in I/Q interface mode.

5.2.6 CMX994 Connection (I/Q Mode only)

The CMX994 can be connected via the C-BUS connection in place of the serial memory (Table 4). This allows the CMX994 to be using along with either the CMX6x8, DVSI vocoder or other third party vocoder.

Note that the data and clock connections to the CMX994 are common with the Vocoder so the data traffic on the interface is a potential source of noise / interference in the radio.

CMX7131/CMX7141 Pin	CMX994 Pin
EPSCSN	CSN
EPSI	CDATA
EPSCLK	SCLK.
No connection	RDATA

Table 4 CMX994 Connections

The operation of the CMX994 is generally automatic, however specific data may be written to CMX994 registers using the pass-through mode available using register \$C8. For example, if the CMX994 PLL and VCO are used in the radio design then it is necessary to programme the appropriate frequency data to the CMX994 PLL-M Divider, PLL N-Divider and VCO Control registers using the pass-through mode before attempting reception.

5.2.7 Hardware AGC - AuxADC1 Connection

In I/Q mode, the AuxADC1 input can be used to improve the adjacent/alternate channel rejection with the addition of suitable external components (shown in Figure 6). This function provides a broadband signal detector which is used in the AGC process. This is required to prevent the DISC/ALT ADC inputs limiting internally in the presence of alternate channel signals, which are attenuated by the inherent filtering of the ADC.

This functionality is enabled by setting:

- •Program Block P2.0:b8=1 (enable hardware AGC)
- •Program Block P3.0 = \$F002 (AuxADC1 averaging = 2)
- •\$CD = \$4205 (hi threshold)
- •\$CD = \$0200 (lo threshold)
- •\$A7 = \$0030 (turn AuxADC1 on)

Note that threshold levels may need adjustment to suit particular hardware implementations.

5.2.8 RSSI Measurement (I/Q Mode)

In I/Q mode, the RSSI is calculated from the signal levels present at the I and Q inputs and the AGC levels currently in use. Figure 10 shows a typical response.

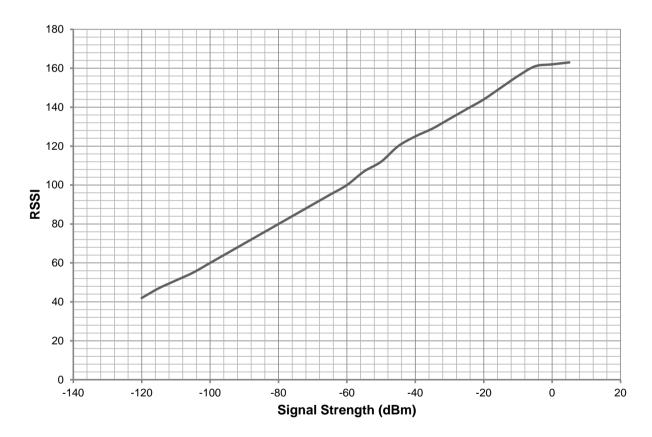


Figure 10 RSSI in I/Q Mode

5.3 Introduction

This modem can run at either 4800bps or 9600bps, occupying a 6.25kHz or a 12.5kHz bandwidth RF channel respectively. It has been designed such that, when combined with suitable RF, host controller, CMX618/CMX608 Vocoder and appropriate control software, it meets the requirements of the ARIB T98 DCR standards in Mode 1C.

The DCR standard specifies the AMBE Voice Coding algorithm which can be supported by transferring all payload data through the host using the main C-BUS interface. However, the CMX7131/CMX7141 also implements an automated control system for the CMX618 or CMX608 RALCWI Vocoders (also available from CML) using its auxiliary SPI/C-BUS port to issue control commands and transfer voice payload data. This substantially reduces the processing load on the host during voice calls. In the remainder of this document the CMX618 and CMX608 are referred to generically as the CMX6x8: the only significant difference is that the CMX618 provides an on-chip Audio Codec while the CMX608 requires an external Audio Codec.

The standard requires a 4FSK modulation scheme with an over-air bit rate of 4800bps (2400 symbols per second). The 9600bps option is made available for non-standard customer-specific applications only. This mode does not support automated control of the CMX6x8 so all payload data must be routed via the host.

5.3.1 Modulation

The DCR 4FSK modulation scheme operates in a 6.25kHz channel bandwidth with an over-air bit rate of 4800bps (2400 symbols per second). RRC filters are implemented in both Tx and Rx with a filter "alpha" of 0.2. The maximum frequency error is +/- 625Hz and the CMX7131/CMX7141 can adapt to the maximum time-base clock drift of 2ppm over the duration of a 180-second burst. Figure 13 shows the basic parameters of the 4FSK modulation, symbol mapping and filtering requirements.

The 9600bps mode provided by the CMX7131/CMX7141 is essentially the same as the 4800bps mode, but with all timings modified by a factor of two.

Figure 11 and Figure 12 show a transmitted PRBS waveform, as recorded on a spectrum analyser in 36k span and zero-span mode, having been 2-point modulated using a suitable RF transmitter.

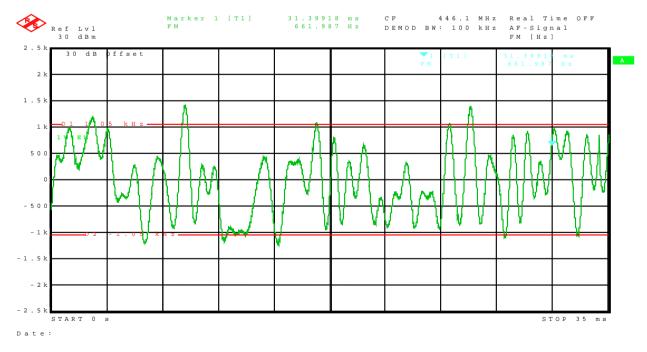


Figure 11 4FSK PRBS Waveform - Modulation

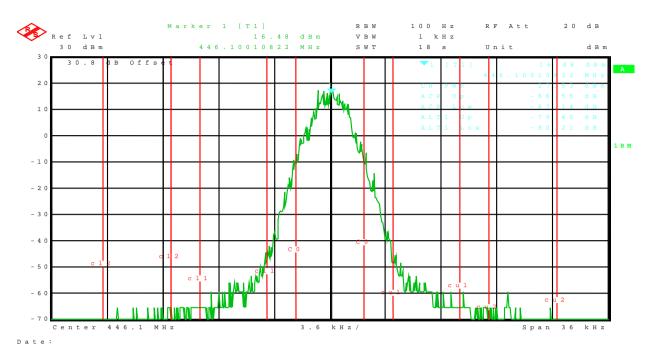


Figure 12 4FSK PRBS Waveform - Spectrum

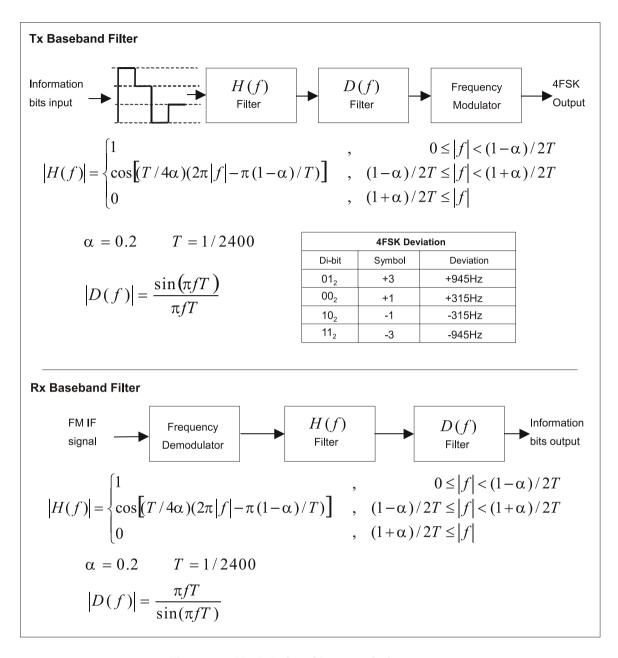
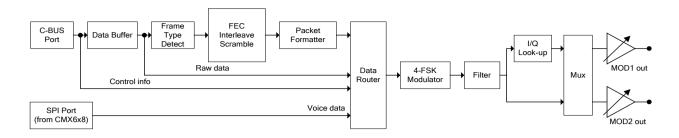



Figure 13 Modulation Characteristics

5.3.2 Internal Processing

The CMX7131/CMX7141 operates as a half-duplex device, either receiving signals from the RF circuits in Rx mode, or sourcing signals to the RF circuits in Tx mode. It also has a low power IDLE mode to support battery saving protocols. The internal data processing blocks for Tx and Rx modes are illustrated in Figure 14. Additional processing in I/Q Mode is shown in Fig 13.

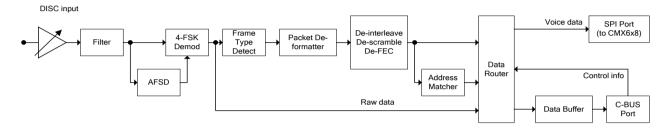


Figure 14 Internal Data Blocks (LD Mode)

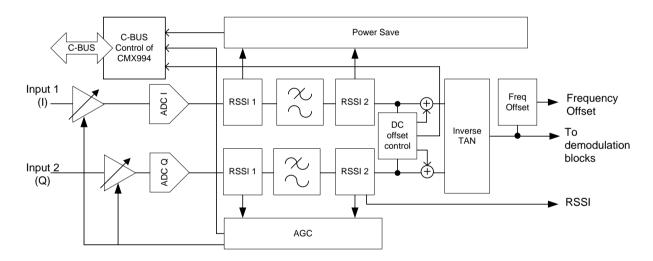


Figure 15 Additional Internal Data Processing in I/Q Mode

5.3.3 Frame Sync Detection and Demodulation

The analogue signal from the receiver may be from either a CMX994 I/Q interface or a limiter/discriminator (LD) output. The signal(s) from the RF section should be applied to the CMX7131/CMX7141 input(s) (normally the DISC input for LD Rx and DISC and ALT inputs for I/Q Rx). The signals can be adjusted to the correct level either by selection of the feedback resistor(s) or by using the CMX7131/CMX7141 Input Gain settings. In LD mode the signal is filtered using a Root-Raised Cosine filter and Inverse Rx Sinc filter, matching the filters applied in the transmitter, then passed to the AFSD (Automated Frame Sync Detector) block which extracts symbol and frame synchronisation. During this process the 4FSK demodulator and the data-processing sections that follow are dormant to minimise power consumption. When frame synchronisation has been achieved the AFSD section is powered down and timing and symbol-level information is passed to the 4FSK demodulator, which starts decoding the subsequent data bits. The

CMX7131/CMX7141 can detect the end of a burst by scanning the received control channel fields and will automatically disable the demodulator and restart frame sync search when required, without host intervention

In I/Q mode, filtering is applied to the input signals and dc offsets are removed before an inverse tan function performs the FM demodulation function. The output of this stage has an offset depending on the frequency error of the received signal compared to the nominal frequency of the receiver. This offset is removed before RRC filtering, after which the signal chain is then the same as the LD case. In I/Q mode the CMX7131/CMX7141 provides measurements of frequency error and RSSI (which are not available in LD mode).

A DCR call consists of a series of 80ms frames, each starting with a 20-bit Synchronisation Word (SW). The first frame is preceded by a Preamble sequence and the CMX7131/CMX7141 uses the last 18 bits of the Preamble together with the first Synchronisation Word to detect the start of a transmission. This is reported to the host by setting the FS1 Detect bit in the Status register.

Last 9 symbols of Preamble: xx11 0111 0101 1111 1101 (\$375FD)

Synchronisation Word: 1100 1101 1111 0101 (\$CDF59)

The CMX7131/CMX7141 can optionally also detect the Synchronisation Word sequence in isolation to perform "late entry" into an existing call. This is reported to the host by setting the FS2 Detect bit in the Status register. The short length of the Synchronisation Word gives a high probability of false detections, so by default the CMX7131/CMX7141 will only generate an FS2 Detect if two successive Synchronisation Words are detected at the correct frame spacing in the received signal.

FS2 false detections can also be generated if the CMX6x8 vocoder is used with the noise gate function enabled, with the possibility of delaying or preventing late entry into a call. In this case, these false FS2 detections are checked for and suppressed.

When frame synchronisation has been achieved and the 4FSK demodulator has been enabled, Frame Sync detection is switched off and any subsequent Preamble or Synchronisation Word sequences in the received data are not reported to the host.

bits: >24 20 16 60 144 144 Р SB0 SW RI SACCH PICH Undefined TCH2 SC SW RΙ SACCH TCH1 SC SW RΙ SACCH TCH1 TCH2 SC SW RI SACCH TCH1 TCH2 SC SW RI SACCH TCH1 TCH2 Repeat SCs until PTT released....

Table 5 DCR Frame Format

P = Preamble

SW = Synchronisation Word

FS1 = 18 bits Preamble + 20 bits SW

FS2 = 20 bits SW

RI = RICH (Radio Information Channel)

SACCH = Slow Associated Control Channel

PICH = Parameter Information Channel (144 bits)

TCHx = Traffic/Payload Data (144 bits)

SB0 = Synchronous Burst 0

SC = Service Channel

In Tx DCR Raw mode, the host must load the 20-bit Synchronisation Word in the first block of payload data to be transmitted and in Rx DCR Raw mode, the Synchronisation Word from the first frame will be reported back to the host as part of the following payload data. In both cases this is to maintain the natural byte boundary in host data transfers for subsequent frames.

In Tx and Rx DCR Formatted mode, the Synchronisation Word is handled automatically and does not need to be loaded by the host.

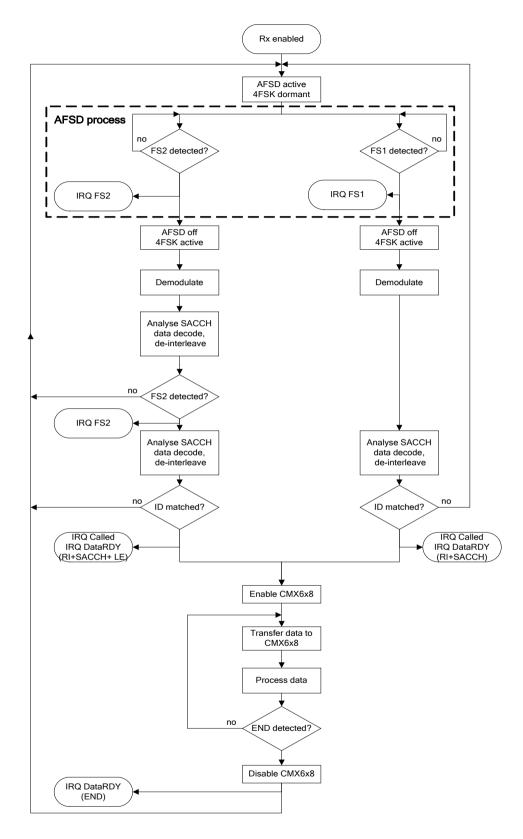


Figure 16 FS Detection

5.3.4 FEC and Coding

In DCR Raw mode, the CMX7131/CMX7141 does not implement any FEC processing.

In DCR Formatted mode, the CMX7131/CMX7141 implements all CRCs, convolutional codes, interleaving and scrambling required by the DCR standard. CRC failures in control channel fields and coded data blocks are indicated to the host by issuing an "Event" IRQ with a corresponding error code in the Modem Status register, \$C9. This relieves the host of a substantial processing load and has the added advantage of reducing the complexity and timing constraints of interfacing between the host, vocoder and CMX7131/CMX7141.

5.3.5 Voice Coding

A CML CMX618 or CMX608 RALCWI vocoder can be used under the control of the CMX7131/CMX7141. The CMX7131/CMX7141 provides an auxiliary SPI/C-BUS port (shared with the boot serial memory) which is used to issue control commands and transfer voice payload data directly to the CMX6x8 vocoder, minimising the loading on the host controller during voice calls.

Alternatively, the CMX7131/CMX7141 can support any third-party vocoder by routing voice payload data over the main C-BUS interface and through the host. In this mode, all vocoder control and data transfers must be managed by the host.

Voice data transferred to the CMX6x8 in Rx mode always uses soft decision (4-bit log-likelihood ratio) format. This option is also available for voice payload data routed to the host, although it increases the required data transfer rate over C-BUS by a factor of four.

5.3.6 Radio Performance Requirements

In LD mode, for optimum performance, the signal should not be significantly degraded by filters that are excessively narrow and/or cause significant group delay distortion. Care should be taken in interfacing the device to the radio circuits to maintain the frequency and phase response (both low and high end), in order to achieve optimum performance. Test modes are provided to assist in both the initial design and production set-up procedures.

In I/Q mode, the recommended interfacing to the CMX994 should be used, see section 4.3. The CMX7131/CMX7141 includes digital filters to provide adjacent channel rejection while compensating for the in-band response of the CMX994 I/Q filters.

Further information and application notes can be found at http://www.cmlmicro.com .

6 Detailed Descriptions

6.1 Xtal Frequency

The CMX7131/CMX7141 is designed to work with an external frequency source of 19.2MHz. If this default configuration is not used, then Program Block 3 must be loaded with the correct values to ensure that the device will work to specification with the user selected clock frequency. A table of common values can be found in Table 6. Note the maximum Xtal frequency is 12.288MHz, although an external clock source of up to 24MHz can be used.

The register values in Table 6 are shown in hex, the default settings are shown in bold, and the settings which do not give an exact setting (but are within acceptable limits) are in italics. The new P3.2-3 settings take effect following the write to P3.3 (the settings in P3.4-7 are implemented on a change to Rx or Tx mode).

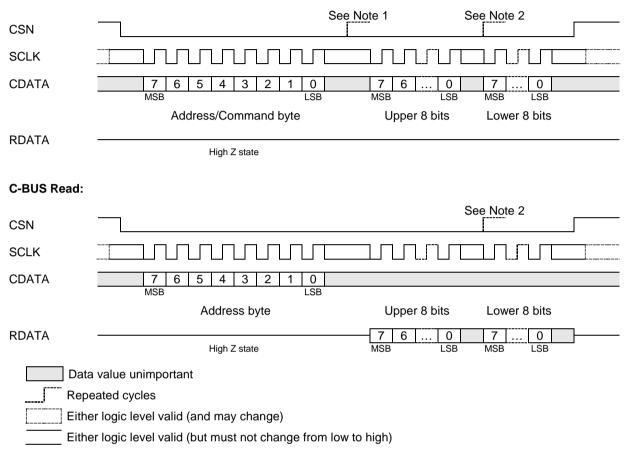
	Program Block		External frequency source (MHz)							
			3.579	6.144	9.216	12.0	12.8	16.368	16.8	19.2
P3.2	Е.	GP Timer	\$017	\$018	\$018	\$019	\$019	\$018	\$019	\$018
P3.3		VCO output and AUX clk divide	\$085	\$088	\$08C	\$10F	\$110	\$095	\$115	\$099
P3.4		Ref clk divide	\$043	\$040	\$060	\$07D	\$0C8	\$155	\$15E	\$0C8
P3.5	×	PLL clk divide	\$398	\$200	\$200	\$200	\$300	\$400	\$400	\$200
P3.6	Rx or	VCO output and AUX clk divide	\$140	\$140	\$140	\$140	\$140	\$140	\$140	\$140
P3.7		Internal ADC/DAC clk divide	\$008	\$008	\$008	\$008	\$008	\$008	\$008	\$008

Table 6 Xtal/Clock Frequency Settings for Program Block 3

6.2 Host Interface

A serial data interface (C-BUS) is used for command, status and data transfers between the CMX7131/CMX7141 and the host μ C; this interface is compatible with Microwire and SPI. Interrupt signals notify the host μ C when a change in status has occurred and the μ C should read the status register across the C-BUS and respond accordingly. Interrupts only occur if the appropriate mask bit has been set. See section 6.6.2.

The CMX7131/CMX7141 will monitor the state of the C-BUS registers that the host has written to every 250µs (the C-BUS latency period) hence it is not advisable for the host to make successive writes to the same C-BUS register within this period.


6.2.1 C-BUS Operation

This block provides for the transfer of data and control or status information between the CMX7131/CMX7141's internal registers and the host μ C over the C-BUS serial interface. Each transaction consists of a single address byte sent from the μ C which may be followed by one or more data byte(s) sent from the μ C to be written into one of the CMX7131/CMX7141's write only Registers, or one or more data byte(s) read out from one of the CMX7131/CMX7141's read only Registers, as shown in Figure 17.

Data sent from the μ C on the CDATA (Command Data) line is clocked into the CMX7131/CMX7141 on the rising edge of the SCLK (Serial Clock) input. RDATA (Reply Data) sent from the CMX7131/CMX7141 to the μ C is valid when the SCLK is high. The CSN line must be held low during a data transfer and kept high between transfers. The C-BUS interface is compatible with most common μ C serial interfaces and may also be easily implemented with general purpose μ C I/O pins controlled by a simple software routine.

The number of data bytes following an address byte is dependent on the value of the Address byte. The most significant bit of the address or data are sent first. For detailed timings see section 7.2. Note that, due to internal timing constraints, there may be a delay of up to 250µs between the end of a C-BUS write operation and the device reading the data from its internal register.

C-BUS Write:

Figure 17 C-BUS Transactions

Notes:

- 1. For Command byte transfers, only the first 8 bits are transferred (\$01 = General Reset).
- 2. For single byte data transfers, only the first 8 bits of the data are transferred.
- 3. The CDATA and RDATA lines are never active at the same time. The Address byte determines the data direction for each C-BUS transfer.
- 4. The SCLK input can be high or low at the start and end of each C-BUS transaction.
- 5. The gaps shown between each byte on the CDATA and RDATA lines in the above diagram are optional, the host may insert gaps or concatenate the data as required.

6.3 Function Image™ Loading

NOTE:FI loading from serial memory is not supported when FI-2.3 is used in I/Q mode because the serial memory interface is used for CMX994 control.

The Function Image™ (FI), which defines the operational capabilities of the device, may be obtained from the CML Technical Portal, following registration. This is in the form of a 'C' header file which can be included into the host controller software or programmed into an external serial memory. The maximum possible size of Function Image™ is 46kbytes, although a typical FI will be less than this. Note that the BOOTEN pins are only read at power-on or following a C-BUS General Reset and must remain stable throughout the FI loading process. Once the FI load has completed, the BOOTEN pins are ignored by the CMX7131/CMX7141 until the next power-up or C-BUS General Reset.

The BOOTEN pins are both fitted with internal low-current pull-down devices.

For C-BUS load operation, both pins should be pulled high by connecting them to DV_{DD} either directly or via a 220k Ω resistor (see Table 7).

For serial memory load, only BOOTEN1 needs to be pulled high in a similar manner, however, if it is required to program the serial memory in-situ from the host, either a jumper to DV_{DD} or a link to a host I/O pin should be provided to pull BOOTEN2 high when required (see Table 7). The serial memory interface is shared with the Auxiliary C-BUS port which controls the CMX6x8 Vocoder using a separate chip select (SSOUT) pin. During boot operations, the SSOUT will be disabled. Once the boot operation has completed, the serial memory chip select (EPCSN) will be disabled and the SSOUT will become operational.

Once the FI has been loaded, the CMX7131/CMX7141 performs these actions:

- (1) The product identification code (\$7141 or \$7131) is reported in C-BUS register \$C5
- (2) The FI version code is reported in C-BUS register \$C9
- (3) The two 32-bit FI checksums are reported in C-BUS register pairs \$A9, \$AA and \$B8, \$B9
- (4) The device waits for the host to load the 32-bit Device Activation Code to C-BUS register \$C8
- (5) Once activated, the device initialises fully, enters IDLE mode and becomes ready for use, and the Programming flag (bit 0 of the Status register) will be set.

The checksums should be verified against the published values to ensure that the FI has loaded correctly. Once the FI has been activated, the checksum, product identification and version code registers are cleared and these values are no longer available. If an invalid activation code is loaded, the device will report the value \$DEAD in register \$A9 and must be power cycled before an attempt is made to re-load the FI and re-activate.

Both the Device Activation Code and the checksum values are available from the CML Technical Portal.

Table 7 BOOTEN Pin States

Note: Following a General Reset, reloading of the Function Image is strongly recommended.

6.3.1 FI Loading from Host Controller

The FI can be included into the host controller software build and downloaded into the CMX7131/CMX7141 at power-up over the C-BUS interface. The BOOTEN pins must be set to the C-BUS load configuration, the CMX7131/CMX7141 powered up and placed into Program mode, the data can then be sent directly over the C-BUS to the CMX7131/CMX7141.

If the host detects a brownout, the BOOTEN state should be set to re-load the FI. A General Reset should then be issued and the appropriate FI load procedure followed.

Each time the Programming register, \$C8, is written, it is necessary to wait for the PRG flag (Status register (\$C6) b0) to go high before another write to \$C8. The PRG flag going high confirms the write to the Programming register has been accepted. The PRG flag state can be determined by polling the Status register or by unmasking the interrupt (Interrupt Mask register, \$CE, b0).

The download time is limited by the clock frequency of the C-BUS. With a 5MHz SCLK, it should take less than 500ms to complete (host dependent).

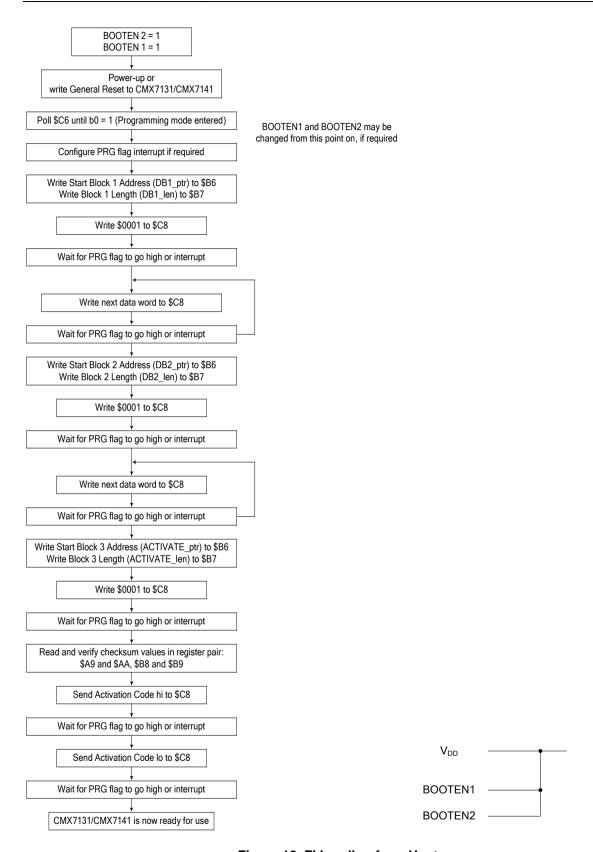


Figure 18 FI Loading from Host

6.3.2 FI Loading from Serial Memory

The FI must be converted into a format for the serial memory programmer (normally Intel Hex) and loaded into the serial memory either by the host or an external programmer. The CMX7131/CMX7141 needs to have the BOOTEN pins set to serial memory load and then, on power-on, or following a C-BUS General Reset, the CMX7131/CMX7141 will automatically load the data from the serial memory without intervention from the host controller.

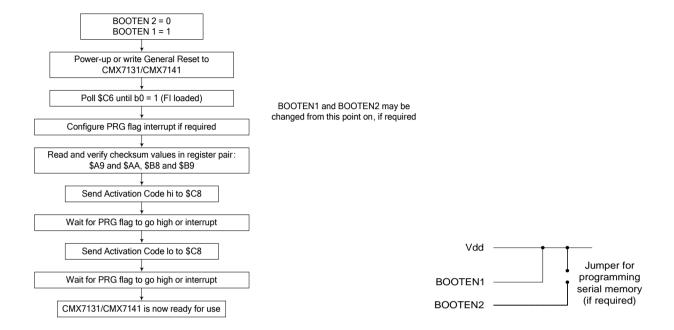


Figure 19 FI Loading from Serial Memory

The CMX7131/CMX7141 has been designed to function with the Atmel AT25HP512 serial EEPROM and the AT25F512 flash EEPROM devices², however other manufacturers' parts may also be suitable. The time taken to load the FI is dependent on the Xtal frequency; with a 6.144MHz Xtal, it should load in less than 1 second.

NOTE:FI loading from serial memory is not supported when FI-2.3 is used in I/Q mode.

² Note that these two memory devices have slightly different addressing schemes. FI-2.x is compatible with both schemes.

6.4 CMX618/CMX608 C-BUS Interface

An Auxiliary SPI/C-BUS interface is provided which allows the CMX6x8 to be directly controlled by the CMX7131/CMX7141 without the need for the host to intervene. This is accomplished by multiplexing the serial memory SPI interface with the additional chip select pin SSOUT. The serial memory Data Out pin MUST NOT drive the CMX7131/CMX7141 EPSO pin when the serial memory is disabled, otherwise the CMX6x8 will not be able to return its data to the CMX7131/CMX7141. The CMX7131/CMX7141 Auxiliary SPI/C-BUS interface bus should be connected to the C-BUS interface on the CMX6x8 using the SSOUT pin as the CSN signal for the CMX6x8 running in C-BUS mode (this is the default setting of the SPI-Codec ENA pin, \$B1 bit 0). Following receipt of the Activation Codes at power-on, the Function Image™ will automatically select C-BUS mode and poll the interface to see if a CMX6x8 is connected on its C-BUS port. The default settings of the Vocoder 1 Enable Program registers (P1.11 and P1.12) are set for the RALCWI coding format.

The initialisation and operational settings of the CMX6x8 should be programmed by the host into the CMX7131/CMX7141 Program Block 1 on power-up. These values will be written to the defined registers in the CMX6x8 at:

- o Initialisation
- o IDLE mode
- Rx mode
- Tx mode

Mic Gain and Speaker Gain commands may be sent to the CMX6x8 whenever the CMX7131/CMX7141 is in Rx or Tx mode.

DTMF mode 2, DTX, and VAD modes of the CMX6x8 are not supported in this FI. DTMF Mode 1 (transparent) is supported.

The default settings for the CMX6x8 are:

- 4-frame packet (80ms) with FEC no STD, no DTMF
- o 2400bps with FEC
- o Internal Sync
- o Throttle = 1
- o Internal Codec
- o IRQ disabled
- Soft Coded data bits

The connections for the CMX6x8 Vocoder are shown Table 8.

Table 8 CMX6x8 Vocoder Connections

CMX7131/CMX7141 Pin	CMX6x8 Pin
SSOUT	CSN
EPSI	CDATA
EPSO	RDATA
EPSCLK	CLK
No connection	IRQN (tied to V_{DD} via 100k Ω resistor).

Figure 20 shows one possible implementation of the CMX7141 combined with a CMX618, a host μ Controller and suitable RF sections to provide a digital PMR radio. The bold lines show the active signal paths in Rx and Tx respectively.

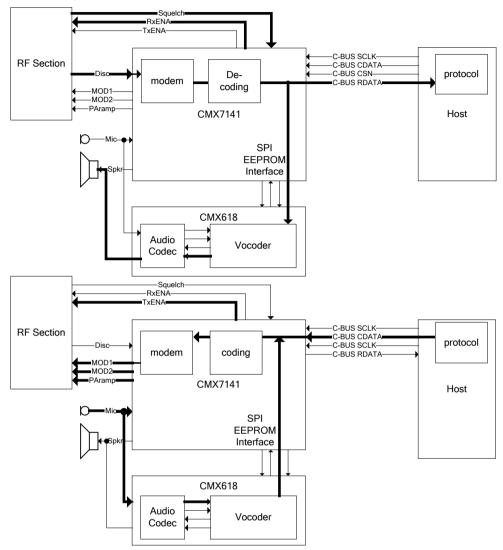


Figure 20 Digital Voice Rx and Tx Blocks

The paralleling of the microphone and speaker connections between the CMX618 and the CMX7131/CMX7141 is only required if the CMX7131/CMX7141 is also to provide analogue PMR functionality. Otherwise, the microphone and speaker should be connected to the CMX618 only. The CMX618 RALCWI Vocoder provides an on-chip Audio and Voice Codec, but alternatively a CMX608 device could be used along with an external Audio Codec. Voice payload data is transferred directly from and to the CMX618 by the CMX7131/CMX7141. Note that the CMX618 Audio output does not have a high impedance mode, therefore an external analogue switch is required if the Analogue FI-2.x is to be used on the device to isolate it.

6.5 DCR Standard Vocoder Interface

If the DCR standard Vocoder (or other third-party vocoder) is used all radio channel data will need to be transferred over the main C-BUS through the host. In this case the Vocoder 1 Enable Program registers (P1.11 and P1.12) should be set appropriately to respond correctly to the incoming data fields and the SPI-Codec ENA bit (\$B1 bit 0) should be set to 1. To speed the power-on process, the Automatic presence check for the CMX6x8 may be skipped by setting the SPI-Codec ENA bit BEFORE the activation codes are loaded during the power-on sequence.

The connections for the DCR standard vocoder are shown in Table 9.

 CMX7131/CMX7141 Pin
 Standard Vocoder Pin

 SSOUT
 SPI_STE

 EPSI
 SPI_RX_DATA

 EPSO
 SPI_TX_DATA

 EPSCLK
 SPI_CLK and SPI_CLK_IN.

Table 9 DCR Standard Vocoder Connections

6.5.1 Support for I²S Mode

The device can support I²S interfaces in mono, 16-bit mode only, for transmitting and receiving audio codec data using the SPI bus. This mode is selected in block 1 of the Programming register (see section 8.2.2). Figure 21 shows typical transmit waveforms.

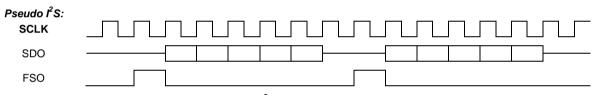


Figure 21 I²S Mode Support

6.6 Device Control

The CMX7131/CMX7141 can be set into the relevant mode to suit its environment. These modes are described in the following sections and are programmed over the C-BUS: either directly to operational registers or, for parameters that are not likely to change during operation, via the Programming register (\$C8).

For basic operation:

- (1) Enable the relevant hardware sections via the Power Down Control register
- (2) Set the appropriate mode registers to the desired state
- (3) Select the required Signal Routing and Gain
- (4) Use the Modem Control register to place the device into Rx or Tx mode.

To conserve power when the device is not actively processing a signal, place the device into IDLE mode. This will also command the CMX6x8 to enter a power saving mode as well. Additional power savings can be achieved by disabling any unused hardware blocks but care must be taken not to disturb any sections that are automatically controlled. Note that the BIAS block must be enabled to allow any of the input or output blocks to function.

See:

- o Power Down Control \$C0 write
- o Modem Control \$C1 write
- o Modem Configuration \$C7 write

6.6.1 General Notes

In normal operation, the most significant registers, in addition to the TxData and RxData blocks, are:

- Modem Control \$C1 write
- Status \$C6 read
- o Analogue Output Gain \$B0 write
- o Input Gain and Signal Routing \$B1 write
- TxAuxData \$C2 write
- CMX6x8 Analogue Gain- \$C3 write

Setting the Modem Mode to either Rx or Tx will automatically increase the internal clock speed to its operational speed and bring the CMX6x8 out of its powersave mode, whilst setting the Modem Mode to IDLE will automatically return the internal clock to a lower (powersaving) speed. To access the Program blocks (through the Programming register, \$C8) the device MUST be in IDLE mode.

Under normal circumstances the CMX7131/CMX7141 manages the Main Clock Control automatically, using the default values loaded in Program Block 3.

6.6.2 Interrupt Operation

The CMX7131/CMX7141 will issue an interrupt on the IRQN line when the IRQ bit (bit 15) of the Status register and the IRQ Mask bit (bit 15) of the Interrupt Mask register are both set to 1. The IRQ bit is set when the state of the interrupt flag bits in the Status register change from a 0 to 1 and the corresponding mask bit(s) in the Interrupt Mask register is(are) set. Enabling an interrupt by setting a mask bit $(0\rightarrow 1)$ after the corresponding Status register bit has already been set to 1 will also cause the IRQ bit to be set.

All interrupt flag bits in the Status register, except the PRG flag (bit 0), are cleared and the interrupt request is cleared following the command/address phase of a C-BUS read of the Status register. The PRG flag is set to 1 only when it is permissible to write a new word to the Programming register.

See:

- o Status \$C6 read
- Interrupt Mask \$CE write

Continuous polling of the Status register (\$C6) is not recommended due to both the increase in response time, host loading and potential digital noise generation due to bus activity. If the host cannot support a fully IRQ driven interface then it should route the IRQ signal to a host IO pin and poll this pin instead.

6.6.3 Signal Routing

The CMX7131/CMX7141 offers a flexible routing architecture, with three signal inputs, a choice of two modulator configurations (to suit 2-point modulation or I/Q schemes) and a single audio output.

See:

- o Input Gain and Signal Routing \$B1 write
- o Modem Control \$C1 write
- o Modem Configuration \$C7 write

The analogue gain/attenuation of each input and output can be set individually, with additional fine attenuation control available via the Program Blocks in the CMX7131/CMX7141. The Mic and Speaker gains are set by the CMX6x8, which is controlled through the CMX6x8 Analogue Gain- \$C3 write of the CMX7131/CMX7141.

See:

- Analogue Output Gain \$B0 write (Tx MOD 1 and 2)
- o Input Gain and Signal Routing \$B1 write (Rx DISC input, Tx MOD 1 and 2)
- CMX6x8 Analogue Gain- \$C3 write (CMX6x8 Mic and Speaker)

In common with other FIs developed for the CMX7131/CMX7141, this device is equipped with two signal processing paths; in this implementation of the FI, Input2 is only used in SPI-Codec mode for the Tx audio

signal. Input1 should be routed to one of the three input sources (ALT, DISC or MIC) which should be connected to the radio's discriminator output. The internal signals Output 1 and 2 are used to provide either 2-point or I/Q signals and should be routed to the MOD1 and MOD2 pins, as required. In I/Q mode Input 1 should be routed to the DISC input source for the I channel input and Input 2 should be routed to the ALT input source for the Q channel input.

It is important to correctly attach the signal from the CMX994 I/Q outputs to the CMX7141 DISC and ALT inputs. Crossing these connections will cause the CMX7141 dc offset calibration to fail, as attempted corrections to the I signal will be made to the Q signal and vice versa. Crossed connections can be swapped using the Input Gain and Signal Routing register (\$B1:b5-2). Likewise, it is important that the sense of connection is correct between the CMX994 and CMX7141. If the input signals are inverted then attempts by the CMX7141 to remove the dc offset will, in fact, increase the dc offset. The inputs may be inverted by using the 'Input Invert' bit in the Analogue Output Gain register (\$B0:b7). When demodulating the received signal (internally to the CMX7141), it is possible that the signal could be inverted resulting in no framesync detection and, in effect, inverted data. Often this can be corrected by swapping the I and Q signals (changing the signal that leads in phase to the one that lags). However, the relationship between I/Q outputs of the CMX994 and the CMX7141 DISC and ALT inputs must be maintained as described above. Therefore the demodulated signal can be inverted using Programming Register block 0, P0.10 bit1 (IFD).

In DCR formatted modes, the microphone and speaker functions can be automatically routed using the CMX6x8 Vocoder as appropriate. This is controlled by the SACCH "Information Type" field which indicates whether the payload is speech data and the CMX6x8 Disable bit in the Modem Configuration - \$C7 write register.

6.6.4 Modem Control

The CMX7131/CMX7141 operates in one of these operational modes:

- o IDLE
- o Rx
- o Tx
- CMX6x8/CMX994 Pass-through
- o Rx with CMX994 I/Q Cal.
- o Rx with Powersave

At power-on or following a reset, the device will automatically enter IDLE mode, which allows maximum powersaving whilst still allowing the AuxADC inputs to be monitored (if enabled). It is only possible to write to the Programming register whilst in IDLE mode.

See:

o Modem Control - \$C1 write

RXENA and TXENA pins (GPIO1 and GPIO2) reflect bits 0 and 1 of the Modem Control register, as shown in Table 10. These can be used to drive external hardware without the host having to intervene. There are also two additional GPIO pins that are programmable under host control.

Table 10 Modem Mode Selection

Modem Control (\$C1) b0-3	Modem Mode	GPIO2 - TxENA	GPIO1 - RxENA
0000	IDLE – low power mode	1	1
0001	Rx mode	1	0
0010	Tx mode	0	1
0011	reserved	Х	Х
0100	CMX6x8/CMX994 Pass-through	1	1
0101	Rx with CMX994 I/Q cal (I/Q mode only)	1	0
1001	Rx with Powersave (I/Q mode only)	1	0
others	reserved	Х	Х

The CMX6x8/CMX994 Pass-through mode is used to control and monitor the CMX6x8 or CMX994 directly. This cannot be accessed if the CMX7131/CMX7141 is in Rx or Tx modes. This mode will transfer data to/from the TxData0/RxData0 register to the CMX6x8 C-BUS register address specified in the Programming register (\$C8), see section 6.6.21. The Modem Control bits are ignored in this mode.

Table 11 Modem Control Selection

4FSK Modem Control (\$C1) b7-4	Rx	Tx
0000	Rx Idle	Tx Idle
0001	Rx DCR Formatted	Tx DCR Formatted
0010	Rx DCR Raw	Tx DCR Raw
0011	Rx 4FSK EYE	Tx 4FSK PRBS
0100	Rx Pass-through Mode	Tx 4FSK Preamble
0101	reserved	Tx 4FSK Mod Set-up
0110	Sync	Tx 4FSK Repeated Word
0111	Reset/abort	Reset/abort
1xxx	reserved	reserved

The Modem Mode bits and the Modem Control bits should be set together in the same C-BUS write.

6.6.5 Tx Mode DCR Formatted

In Tx mode, the CMX7131/CMX7141 can operate as a raw data pump or in DCR formatted mode. In both cases the first block of control channel or payload data should be loaded into the C-BUS TxData registers before executing the mode change. A "DataReady" IRQ will be asserted when the registers have been read by the CMX7131/CMX7141 and the host can then supply further blocks of payload data. When all payload has been transmitted, the CMX7131/CMX7141 will issue a "TxDone" IRQ and the host can then reset the Mode bits to either Rx or IDLE as required. Further details of Tx Mode Formatted are given in section 6.7.

6.6.6 Tx Mode DCR Raw

In Tx DCR Raw mode operation (\$C1, Modem Control = \$0022), the Preamble sequence is transmitted automatically and payload data from the TxData registers is then transmitted until a data underflow condition occurs or the Mode is changed back to Rx or IDLE. The first block of payload data should be loaded into the TxData registers before executing the Modem Mode change to Tx and \underline{must} contain the 20-bit Synchronisation Word sequence. Payload data is always transmitted msb (most significant bit) first.

As soon as each payload data block has been read from the C-BUS TxData registers, the "DataReady" IRQ will be asserted and the next block of data may then be loaded.

A host Tx sequence that maintains the block/byte boundaries is:

- 1. Load TxData registers with SW (20 bits), RICH data (16 bits) and first part of SACCH (36 bits)
- Set Modem Control = TxRaw, Modem Mode = Tx
 (Device will start transmission of Preamble followed by contents of TxData registers)
- 3. Wait for DataReady IRQ
- 4. Load TxData registers with second part of SACCH (24 bits)
- 5. Wait for DataReady IRQ
- 6. Load TxData registers with first part of PICH (72 bits)
- 7. Wait for DataReady IRQ
- 8. Load TxData registers with second part of PICH (72 bits)
- 9. Wait for DataReady IRQ
- 10. Load TxData registers with first part of undefined block (72 bits)
- 11. Wait for DataReady IRQ
- 12. Load TxData registers with second part of undefined block (72 bits)
- 13. ...repeat from 1. with the PICH and undefined blocks replaced with the TCH1 and TCH2 blocks

When the host stops loading data into the device, a Data Underflow condition will eventually occur. After the last data bit has left the modulator a "TxDone" IRQ will be asserted. At this point it is now safe for the host to change the Modem Control and Modem Mode to IDLE (\$C1, Modem Control = \$0000) and turn the RF transmitter off. Tx DCR Raw mode data flow is shown in Figure 22.

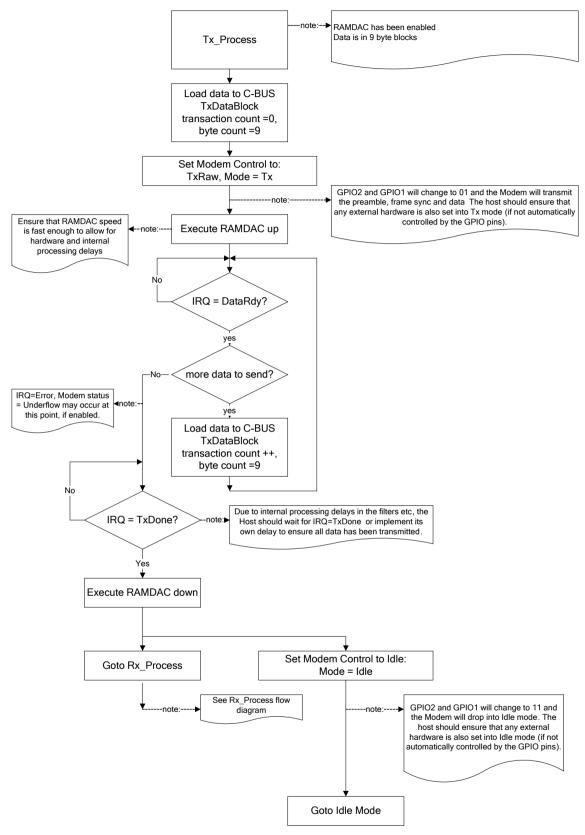


Figure 22 Tx Data Flow (Raw Data Mode)

6.6.7 Tx Mode PRBS

In PRBS mode (\$C1, Modem Control = \$0032) the preamble and frame sync are transmitted automatically followed by a PRBS pattern conforming to ITU-T O.153 (para. 2.1) giving a 511-bit repeating sequence.

6.6.8 Tx Mode Preamble

In Preamble mode (\$C1, Modem Control = \$0042) the preamble sequence [+3 +3 -3 -3] is sent continually. This can be used to set up and adjust the RF hardware.

6.6.9 Tx Mode Mod Set-up

In Mod Set-up mode (C1 = 0.052) the output depends on the selected Tx modulation type. In two-point mode, a repeating sequence of eight +3 symbols followed by eight -3 symbols is sent, and in I/Q mode a continuous sequence of +3 symbols is sent. This can be used to set up and adjust the RF hardware.

6.6.10 Tx Mode Repeated Word

In Repeated Word mode (\$C1 = \$0062) the output depends on the data loaded into the TxData04 register (\$CB). This can be used to set up and adjust the RF hardware.

6.6.11 Tx Sequencer

If enabled, the Tx Sequencer will automatically start executing its sequence of transmit actions when the CMX7131/CMX7141 is placed in Tx mode. The timing values for each action can be set in P3.75 to P3.80 and are defined in increments of 250µs.

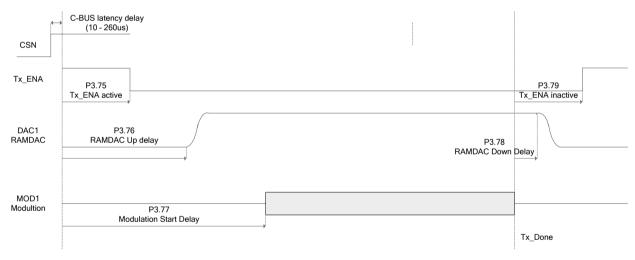


Figure 23 Automatic Tx Sequencer

6.6.12 Rx Mode DCR Formatted

In Rx mode the received signal should be routed through Input1. In DCR Raw and Formatted modes the CMX7131/CMX7141 will first search for frame synchronisation, and when this has been achieved the following data is demodulated and supplied to the host through the RxData registers. A "DataReady" IRQ indicates when each new block becomes available. In DCR Raw mode the CMX7131/CMX7141 will continue demodulating the input signal until the host resets the Mode bits to Tx or IDLE, but in DCR Formatted mode the modem can detect the end of a call and restart framesync search automatically. Further details of Rx Mode Formatted are given in section 6.7.

6.6.13 Rx Mode Raw

Rx Mode Raw is included in this FI to facilitate BER measurements. In this mode (\$C1, Modem Control = \$0021) once a valid Frame Sync has been detected, an "FS1 Detect" or "FS2 Detect" IRQ is asserted and

the data demodulator is enabled. All following data received is loaded directly into the C-BUS RxData registers, with a "DataReady" IRQ to indicate when each new block is available. This continues until the end of the burst / Mode is changed to IDLE or Tx (even if there is no valid signal at the input). When leaving Rx Mode Raw, there may be a "DataReady" IRQ pending which should be cleared by the host.

Note that Raw Mode operation always requires the incoming data to be preceded with a valid Preamble and Frame Sync pattern in order to derive timing information for the demodulator. The device will update the C-BUS RxData registers with Rx payload data as it becomes available. The host MUST respond to the "DataReady" IRQ before the RxData registers are over-written by subsequent data from the modem. Rx Raw mode data flow is shown in Figure 24.

If "soft" data mode has been selected, the payload data is encoded in 4-bit log-likelihood-ratio (LLR) format. In this mode the host must be able to service the "DataReady" IRQs and RxData registers at four times the normal rate, to avoid overflow.

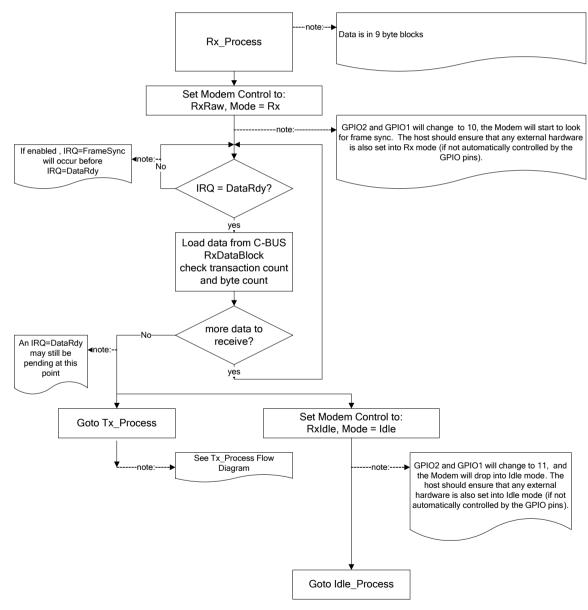


Figure 24 Rx Data Flow (Raw Data Mode)

6.6.14 Rx Mode Eye

In Rx 4FSK EYE mode (\$C1 = \$0031), the filtered received signal is output at the MOD1 pin as an 'eye' diagram for test and alignment purposes. A trigger pulse is output at the MOD2 pin to allow viewing on a suitable oscilloscope. The trigger pulse is generated directly from the receiver xtal source, not from the input signal. In I/Q mode, this includes I/Q dc calculation in RXDATA0, RXDATA1 and computed Powersave Levels 1,2,3 in RXDATA2-4.

6.6.15 Rx Pass-through Mode

Rx Pass-through mode (\$C1 = \$0041) is very similar to Rx Mode Eye, as described in section 6.6.14. However the output at the MOD1 pin is the flat, unfiltered signal. A trigger pulse is output at the MOD2 pin to allow viewing on a suitable oscilloscope. The trigger pulse is generated directly from the receiver xtal source, not from the input signal.

300Hz	-0.6dB
1kHz	0dB (reference)
2kHz	-0.7dB
2.5kHz	-1.4dB
3kHz	-2.4dB
4kHz	-4.9dB
6kHz	-12.2dB

Table 12 Frequency Response for Rx Pass-through Mode

6.6.16 Rx Mode with CMX994 AGC (I/Q Mode only)

By default, when receiving in I/Q Mode the CMX7131/CMX7141 will control its internal analogue gain and the gain of the CMX994 in order to keep the received I/Q signals within an acceptable dynamic range. This AGC feature may be disabled using Program Block P2.0 (I/Q AGC function), in which case any setup that the host has made of the CMX994 will determine its gain, with the input gain of the CMX7131/CMX7141 being controlled using the Input Gain and Signal Routing - \$B1 write register.

It is important to ensure that the dc offset on the I/Q signals is small, otherwise the AGC function will interpret the dc as a large received signal and never select maximum gain. This problem can be addressed by calibrating the CMX994, as described in section 6.6.17.

6.6.17 Rx Mode with CMX994 I/Q Cal (I/Q Mode only)

When receiving, the CMX7131/CMX7141 will estimate and remove the dc error present in the I/Q signals from a CMX994 receiver. However, it is necessary to calibrate the CMX994 so that the magnitude of the dc offsets present is as small as possible. Selecting Rx mode with CMX994 I/Q Cal (\$C1, Modem Control b3-0 = \$5) causes the CMX7131/CMX7141 to measure the dc offset on the DISC and ALT input pins and to control the CMX994 receiver to minimise the dc offsets. The CMX7131/CMX7141 will then begin to receive normally – correcting the remaining dc offset internally.

Important note: when calibrating I/Q it is important that the I/Q signals are not swapped when interfacing to the CMX994. This can be corrected by using bits 2 to 5 of the Input Gain and Routing register (\$B1).

If the CMX994 is poorly calibrated, a loss of headroom when receiving signals will result. In extreme cases, when large dc offsets are amplified, the result can be big enough to prevent the AGC from reaching maximum gain as it interprets the dc offset itself as a large signal.

Having calibrated the CMX994, the value written to the CMX994 dc offset correction register is available to read using the Aux Data and Status (\$A9, \$AA) registers so that, having calibrated the CMX994 on a receive channel, the calibration result may be stored by the host microcontroller and restored at a later time.

6.6.18 Rx Mode with Powersave (I/Q Mode only)

Selecting powersave mode (C1, Modem Control b3-0 = 9) will cause the CMX7131/CMX7141 to control the CMX994, switching it into a low-power state for a short period of time. Once the powersave timer has expired then the CMX994 and the internal circuits of the CMX7131/CMX7141 will be powered-up, ready to receive.

On entering the powered-up state, the CMX7131/CMX7141 will monitor the received I/Q signals for energy in its sampled bandwidth and if there is no signal present it will return to the powersave state, powering down the CMX994. If sampled energy is found then the signal is passed through a channel filter and the resulting signal measured. If no signal is found the powersave state is selected once more. Finally, a squelch measurement is taken, by FM demodulating the received signal and measuring the energy above the expected signal bandwidth. If squelch indicates that the signal is a good FM modulated signal powersave mode is ended, leaving the CMX994 and CMX7131/CMX7141 on and in receive, until the mode register is written to.

Throughout the time that the receiver is on, the CMX7131/CMX7141 will search for a frame sync and start receiving the data following that frame sync, if found. However, dependent on the powersave period, it is possible that the frame sync at the start of a burst may be missed, in which case 'late entry' is possible.

Thresholds for comparison and timings for powersave mode may be adjusted, potentially improving powersaving by being powered down for a greater period of time, but at the expense of a slower reaction to a received signal. See the Aux Config - \$CD write register.

6.6.19 Reset/Abort

From each Rx or Tx mode, a Reset/Abort aborts the current state machine and drops into the corresponding (Rx or Tx) Idle mode. The only difference between this and going directly into the corresponding Idle mode is that all of the buffers and filters are flushed out first with Reset/Abort.

6.6.20 Data Transfer

Payload data is transferred from/to the host using blocks of five Rx and five Tx 16-bit C-BUS registers, allowing up to 72 bits (9 bytes) of data to be transferred in sequence. The lowest 8 bits of the register block are reserved for a Byte Counter, Block ID and a Transaction Counter. The byte count indicates how many bytes in the data block are valid and avoids the need to perform a full five word C-BUS read/write if only a smaller block of data need to be transferred.

C-BUS Address	Function	C-BUS Address	Function
\$B5	Tx data 0-7 and info	\$B8	Rx data 0-7 and info
\$B6	Tx data 8-23	\$B9	Rx data 8-23
\$B7	Tx data 24-39	\$BA	Rx data 24-39
\$CA	Tx data 40-55	\$BB	Rx data 40-55
\$CB	Tx data 56-71	\$C5	Rx data 56-71

Table 13 C-BUS Data Registers

The Block ID is ignored in Raw Data mode, but should be set to 01 (payload) for consistency with DCR formatted mode (see User Manual section 8.1.17).

Bits 7 and 6 hold the Transaction Counter, which is incremented modulo 4 on every read/write of the Data Block to allow detection of data underflow and overflow conditions. In Tx mode the host must increment the counter on every write to the TxData block, and if the CMX7131/CMX7141 identifies that a block has been written out of sequence, the Event bit (C-BUS register \$C6, b14) will be asserted and an IRQ raised, if enabled. The device detects that new data from the host is available by the change in the value of the Transaction Counter, therefore the host should ensure that all the data is available in the TxData block before updating this register (i.e. it should be the last register the host writes to in any block transfer). In Rx mode, the CMX7131/CMX7141 will automatically increment the counter every time it writes to the RxData block. If the host identifies that a block has been written out of sequence, then it is likely that a data overrun condition has occurred and some data has been lost. If a CRC failure has been detected when

decoding the data block, an 'Event' IRQ is issued concurrently with the 'Data Ready' IRQ along with a status code in the Modem Status register (\$C9).

6.6.21 CMX6x8/CMX994 Pass-through Mode

To allow the host to communicate directly with the CMX6x8 or CMX994 for test and configuration purposes, a pass-through mode is available which allows any CMX994 C-BUS register to be written or any CMX6x8 C-BUS register to be read or written (as appropriate). This mode uses the TxData0, RxData0 and Programming registers on the CMX7131/CMX7141.

To write to the CMX6x8:

- Set the CMX7131/CMX7141 to CMX6x8/CMX994 Pass-through mode (\$C1=\$0004)
- Wait for the Program Flag to be set (\$C6 b0)
- Write the CMX6x8 data value to the TxData0 register (\$B5)
- Write the CMX6x8 C-BUS address to the Programming register (\$C8) with b15-13=010₂
- o Wait for the Program Flag to be set (\$C6 b0).

To read from the CMX6x8:

- Set the CMX7131/CMX7141 to CMX6x8/CMX994 Pass-through mode (\$C1=\$0004)
- Wait for the Program Flag to be set (\$C6 b0)
- Write the CMX6x8 C-BUS address to the Programming register (\$C8) with b15-13=1102
- Wait for the Program Flag to be set (\$C6 b0)
- Read the CMX6x8 data value from the RxData0 register (\$B8).

CMX6x8 C-BUS addresses are all 8 bits long and should be written to bits 0-7 of the Programming Register. Bit 15 is the read/write flag (0 = read, 1 = write) and bit 14 is the register-size flag (0 = 16-bit, 1 = 8-bit). Unused bits should be cleared to zero. When an 8-bit register is read or written, the data occupies the lower 8 bits of the appropriate data register (TxData0 or RxData0).

To write to the CMX994:

- Set the CMX7131/CMX7141 to CMX6x8/CMX994 Pass-through mode (\$C1=\$0004)
- Wait for the Program Flag to be set (\$C6 b0)
- Write the CMX994 data value to the TxData0 register (\$B5)
- o Write the CMX994 C-BUS address to the Programming register (\$C8) with b15-13=011₂
- Wait for the Program Flag to be set (\$C6 b0).

6.7 DCR Formatted Operation

In DCR formatted mode the CMX7131/CMX7141 performs all frame building/splitting and FEC coding/decoding, which relieves the host controller of a significant processing load. During voice calls the CMX7131/CMX7141 can automatically enable and control the CMX6x8, and transfer voice payload data from/to it, without host intervention. In Rx mode the CMX7131/CMX7141 monitors the incoming fields and will only accept calls if the programmed address requirements are satisfied. This allows the host to remain in a power-down or "sleep" state until it is really necessary to wake up, enhancing the battery life of the final product design.

6.7.1 Frame Format

DCR calls contain a Preamble sequence followed by a continuous stream of 384-bit (80ms) frames. Two frame types are defined by the standard: "Synchronous Burst 0" (SB0) and "Service Channel" (SC) frames. Calls start with one (or more) SB0 frames followed by a stream of SC frames carrying payload data.

Both types of frame start with a 20-bit Sync Word, followed by a 16-bit Radio Information Channel (RICH) block and a 60-bit Slow Associated Control Channel (SACCH) block. The information units contained in SACCH blocks may be split across several consecutive frames, requiring dis-assembly and re-assembly of the contents by the transmitting and receiving hosts (this function is not performed by the CMX7131/CMX7141).

SB0 frames also contain a single 144-bit Parameter Information Channel (PICH) block and 144 bits of padding. The PICH block contains the 36-bit Call Sign (CSM) field, which is the transmitting radio's unique nine-digit serial number encoded in binary-coded decimal (BCD) format.

SC frames instead contain two 144-bit Traffic Channel (TCH) blocks. These can carry either "speech", uncoded "non-speech 1" or FEC coded "non-speech 2" payload data. The CMX7131/CMX7141 does not currently support mixed speech/non-speech TCH blocks within a call.

Note that the block sizes given above refer to "over-air" bits, some of which are FEC coded. Because the CMX7131/CMX7141 performs all FEC coding functions, the block sizes of data transfers between the CMX7131/CMX7141 and host are smaller in all cases except for uncoded TCH blocks.

6.7.2 Addressing

The DCR standard allows individual or group addressing systems to be implemented using the 9-bit "User Code" field in the SACCH block. The host can load six user codes into Program Block 1 as "Own-IDs" and the CMX7131/CMX7141 will only accept an incoming call if one of these is matched or if the "All-Call" User Code (all-zeros) is received. The CMX7131/CMX7141 can also be programmed to accept or reject calls depending on the value of the SACCH "Information Type" field, using the Call Accept Mask in Program Block 1.

The 36-bit CSM field (the radio's unique serial number) is sent in all SB0 frames and should be loaded into Program Block 1 by the host after power-on. In Rx mode the CSM field is reported back to the host when an SB0 frame is received, but it is not used for ID matching purposes.

6.7.3 Tx Mode (DCR Formatted)

Device operation in Tx formatted mode (\$C1, Modem Control = \$0012) is similar to raw mode operation. but the CMX7131/CMX7141 performs all FEC coding, interleaving and scrambling functions for the RICH, SACCH, PICH and TCH blocks and inserts Preamble and Synchronisation Word sequences to generate the required frame format. In speech calls the CMX7131/CMX7141 can automatically enable the CMX6x8 vocoder when required and transfer the TCH speech data blocks from it without host intervention.

The TxData registers are used to transfer SACCH and RICH blocks in addition to TCH (payload) data blocks. The Block ID field in the TxData0 register informs the CMX7131/CMX7141 how to process each transfer. When a TCH data block is loaded the "Communication Mode" field in the preceding RICH is used to determine whether the data should be sent as "speech", "non-speech 1" or "non-speech 2".

When the device is placed in Tx mode the Preamble and 20-bit Sync Word are transmitted automatically. The host should have already loaded the RICH and SACCH blocks for the first SB0 frame. The SACCH "Information Type" field for the first SB0 frame should be the same as in the following SC frames, as this allows the CMX6x8 vocoders in both transmitter and receiver to be enabled as soon as possible, reducing the end-to-end latency in the voice channel.

The host can then continue loading SACCH, RICH and TCH (payload) data blocks in sequence for the following frames. The RICH contains the "Radio Channel Structure" bit that defines the frame type (SB0 or SC) and the CMX7131/CMX7141 uses this bit to determine which type of frame to send.

In an SB0 frame, the PICH block (containing the radio's unique 36-bit CSM serial number field) is encoded and sent followed by a block of dummy "idle" data. The 36-bit CSM field is read from Program Block 1 and only needs to be programmed by the host once at power-up.

In an SC frame, the RICH "Communication Mode" field sets the TCH data type ("speech", "non-speech 1" or "non-speech 2") and TCH blocks are coded accordingly. The SACCH "Information Type" field is then used to decide whether speech data should be routed from the host or from the CMX6x8 vocoder. By default the CMX6x8 will only be enabled if this field is set to "Voice Communication". The host can optionally configure any of the "Manufacturer Defined" modes to use the CMX6x8 for speech calls by reprogramming the Vocoder Enable Mask, using Program Block P1.11 and P1.12.

When the CMX6x8 is being used to supply speech data, the host can continue re-loading new RICH and SACCH fields if required, but no other host intervention is necessary.

When TCH (payload) data is supplied by the host it should be loaded in an appropriate block size: two nine-byte transfers per TCH block for "speech" or uncoded "non-speech 1" data, or two five-byte transfers per TCH block for coded "non-speech 2" data. The host must always load two complete TCH blocks for each SC frame, unless the CMX6x8 is in use.

After sending each SC frame the host can choose not to re-load the SACCH and RICH fields, and instead load the TCH payload data for the next frame. The CMX7131/CMX7141 will then re-send the previous SACCH and RICH field values.

At the end of the call, the host should load SACCH and RICH fields for the final frame with the SACCH "Information Type" field set to "Call End". The CMX7131/CMX7141 will issue a "TxDone" IRQ when the frame has been sent and the host can then safely place the device into IDLE mode (\$C1, Modem Control = \$0000).

Table 14 RxData 0/TxData 0 Block ID settings

RxData 0	
TxData 0	Block ID
b5-4	
00	PICH
01	Payload Data
10	RICH
11	SACCH & RICH

PICH Data:

The RxData block is interpreted in the following manner (shown as 4bit nibbles - see Program Block 1):

RxData	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0		CSM3				CSM2			0	0	1	0	1				
1		CS	M1			CSM6			CSM5				CSM4				
2		CS	M 9			CSM8			Х	Х	Х	Х		CSM7			
3		Not used															
4		Not used															

RICH Data:

The TxData block is interpreted in the following manner:

TxData	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0			F	RICH0-	6			Co	unt	1	0	0	0	0	1
1			Not used													
2			Not used													
3		Not used														
4			Not used													

RICH and SACCH Data:

The TxData/RxData block is interpreted in the following manner:

TxData RxData	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0 RICH0-6							Со	unt	1	1	0	1	0	1
1		SACCH 0-7 SACCH 8-15														
2		SACCH 16-23 0 0 0 0 0 SAC 24							CCH -25							
3		Not used														
4		Not used														

Pavload Data:

See Table 13 and User Manual section 8.1.14.

6.7.4 Rx Mode (DCR Formatted)

Device operation in Rx formatted mode (\$C1, Modem Control = \$0011) is similar to raw mode operation but the CMX7131/CMX7141 automatically splits incoming calls to extract RICH, SACCH, PICH and TCH blocks and performs all the necessary de-scrambling, de-interleaving and FEC decoding functions. In speech calls the CMX7131/CMX7141 can automatically enable the CMX6x8 vocoder when required and transfer the received TCH speech data blocks to it without host intervention.

The RxData registers are used to transfer SACCH, RICH and PICH blocks in addition to TCH (payload) data blocks. The Block ID field in the RxData0 register informs the host what type of data block each transfer contains.

When put into Rx mode the CMX7131/CMX7141 automatically starts searching for frame synchronisation. When a valid framesync sequence is detected, an "FS1 Detect" or "FS2 Detect" IRQ is issued and the data demodulator is enabled. The RICH parity-bit and SACCH CRC from the following frames are checked and address matching only takes place when valid control channel fields have been received.

The SACCH "User Code" and "Information Type" fields are now checked against the settings programmed by the host into Program Block 1. The call is accepted only if <u>both</u> these fields are successfully validated.

The "User Code" is accepted if either (a) it is the all-zeros "All-Call" User Code, or (b) it matches one of the device's "Own-IDs" programmed by the host into Program Block P1.0 to P1.5.

The "Information Type" field is accepted if the corresponding Call Accept Mask bit is set (Program Block P1.9 and P1.10). By default any value of the "Information Type" field is accepted, but the host can optionally reprogram the Call Accept Mask to implement system-specific call filtering based on the "Manufacturer Defined" values.

If either of the above checks fail, and the "Open Rx" bit is clear, the call is rejected and the CMX7131/CMX7141 restarts framesync search automatically without host intervention.

Otherwise, the call is accepted, so a "Called" IRQ is issued to the host and the User Code and ID matchtype (exact match or All-Call) are reported in the AuxData register (\$CC), and the CMX7131/CMX7141 then begins transferring data blocks to the host and enables the CMX6x8 if necessary.

As incoming frames are received, the RICH and SACCH control channel fields are decoded and presented to the host. The RICH contains the "Radio Channel Structure" bit that defines the frame type (SB0 or SC).

When an SB0 frame is received, the PICH is decoded and the 36-bit CSM field (the sending radio's serial number) is presented to the host. The remaining data in the frame is ignored.

When an SC frame is received, the two TCH (payload) data blocks are decoded and transferred either to the host or CMX6x8 vocoder as appropriate. The RICH "Communication Mode" field determines the TCH data type ("speech", "non-speech 1" or "non-speech 2") and TCH blocks are decoded accordingly. The SACCH "Information Type" field is then used to decide whether speech data should be routed from the host or from the CMX6x8 vocoder. By default the CMX6x8 will only be enabled if this field is set to "Voice Communication". The host can configure any of the "Manufacturer Defined" modes to use the CMX6x8 for speech calls by reprogramming the Vocoder Enable Mask, using Program Block P1.11 and P1.12.

Note that SC frames do not contain the 36-bit CSM serial number field, so this information will not be available to the host on late entry into a call.

Depending on the setting in the Modem Configuration register (\$C7), TCH payload blocks containing "speech" data or uncoded "non-speech 1" data can be transferred to the host using 4-bit log-likelihood-ratio (LLR) format or as hard-decision bits. Decoded SACCH, RICH, PICH fields and "non-speech 2" TCH payload blocks are always transferred as hard-decision bits, with an additional "Event" IRQ issued to the host when a CRC or parity-bit failure is detected. Speech data routed to the CMX6x8 always uses 4-bit LLR format.

When the SACCH "Information Type" field in a received frame indicates "Call End", the CMX7131/CMX7141 will automatically disable the CMX6x8, transfer the final SACCH and RICH fields to the host, and restart framesync search automatically without further host intervention.

See:

- o RxData 0 \$B8 read
- o RxAuxData \$CC read

6.8 Squelch Operation

Many limiter/discriminator chips provide a noise-quieting squelch circuit around an op-amp configured as a filter. This signal is conventionally passed to a comparator to provide a digital Squelch signal, which can be routed directly to one of the CMX7131/CMX7141's GPIO pins or to the host. However with the CMX7131/CMX7141, the comparator and threshold operations can be replaced by one of the AuxADCs with programmable thresholds and hysteresis functions.

See:

- o Status \$C6 read
- AuxADC Configuration \$A7 write

Note: This functionality is not necessary in I/Q mode as squelch detection is within CMX7131/CMX7141 signal processing, however, the AuxADC functionality remains available.

6.9 **GPIO** Pin Operation

The CMX7131/CMX7141 provides four GPIO pins: GPIO1, GPIO2, GPIOA and GPIOB. RXENA (GPIO1) and TXENA (GPIO2) are configured to reflect the Tx/Rx state of the Mode register (TXENA and RXENA, active low).

See:

Modem Control - \$C1 write

Note that RXENA and TXENA will not change state until the relevant Mode change has been executed by the CMX7131/CMX7141. This is to allow the host sufficient time to load the relevant data buffers and the CMX7131/CMX7141 time to encode the data required prior to its transmission. There is thus a fixed time delay between the GPIO pins changing state and the data signal appearing at the MOD output pins.

During the power-on sequence (until the FI has completed its load sequence) these pins have only a weak pull-up applied to them, so care should be taken to ensure that any loading during this period does not adversely affect the operation of the unit.

GPIOA and GPIOB are host programmable for input or output using the AuxADC Configuration register, \$A7. The default state is input, with a weak pullup resistor. When set for input, the values can be read back using the Modem Status register, \$C9.

6.10 Auxiliary ADC Operation

The inputs to the two AuxADCs can be independently routed from any of the signal input pins under control of the Signal Routing register, \$A7. Conversions will be performed as long as a valid input source is selected, to stop the ADCs, the input source should be set to "off". Register \$C0, b6, BIAS, must be enabled for Auxiliary ADC operation.

Averaging can be applied to the AuxADC readings by selecting the relevant bits in the AuxADC configuration register, \$A7, the length of the averaging is determined by the value in the Program Block (P3.0 and P3.1), and defaults to a value of 0. This is a rolling average system such that a proportion of the current data will be added to the last average value. The proportion is determined by the value of the average counter in P3.0 and P3.1.

For an average value of:

0 = 50% of the current value will be added to 50% of the last average value

1 = 25% of the current value will be added to 75% of the last average value

2 = 12.5% etc.

The maximum useful value of this field is 9.

High and low thresholds may be independently applied to both AuxADC channels (the comparison is applied after averaging, if this is enabled) and an IRQ generated when a rising edge passes the High threshold or a falling edge passes the Low threshold, see Figure 25. The thresholds are programmed via the Aux Config register, \$CD. See Figure 25.

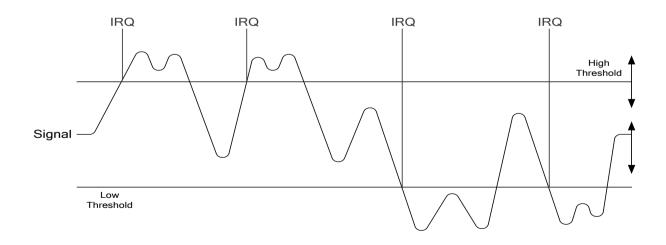


Figure 25 AuxADC IRQ Operation

AuxADC data is read back in the AuxADC Data registers (\$A9 and \$AA) and includes the threshold status as well as the actual conversion data (subject to averaging, if enabled).

See:

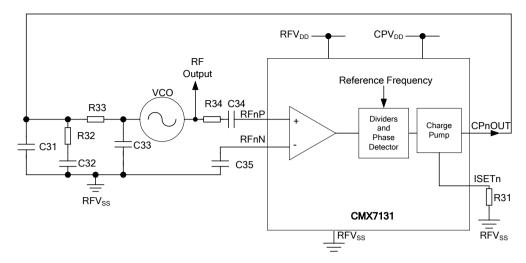
- o AuxADC Configuration \$A7 write
- o AuxADC1 Data and Threshold Status- \$A9 read
- o AuxADC2 Data and Threshold Status- \$AA read
- o Aux Config \$CD write.

6.11 Auxiliary DAC/RAMDAC Operation

The four AuxDAC channels are programmed via the AuxDAC Control register, \$A8. AuxDAC channel 1 may also be programmed to operate as a RAMDAC which will automatically output a pre-programmed profile at a programmed rate. The AuxDAC Control register, \$A8, with b12 set, controls this mode of operation. The default profile is a raised cosine (see Table 19), but this may be over-written with a user-defined profile by writing to Program Block P3.11. The RAMDAC operation is only available in Tx mode and, to avoid glitches in the ramp profile, it is important not to change to IDLE or Rx mode whilst the RAMDAC is still ramping. The AuxDAC outputs hold the user-programmed level during a powersave operation if left enabled, otherwise they will return to zero. Note that access to all four AuxDACs is controlled by the AuxDAC Control register, \$A8, and therefore to update all AuxDACs requires four writes to this register. It is not possible to simultaneously update all four AuxDACs.

See:

AuxDAC Data/Control - \$A8 write.


6.12 RF Synthesiser (CMX7131 only)

The CMX7131 includes two Integer-N RF synthesisers, each comprising a divider, phase comparator and charge pump. The divider has two sets of N and R registers: one set can be used for transmit and the other for receive. The division ratios can be set up in advance by means of C-BUS registers. A single C-BUS command will change over from the transmit to the receive division ratios, or vice versa, enabling a fast turnaround.

See:

- o RF Synthesiser Data (CMX7131 only) \$B2 write
- RF Synthesiser Control (CMX7131 only) \$B3 write
- o RF Synthesiser Status (CMX7131 only) \$B4 8-bit read.

External RF components are needed to complete the synthesiser circuit. A typical schematic for a 446MHz synthesiser (3.125kHz comparison frequency) is shown in Figure 26.

Note: n = 1 or 2 for Synthesiser 1 or 2

Figure 26 Example RF Synthesiser Components

R31	Ω	C31	22nF
R32	5.6kΩ	C32	470nF
R33	10kΩ	C33	10nF
R34	100Ω	C34	1nF
		C35	1nF

Resistors $\pm 5\%$, capacitors and inductors $\pm 20\%$ unless otherwise stated.

Note: R31 is chosen within the range 0Ω to $30k\Omega$ and selects the nominal charge pump current.

It is recommended that C34 and C35 are kept close to the VCO and that the stub from the VCO to the CMX7131 is kept as short as possible. The loop filter components should be placed close to the VCO.

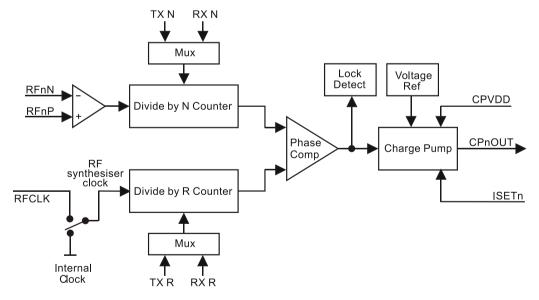


Figure 27 Single RF Synthesiser Block Diagram

The two RF synthesisers are programmable to any frequency in the range 100MHz to 600MHz. Figure 27 is a block diagram of one synthesiser channel. The RF synthesiser clock is selectable between the

XTAL/CLK input or the clock supplied to the RFCLK input pin. The RF synthesiser clock is common to both channels. The charge pump supply pin CPVDD and the RF synthesiser power supply pins RFVSS and RFVDD are also common to both channels. The remaining pins are designated with a 1 or 2 to indicate to which RF synthesiser block they belong. The N and R values for Tx and Rx modes are channel specific and can be set from the host μ C via the C-BUS. Various channel specific status signals are also accessible via C-BUS. The divide by N counter is 20 bits; the R counter is 13 bits. Typical external components are shown in Figure 26.

Both synthesisers are phase locked loops (PLLs) of the same design, utilising external VCOs and loop filters. The VCOs need to have good phase noise performance although it is likely that the high division ratios used will result in the dominant noise source being the reference oscillator. The phase detectors are of the phase-frequency type with a high impedance charge pump output requiring just passive components in the loop filter. Lock detect functions are built in to each synthesiser and the status reported via C-BUS. A transition to out-of-lock can be detected and communicated via a C-BUS interrupt to the host μ C. This can be important in ensuring that the transmitter cannot transmit in the event of a fault condition arising.

Two levels of charge pump gain are available to the user, to facilitate the possibility of locking at different rates under program control. A current setting resistor (R31) is connected between the ISET pin (one for each PLL system) and the respective RFV_{SS}. This resistor will have an internally generated band gap voltage expressed across it and may have a value of 0Ω to $30k\Omega$, which (in conjunction with the on-chip series resistor of $9.6k\Omega$) will give charge pump current settings over a range of 2.5mA down to $230\mu A$ (including the control bit variation of 4 to 1). The value of the current setting resistor (R31) is determined in accordance with the following formulae:

Gain bit set to 1: R31 (in Ω) = (24/lcp) – 9600. Gain bit cleared to 0: R31 (in Ω) = (6/lcp) – 9600. Where lcp is the charge pump current (in mA).

Note that the charge pump current should always be set to at least 230µA. The 'gain bit' refers to either bit 3 or bit 11 in the RF Channel Control register, \$B3.

The step size (comparison frequency) is programmable; to minimise the effects of phase noise this should be kept as high as possible. This can be set as low as 2.5kHz (for a reference input of 20MHz or less), or up to 200kHz – limited only by the performance of the phase comparator.

The frequency for each synthesiser is set by using two registers: an 'R' register that sets the division value of the input reference frequency to the comparison frequency (step size), and an 'N' register that sets the division of the required synthesised frequency from the external VCO to the comparison frequency. This yields the required synthesised frequency (Fs), such that:

 $Fs = (N/R) \times F_{REF}$ where F_{REF} is the selected reference frequency.

Other parameters for the synthesisers are the charge pump setting (high or low)

Since the set-up for the PLLs takes 4 x "RF Channel Data register" writes it follows that, while updating the PLL settings, the registers may contain unwanted or intermediate values of bits. These will persist until the last register is written. It is intended that users should change the content of the "RF Channel Data register" on a PLL that is disabled, powersaved or selected to work from the alternate register set ("Tx" and "Rx" are alternate register sets). There are no interlocks to enforce this intention. The names "Tx" and "Rx" are arbitrary and may be assigned to other functions as required. They are independent sets of registers, one of which is selected to command each PLL by changing the settings in the RF Synthesiser Control (CMX7131 only) - \$B3 write register.

For optimum performance, a common master clock should be used for the RF synthesisers (RFClock) and the baseband sections (Main and Auxiliary System Clocks). Using unsynchronised clocks can result in spurious products being generated in the synthesiser output and in some cases difficulty may be experienced with obtaining lock in the RF synthesisers.

Lock Status

The lock status can be observed by reading the RF Channel Status register, \$B4, and the individual lock status bits can (subject to masking) provide a C-BUS interrupt.

The lock detector can use a tolerance of one cycle or four cycles of the reference clock (not the divided version that is used as a comparison frequency) in order to judge phase lock. An internal shift register holds the last three lock status measurements and the lock status bits are flagged according to a majority vote of these previous three states. Hence, one occasional lock error will not flag a lock fail. At least two successive phase lock events are required for the lock status to be true. Note that the lock status bits confirm phase lock to the measured tolerance and not frequency lock. The synthesiser may take more time to confirm phase lock with the lock status bits than the time to switch from channel to channel. The purpose of a 4-cycle tolerance is for the case where a high frequency reference oscillator would not tolerate a small phase error.

RF Inputs

The RF inputs are differential and self-biased (when not powersaved). They are intended to be capacitatively coupled to the RF signal. The signal should be in the range 0dBm to -20dBm (not necessarily balanced). To ensure an accurate input signal the RF should be terminated with 50Ω as close to the chip as possible and with the "N" and "P" inputs capacitively coupled to the input and ground, keeping these connections as short as possible. The RF input impedance is almost purely capacitive and is dominated by package and printed circuit board parasitics.

Guidelines for using the RF Synthesisers

- RF input slew rate (dv/dt) should be 14 V/µs minimum
- The RF synthesiser 2.5V digital supply can be powered from the VDEC output pin
- RF clock sources and other, different clock sources <u>must not</u> share common IC components, as this
 may introduce coupling into the RF. Unused ac-coupled clock buffer circuits should be tied off to a dc
 supply, to prevent them oscillating
- It is recommended that the RF synthesisers are operated with maximum gain (ie. ISET1/2 tied to RFVss)
- The loop filter components should be optimised for each VCO.

6.13 Digital System Clock Generators

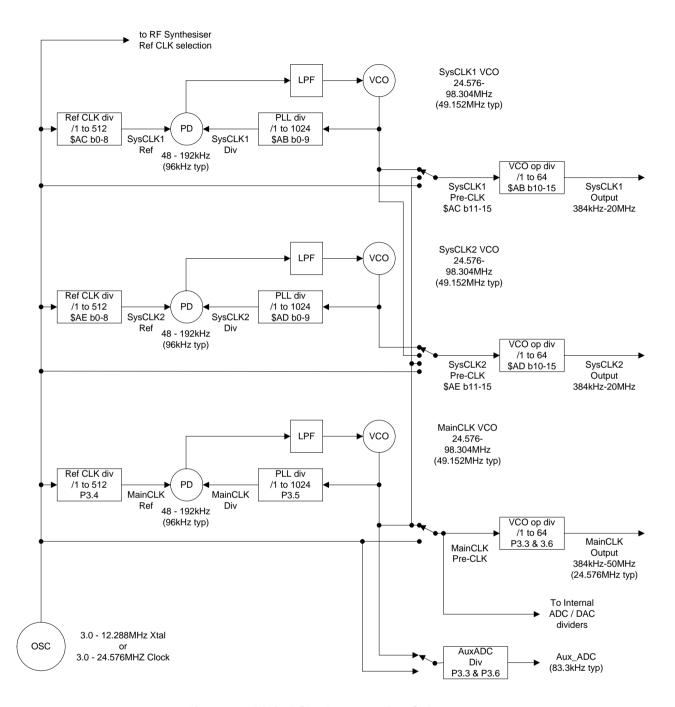


Figure 28 Digital Clock Generation Schemes

The CMX7131/CMX7141 includes a 2-pin crystal oscillator circuit. This can either be configured as an oscillator, as shown in Section 4.2, or the XTAL/CLK input can be driven by an externally generated clock. The crystal (Xtal) source frequency can go up to 12.288MHz (clock source frequency up to 24.576MHz), but a 19.2MHz oscillator is assumed by default for the functionality provided in the CMX7131/CMX7141.

6.13.1 Main Clock Operation

A digital PLL is used to create the Main Clock (nominally 24.576MHz) for the internal sections of the CMX7131/CMX7141. At the same time, other internal clocks are generated by division of either the XTAL or the Main Clock. These internal clocks are used for determining the sample rates and conversion times of A-to-D and D-to-A converters, running a General Purpose Timer and the signal processing block. In particular, it should be noted that in IDLE mode the setting of the GP Timer divider directly affects the C-BUS latency (with the default values this is nominally 250µs).

The CMX7131/CMX7141 defaults to the settings appropriate for a 19.2MHz oscillator, however if other frequencies are to be used then the Program Block P3.2 to P3.6 will need to be programmed appropriately at power-on. This flexibility allows the device to share an external clock source, so reducing total cost and potential noise sources. A table of common values is provided in Table 6.

See:

o Program Block 3 – AuxDAC, RAMDAC and Clock Control.

6.13.2 System Clock Operation

Two System Clock outputs, SYSCLK1 and SYSCLK2, are available to drive additional circuits, as required. These are digital phase locked loop (PLL) clocks that can be programmed via the System Clock registers with suitable values chosen by the user. The System Clock PLL Configure registers (\$AB and \$AD) control the values of the VCO Output divider and Main Divide registers, while the System Clock Ref. Configure registers (\$AC and \$AE) control the values of the Reference Divider and signal routing configurations. The PLLs are designed for a nominal reference frequency of 96kHz. If not required, these clocks can be independently powersaved. The clock generation scheme is shown in the block diagram of Figure 28. Note that at power-on, these pins are disabled.

See:

- SYSCLK1 and SYSCLK2 PLL Data \$AB, \$AD write
- SYSCLK1 and SYSCLK2 REF \$AC and \$AE write.

6.14 Signal Level Optimisation

The internal signal processing of the CMX7131/CMX7141 will operate with wide dynamic range and low distortion only if the signal level at all stages in the signal processing chain is kept within the recommended limits. For a device working from a 3.3V $\pm 10\%$ supply, the maximum signal level which can be accommodated without distortion is [(3.3 x 90%) - (2 x 0.3V)] Volts p-p = 838mV rms, assuming a sinewave signal. This should not be exceeded at any stage.

6.14.1 Transmit Path Levels

For the maximum signal out of the MOD1 and MOD2 attenuators, the signal level at the output of the Modem block is set to be 0dB. The Fine Output adjustment (\$C3) has a maximum attenuation of 1.8dB and no gain, whereas the Coarse Output adjustment (\$B0) has a variable attenuation of up to 12.0dB and no gain.

6.14.2 Receive Path Levels

The Coarse Input adjustment (\$B1) has a variable gain of up to +22.4dB and no attenuation. In LD mode, with the lowest gain setting (0dB), the maximum allowable input signal level at the DISCFB pin would be 838mVrms. This signal level is an absolute maximum, which should not be exceeded.

In I/Q mode, the CMX7131/CMX7141 automatically manages the gain control settings to optimise signal levels.

6.15 Tx Spectrum Plots

The following figure shows the Tx spectrum when using a suitable signal generator as measured on a spectrum analyser using the CMX7131/CMX7141 internal PRBS generator. Note that the I/Q mode is sensitive to variations in dc offset in the modulation path and these must be minimised.

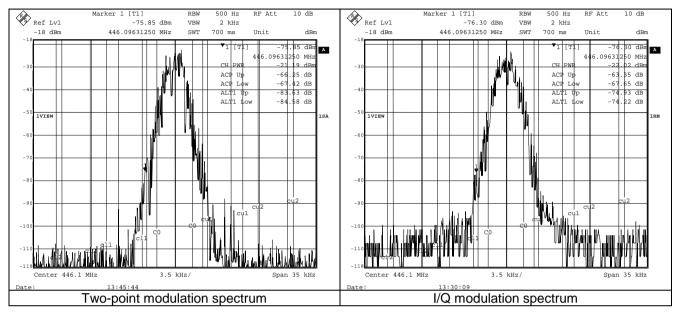


Figure 29 Tx Modulation Spectra - 4800bps

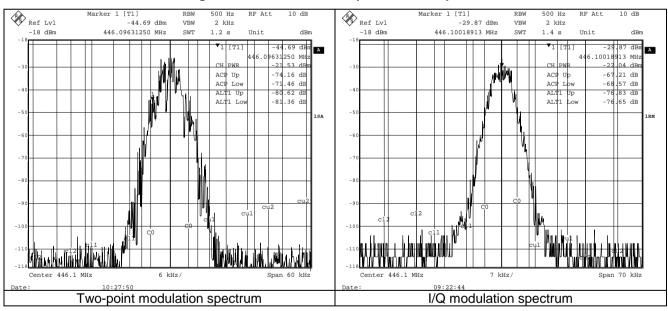


Figure 30 Tx Modulation Spectra - 9600bps

6.16 C-BUS Register Summary

Table 15 C-BUS Registers

ADDR. (hex)		REGISTER	Word Size (bits)
\$01	W	C-BUS RESET	0
\$A7	W	AuxADC Configuration	16
\$A8	W	AuxDAC Data/Control	16
\$A9	R	AuxADC1 Data and Threshold Status/Checksum 2 hi	16
\$AA	R	AuxADC2 Data and Threshold Status/Checksum 2 lo	16
\$AB	W	System Clk 1 PLL Data	16
\$AC	W	System Clk 1 REF	16
\$AD	W	System Clk 2 PLL Data	16
\$AE	W	System Clk 2 REF	16
\$AF		reserved	
\$B0	W	Analogue Output Gain	16
\$B1	W	Input Gain and Signal Routing	16
\$B2	W	RF Synthesiser Data (CMX7131 only)	16
\$B3	W	RF Synthesiser Control (CMX7131 only)	16
\$B4	R	RF Synthesiser Status (CMX7131 only)	8
\$B5	W	TxData 0	16
\$B6	W	TxData 1	16
\$B7	W	TxData 2	16
\$B8	R	RxData 0/Checksum 1 hi	16
\$B9	R	RxData 1/Checksum 1 lo	16
\$BA	R	RxData 2	16
\$BB	R	RxData 3	16
\$BC		reserved	
\$BD		reserved	
\$BE		reserved	
\$BF		reserved	
\$C0	W	Power-Down Control	16
\$C1	W	Modem Control	16
\$C2	W	TxAuxData	16
\$C3	W	CMX6x8 Analogue Gain	16
\$C4		reserved	
\$C5	R	Rx Data 4	16
\$C6	R	Status	16
\$C7	W	Modem Configuration	16
\$C8	W	Programming Register	16
\$C9	R	Modem Status	16
\$CA	W	Tx Data 3	16
\$CB	W	Tx Data 4	16
\$CC	R	RxAuxData	16
\$CD	W	Aux Config	16
\$CE	W	Interrupt Mask	16
\$CF		reserved	

All other C-BUS addresses (including those not listed above) are either reserved for future use or allocated for production testing and must not be accessed in normal operation.

7 Performance Specification

7.1 Electrical Performance

7.1.1 Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the device.

	Min.	Max.	Unit
Supply: DV _{DD} - DV _{SS}	-0.3	4.5	V
AV _{DD} - AV _{SS}	-0.3	4.5	V
RFV _{DD} - RFV _{SS} (CMX7131 only)	-0.3	4.5	V
CPV _{DD} - RFV _{SS} (CMX7131 only)	-0.3	4.5	V
Voltage on any pin to DV _{SS}	-0.3	$DV_{DD} + 0.3$	V
Voltage on any pin to AV _{SS}	-0.3	$AV_{DD} + 0.3$	V
Current into or out of any power supply pin (excluding V _{BIAS})	-30	+30	mA
(i.e. VDEC, AVDD, AVSS, DVDD, DVSS, CPVDD, RFVDD or			
RFVSS			
Current into or out of any other pin	-20	+20	mΑ
Voltage differential between power supplies:			
DV _{DD} and AV _{DD} or CPV _{DD}	0	0.3	V
AV _{DD} and CPV _{DD} (CMX7131 only)	0	0.3	V
DV _{SS} and AV _{SS} or RFV _{SS} (CMX7131)	0	50	mV
AV _{SS} and RFV _{SS} (CMX7131 only)	0	50	mV
L4 Package (48-pin LQFP)	Min.	Max.	Unit
Total Allowable Power Dissipation at T _{AMB} = 25°C		1600	mW
Derating	_	16	mW/°C
Storage Temperature	-55	+125	°C
Operating Temperature	-33 -40	+85	°C
Operating Temperature			
Q3 Package (48-pin VQFN)	Min.	Max.	Unit
Total Allowable Power Dissipation at T _{AMB} = 25°C	_	1750	mW
Derating	_	17.5	mW/°C
Storage Temperature	-55	+125	°C
Operating Temperature	-40	+85	°C
L9 Package (64-pin LQFP)	Min.	Max.	Unit
Total Allowable Power Dissipation at $T_{AMB} = 25^{\circ}C$	_	1690	mW
Derating	_	16.9	mW/°C
Storage Temperature	–55	+125	°C
Operating Temperature	-40	+85	°C
Q1 Package (64-pin VQFN)	Min.	Max.	Unit
Total Allowable Power Dissipation at T _{AMB} = 25°C		3500	mW
Derating	_	35.0	mW/°C
Dorating	EE	+125	°C
			$\overline{}$
Storage Temperature Operating Temperature	–55 –40	+85	°C

7.1.2 **Operating Limits**

Correct operation of the device outside these limits is not implied.

	Notes	Min.	Max.	Unit
Supply Voltage:				
DV _{DD} – DV _{SS}		3.0	3.6	V
$AV_{DD} - AV_{SS}$		3.0	3.6	V
CPV _{DD} – RFV _{SS} (CMX7131 only)		3.0	3.6	V
RFV _{DD} – DV _{SS} (CMX7131 only)	3	2.25	2.75	V
V _{DEC} – DV _{SS}	2	2.25	2.75	V
Operating Temperature		-40	+85	°C
XTAL/CLK Frequency (using a Xtal)	1	3.0	12.288	MHz
XTAL/CLK Frequency (using an external clock)	1	3.0	24.576	MHz

Notes:

- Nominal XTAL/CLK frequency is 19.2MHz. 1
- The V_{DEC} supply is automatically derived from DV_{DD} by the on-chip voltage regulator. The RFV_{DD} supply can be supplied from the V_{DEC} supply, if preferred. 2
- 3

7.1.3 Operating Characteristics

For the following conditions unless otherwise specified:

External components as recommended in Figure 2.

Maximum load on digital outputs = 30pF.

Oscillator Frequency = $19.2MHz \pm 0.01\%$ (100ppm); $T_{AMB} = -40$ °C to +85°C.

 $AV_{DD} = DV_{DD} = CPV_{DD}$ (CMX7131) = 3.0V to 3.6V; RFV_{DD} (CMX7131) = 2.25V to 2.75V.

 $V_{DFC} = 2.5V.$

Reference Signal Level = 308mVrms at 1kHz with AV_{DD} = 3.3V.

Signal levels track with supply voltage, so scale accordingly.

Signal to Noise Ratio (SNR) in bit rate bandwidth.

Input stage gain = 0dB. Output stage attenuation = 0dB.

Current consumption figures quoted in this section apply to the device when loaded with FI-2.x only. The use of other Function Images, can modify the current consumption of the device.

DC Parameters	Notes	Min.	Тур.	Max.	Unit
Supply Current	21				
All Powersaved					
DI _{DD}		_	8	100	μA
Al _{DD}		_	4	20	μA
IDLE Mode	22				I
DI _{DD}		_	1.4	_	mΑ
AI _{DD}	23	_	1.6	_	mΑ
Rx Mode	22				
DI _{DD} (4800bps – search for FS)		_	4.7	_	mΑ
DI _{DD} (9600bps – search for FS)		_	7.5	_	mΑ
DI _{DD} (4800bps – FS found)		_	2.8	_	mΑ
DI _{DD} (9600bps – FS found)		_	3.7	_	mΑ
Alpp		_	1.6	_	mΑ
Tx Mode	22				
DI _{DD} (4800bps – Two-point)		_	4.3	_	mΑ
DI _{DD} (9600bps – Two-point)		_	5.2	_	mΑ
DI _{DD} (4800bps – I/Q)		_	5.4	_	mΑ
DI _{DD} (9600bps – I/Q)		_	7.3	_	mΑ
AI_{DD} ($AV_{DD} = 3.3V$)		_	3.0	_	mΑ
Additional current for each Auxiliary					
System Clock (output running at 4MHz)					
DI_{DD} (DV _{DD} = 3.3V, V _{DEC} = 2.5V)		_	250	_	μΑ
Additional current for each Auxiliary ADC					
DI_{DD} (DV _{DD} = 3.3V, V _{DEC} = 2.5V)		_	50	_	μΑ
Additional current for each Auxiliary DAC					
AI_{DD} ($AV_{DD} = 3.3V$)		_	200	_	μΑ
Additional Current for each RF Synthesiser	24				
$CPI_{DD} + RFI_{DD} (CPV_{DD} = 3.3V, RFV_{DD} = 2.5V)$		_	2.5	4.5	mΑ

Notes:

- $T_{AMB} = 25$ °C, Not including any current drawn from the device pins by external circuitry.
- 22 System clocks, auxiliary circuits disabled, but all other digital circuits (including the Main Clock PLL) enabled.
- 23 May be further reduced by power-saving unused sections.
- When using the external components shown in Figure 26 and when supplying the current for RFV_{DD} from the regulated 2.5V digital (V_{DEC}) supply. The latter is derived from DV_{DD} by an on-chip voltage regulator.

DC Parameters (continued)	Notes	Min.	Тур.	Max.	Unit
XTAL/CLK	25				
Input Logic '1'	20	70%	_	_	DV_DD
Input Logic '0'		_	_	30%	DV_DD
Input Current (Vin = DV _{DD})		_	_	40	μA
Input Current (Vin = DV _{SS})		-40	_	_	μA
C-BUS Interface and Logic Inputs					
Input Logic '1'		70%	_	_	DV_DD
Input Logic '0'		_	_	30%	DV_DD
Input Leakage Current (Logic '1' or '0')		-1.0	_	1.0	μĀ
Input Capacitance		_	_	7.5	pF
C-BUS Interface and Logic Outputs					
Output Logic '1' (I _{OH} = 2mA) Output Logic '0' (I _{OI} = -5mA)		90%	_	_	DV_DD
Carpat Logic C (IGL Cim.y		-	_	10%	DV_DD
"Off" State Leakage Current		_	_	10	μA
IRQN (Vout = DV_{DD})		-1.0	_	+1.0	μA
RDATA (output HiZ)		-1.0	_	+1.0	μA
V _{BIAS}	26				
Output Voltage Offset wrt AV _{DD} /2 (I _{OL} < 1μΑ)		-	±2%	-	AV_DD
Output Impedance		_	22	-	kΩ

Notes: 25 Characteristics when driving the XTAL/CLK pin with an external clock source.

Applies when utilising V_{BIAS} to provide a reference voltage to other parts of the system. When using V_{BIAS} as a reference, V_{BIAS} must be buffered. V_{BIAS} must always be decoupled with a capacitor as shown in Figure 2 and Figure 3.

26

AC Parameters		Notes	Min.	Тур.	Max.	Unit
				- 7		
XTAL/CLK Input						
'High' Pulse Width		31	15	_	_	ns
'Low' Pulse Width		31	15	_	_	ns
Input Impedance (at 6.144)	ЛHz)	•	. •			
Powered-up	Resistance		_	150	_	$k\Omega$
. o up	Capacitance		_	20	_	pF
Powered-down	Resistance		_	300	_	kΩ
1 GWCICG GGWII	Capacitance		_	20	_	pF
Xtal start up (from powersa			_	20	_	ms
Atai start up (nom powersa	(VC)			20		1113
System Clock 1/2 Outputs						
XTAL/CLK input to SysClk1	/2 timing:					
(in high to		32	_	15	_	ns
(in low to	O /	32	_	15	_	ns
'High' Pulse Width	out low)	33	76	81.38	87	ns
'Low' Pulse Width		33	76	81.38	87	ns
Low I dise Width		33	70	01.50	07	113
V _{BIAS}						
Start-up Time (from powers	save)		_	30	_	ms
Otalt up Time (nom powers	savo,			00		1110
Microphone, Alternative and D	iscriminator					
Inputs (MIC, ALT, DISC)						
Input Impedance		34	_	>10	_	MΩ
Maximum Input Level (p-p)		35	_	-	80%	AV _{DD}
Load Resistance (feedback	nine)	33	80	_	-	kΩ
Amplifier Open Loop Voltage			00			N2 2
Gain	je					
(I/P = 1mV rms at 100	\U¬\			80		dB
•	1112)		_		_	МHz
Unity Gain Bandwidth			_	1.0	_	IVI□Z
Programmable Input Gair	Stage	36				
Gain (at 0dB)	i Olage	37	-0.5	0	+0.5	dB
Cumulative Gain Error)	31	-0.5	U	TU.5	uБ
	2,	27	4.0	0	.4.0	٩D
(wrt attenuation at 0dB	5)	37	-1.0	0	+1.0	dB

Notes:

- Timing for an external input to the XTAL/CLK pin.
- 32 XTAL/CLK input driven by an external source.
- 33 6.144MHz Xtal fitted and 6.144MHz output selected (scale for 19.2MHz).
- With no external components connected, measured at DC.
- 35 Centered about AV_{DD}/2; after multiplying by the gain of input circuit (with external components connected).
- Gain applied to signal at output of buffer amplifier: DISCFB, ALTFB or MICFB
- 37 Design value. Overall attenuation input to output has a tolerance of 0dB ±1.0dB

AC Parameters	Notes	Min.	Тур.	Max.	Unit
Modulator Outputs 1/2 and Audio Outpu (MOD1, MOD2, AUDIO)	ıt				
Power-up to Output Stable	41	-	50	100	μs
Modulator Attenuators					
Attenuation (at 0dB)	43	-1.0	0	+1.0	dB
Cumulative Attenuation Error					
(wrt attenuation at 0dB)		-0.6	0	+0.6	dB
Output Impedance Enabled	42	_	600	_	Ω
Disabled	42	_	500	_	$k\Omega$
Output Current Range (AV _{DD} = 3.3V)		_	_	±125	μΑ
Output Voltage Range	44	0.5	_	AV _{DD} -0.5	·V
Load Resistance		20	_	_	$k\Omega$
Audio Attenuator					
Attenuation (at 0dB)	43	-1.0	0	+1.0	dB
Cumulative Attenuation Error					
(wrt attenuation at 0dB)		-1.0	0	+1.0	dB
Output Impedance Enabled	42	_	600	_	Ω
Disabled	42	_	500	_	kΩ
Output Current Range (AV _{DD} = 3.3V)		_	_	±125	μA
Output Voltage Range	44	0.5	_	AV _{DD} -0.5	V
Load Resistance		20	_	_	$k\Omega$

Notes:

- 41 Power-up refers to issuing a C-BUS command to turn on an output. These limits apply only if V_{BIAS} is on and stable. At power supply switch-on, the default state is for all blocks, except the Xtal and C-BUS interface, to be in placed in powersave mode. Small signal impedance, at $AV_{DD} = 3.3V$ and $T_{AMB} = 25^{\circ}C$.
- 42
- With respect to the signal at the feedback pin of the selected input port. 43
- 44 Centred about AV_{DD}/2; with respect to the output driving a $20k\Omega$ load to AV_{DD}/2.

AC Parameters (cont.)	Notes	Min.	Тур.	Max.	Unit
Auxiliary Signal Inputs (AUXADC1/4)					
Source Output Impedance	51	_	_	24	$k\Omega$
Auxiliary 10-Bit ADCs (AuxADC1/2)					
Resolution		_	10	_	Bits
Maximum Input Level (p-p)	54	_	_	80%	AV_DD
Conversion Time	52	_	250	_	μs
Input Impedance					
Resistance	57	_	>10	_	$M\Omega$
Capacitance		_	5	_	pF
Zero Error	55	0	_	±10	m۷
Integral Non-linearity		_	_	±3	LSBs
Differential Non-linearity	53	_	_	±1	LSBs
Auxiliary 10-Bit DACs (AuxDAC1/2)					
Resolution		_	10	_	Bits
Maximum Output Level (p-p), no load	54	80%	_	_	AV_{DD}
Zero error	56	0	_	±10	mV
Resistive Load		5	_	_	$k\Omega$
Integral Non-linearity		_	_	±4	LSBs
Differential Non-linearity	53	_	_	±1	LSBs

Notes:	51	Denotes output impedance of the driver of the auxiliary input signal, to ensure < 1 bit additional error under nominal conditions.
	52	With an auxiliary clock frequency of 6.144MHz.
	53	Guaranteed monotonic with no missing codes.
	54	Centred about AV _{DD} /2.
	55	Input offset from a nominal V _{BIAS} input, which produces a \$0200 AuxADC output.
	56	Output offset from a \$0200 DAC input, measured with respect to a nominal V _{BIAS} output.
	57	Measured at dc.

AC Parameters (cont.)	Notes	Min.	Тур.	Max.	Unit
RF Synthesisers – Phase Locked Loops					
Reference Clock Input					
Input Logic '1'	62	70%	_	_	RFV_{DD}
Input Logic '0'	62	_	_	30%	RFV_{DD}
Frequency	64, 66	5.0	19.2	40.0	MHz
Divide Ratios (R)	63	2	_	8191	
Each RF Synthesiser	69				
Comparison Frequency		_	_	500	kHz
Input Frequency Range	67	100	_	600	MHz
Input Level		-15	_	0	dBm
Input Slew Rate		14	_	_	V/µs
Divide Ratios (N)		1088	_	1048575	·
1Hz Normalised Phase Noise Floor	68	_	-197	_	dBc/Hz
Charge Pump Current (high)	65	±1.88	±2.5	±3.3	mΑ
Charge Pump Current (low)	65	±470	±625	±820	μΑ
Charge Pump Current – voltage variation		_	10%	_	per V
Charge Pump Current – sink to source match		_	5%	_	of ISET

Notes:

62

Square wave input.

63	Separate dividers are provided for each PLL.
64	For optimum performance of the synthesiser subsystems, a common master clock should be used for the RF synthesisers and the baseband sections. Using unsynchronised clocks is likely to result in spurious products being generated in the synthesiser outputs and in some cases difficulty may be experienced in obtaining lock in the RF Synthesisers.
65	External ISET1/2 resistor (R31 in Figure 26) = 0Ω (Internal ISET resistor = $9k6\Omega$ nominally).
66	Lower input frequencies may be used subject to division ratio requirements being maintained.
67	Operation outside these frequency limits is possible, but not guaranteed. At lower

frequencies slew rate needs to be considered.

1Hz Normalised Phase Noise Floor (PN1Hz) can be used to calculate the phase noise within the PLL loop by:

Phase Noise (in-band) = $PN1Hz + 20log_{10}(N) + 10log_{10}(f_{comparison})$

It is recommended that RF Synthesiser 1 be used for the higher frequency use (e.g.: RF 1st LO) and RF Synthesiser 2 be used for lower frequency use (e.g. IF LO).

7.1.4 Parametric Performance

For the following conditions unless otherwise specified:

External components as recommended in Figure 2.

Maximum load on digital outputs = 30pF.

Oscillator Frequency = 19.2MHz $\pm 0.01\%$ (100ppm); $T_{AMB} = -40$ °C to +85°C.

 $AV_{DD} = DV_{DD} = 3.0V$ to 3.6V.

Reference Signal Level = 308mV rms at 1kHz with $AV_{DD} = 3.3\text{V}$.

Signal levels track with supply voltage, so scale accordingly.

Signal to Noise Ratio (SNR) in bit rate bandwidth.

Input stage gain = 0dB, Output stage attenuation = 0dB.

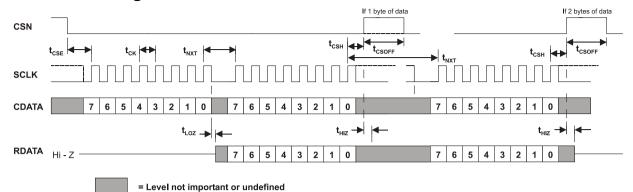
All figures quoted in this section apply to the device when loaded with FI 2.x only. The use of other Function Images can modify the parametric performance of the device.

AC Parameters (cont.)	Notes	Min.	Тур.	Max.	Unit
Modem Symbol Rate		2400	_	4800	sym s ⁻¹
Modulation			4FSK		-
Filter (RC) Alpha		_	0.2	_	
Tx Output Level (MOD1, MOD2, Two-point)	70	_	2.88	_	Vpk-pk
Tx Output Level (MOD1, MOD2, I/Q)	70	_	2.20	_	Vpk-pk
Tx Adjacent Channel Power	71, 73	-60	_	_	dB
(MOD1, MOD2, PRBS)					
Rx Sensitivity (BER 4800 symbols/s)	72	_	TBD	_	dBm
Rx Co-channel Rejection	71, 73	15	12	_	dB
Rx System Adjacent Channel Rejection (I/Q Mode)	74	_	63		dB
Rx Input Level		_	_	838	mVrms
Rx Input dc Offset		0.5	_	AV _{DD} - 0.5	V

INCHES.	
---------	--

70 Transmitting continuous default preamble.

71 See data sheet section 6.15.

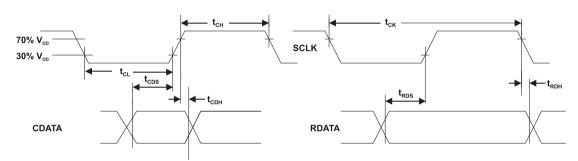

72 Measured at base-band – radio design will affect ultimate product performance.

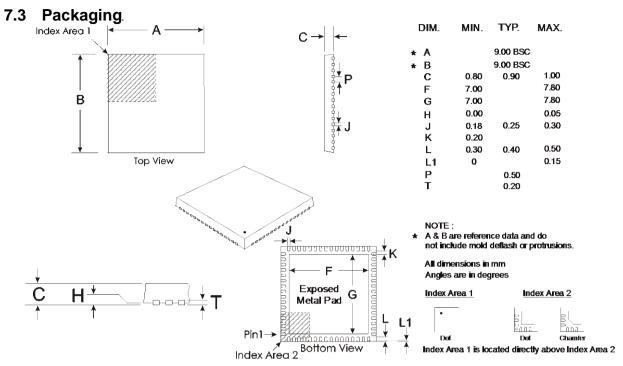
For a 6.25kHz/4800bps channel.

74 Combined performance of CMX7131/CMX7141 and CMX994 connected as shown

in Figure 6 using EV9942 and PE0201; measurement method from EN 301 166.

7.2 C-BUS Timing




Figure 31 C-BUS Timing

C-BUS	Timing	Notes	Min.	Тур.	Max.	Unit
t _{CSE}	CSN Enable to SCLK high time		100	-	-	ns
t_{CSH}	Last SCLK high to CSN high time		100	_	_	ns
t_{LOZ}	SCLK low to RDATA Output Enable Time		0.0	_	_	ns
t_{HIZ}	CSN high to RDATA high impedance		_	_	1.0	μs
t _{CSOFF}	CSN high time between transactions		1.0	_	_	μs
t_{NXT}	Inter-byte time		200	_	_	ns
t_{CK}	SCLK cycle time		200	_	_	ns
t_{CH}	SCLK high time		100	_	_	ns
t_{CL}	SCLK low time		100	_	_	ns
t_{CDS}	CDATA setup time		75	_	_	ns
t_{CDH}	CDATA hold time		25	_	_	ns
t_{RDS}	RDATA setup time		50	_	_	ns
t_{RDH}	RDATA hold time		0	_	_	ns

Notes:

- 1. Depending on the command, 1 or 2 bytes of CDATA are transmitted to the peripheral MSB (Bit 7) first, LSB (Bit 0) last. RDATA is read from the peripheral MSB (Bit 7) first, LSB (Bit 0) last
- 2. Data is clocked into the peripheral on the rising SCLK edge.
- 3. Commands are acted upon at the end of each command (rising edge of CSN).
- 4. To allow for differing μ C serial interface formats C-BUS compatible ICs are able to work with SCLK pulses starting and ending at either polarity.
- 5. Maximum 30pF load on IRQN pin and each C-BUS interface line.

These timings are for the latest version of C-BUS and allow faster transfers than the original C-BUS timing specification. The CMX7131/CMX7141 can be used in conjunction with devices that comply with the slower timings, subject to system throughput constraints.

Depending on the method of lead termination at the edge of the package, pull back (L1) may be present. L minus L1 to be equal to, or greater than 0.3mm

The underside of the package has an exposed metal pad which should ideally be soldered to the pcb to enhance the thermal conductivity and mechanical strength of the package fixing. Where advised, an electrical connection to this metal pad may also be required

Figure 32 Mechanical Outline of 64-pin VQFN (Q1)

Order as part no. CMX7131Q1

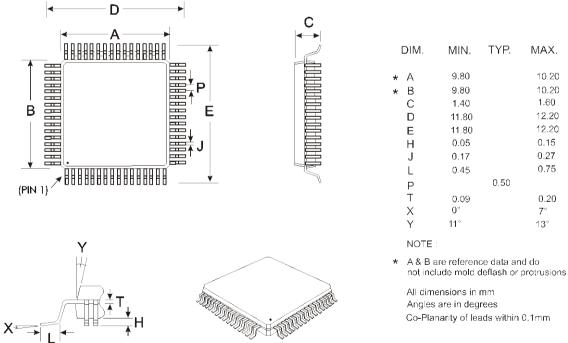


Figure 33 Mechanical Outline of 64-pin LQFP (L9)

Order as part no. CMX7131L9

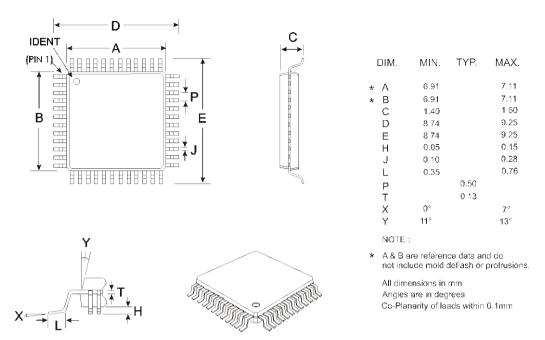
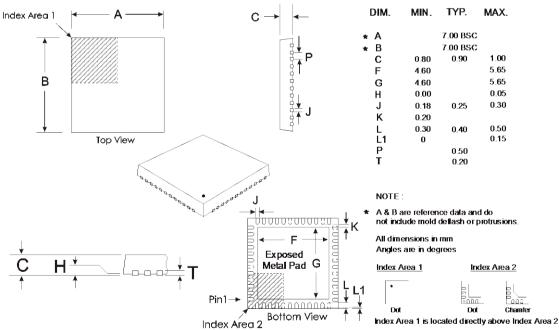



Figure 34 Mechanical Outline of 48-pin LQFP (L4)

Order as part no. CMX7141L4

Depending on the method of lead termination at the edge of the package, pull back (L1) may be present. L minus L1 to be equal to, or greater than 0.3mm

The underside of the package has an exposed metal pad which should ideally be soldered to the pcb to enhance the thermal conductivity and mechanical strength of the package lixing. Where advised, an electrical connection to this metal pad may also be required

Figure 35 Mechanical Outline of 48-pin VQFN (Q3)

Order as part no. CMX7141Q3

As package dimensions may change after publication of this datasheet, it is recommended that you check for the latest Packaging Information from the Datasheet page of the CML website: [www.cmlmicro.com].

About FirmASIC®

CML's proprietary *FirmASIC*® component technology reduces cost, time to market and development risk, with increased flexibility for the designer and end application. *FirmASIC*® combines Analogue, Digital, Firmware and Memory technologies in a single silicon platform that can be focused to deliver the right feature mix, performance and price for a target application family. Specific functions of a *FirmASIC*® device are determined by uploading its Function ImageTM during device initialization. New Function ImagesTM may be later provided to supplement and enhance device functions, expanding or modifying end-product features without the need for expensive and time-consuming design changes. *FirmASIC*® devices provide significant time to market and commercial benefits over Custom ASIC, Structured ASIC, FPGA and DSP solutions. They may also be exclusively customised where security or intellectual property issues prevent the use of Application Specific Standard Products (ASSP's).

Handling precautions: This product includes input protection, however, precautions should be taken to prevent device damage from electro-static discharge. CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and this product specification. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with this product specification. Specific testing of all circuit parameters is not necessarily performed.

