
CPM3-1200-0160A

Wolfspeed SiC Gen 3 MOSFET

Description

This is Wolfspeed's 3rd generation of high performance silicon carbide MOSFET in a packageless bare die format to be implemented into any custom module design. The high blocking voltage with low on-resistance, high speed switching with low capacitance make this MOSFET ideal for applications in renewable energy, high voltage DC-DC converter, power supplies and UPS.

G - Gate S - Source D - Drain

Package Types: Bare Die PN: CPM3-1200-0160A

Features

- Enhanced 3rd Generation SiC MOSFET
- High blocking voltage with low on-resistance
- Easy to parallel and simple to drive
- Resistant to latch-up

Applications

- HVAC motor drive
- Renewable energy
- High voltage DC-DC converter
- Switch mode power supplies
- UPS

Absolute Maximum Ratings

Stress beyond those listed under absolute maximum ratings may damage the device.

Parameter	Symbol		Rating	Unit
Drain-Source Voltage, across T _{vj}	V _{DS(max)}		1200	V
Maximum Gate-Source Voltage, Peak Transient Capability	V _{GS(max)}		-8/+19	V
Continuous Drain Current, V_{GS} = 15V, assumes die packaged in TO-247 package with typical $R_{th(j-c)}$ = 1.29K/W	I _D	T _c = 25°C	17	— A
		$T_{c} = 100^{\circ}C$	12	
Pulsed Drain Current, t_p limited by $T_{vj(max)}$			34	A
Virtual Junction and Storage Temperature			-55 to +150	°C
Maximum Processing Temperature, in non-reactive ambient	T _{proc}		325	°C

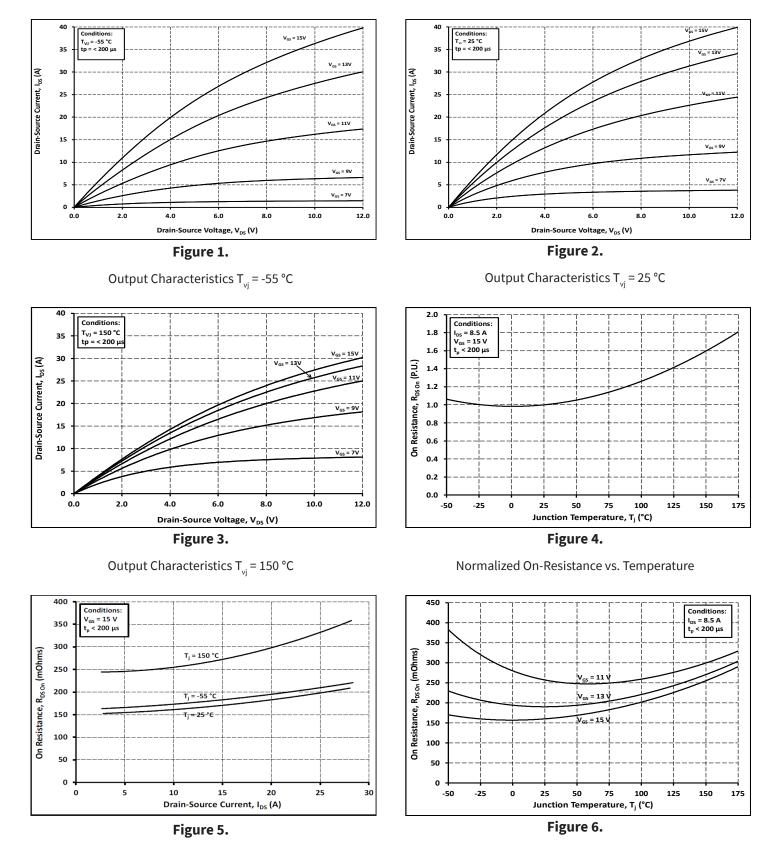
Recommended Operating Conditions

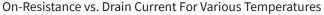
Parameter	Symbol	Rating	Unit
Recommended Operating Gate - Source Voltage	V _{GS(op)}	-4/+15	V

Rev. 01, 07-2022

Electrical Characteristics ($T_{vJ} = 25^{\circ}C$ unless otherwise specified)

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-Source Breakdown Voltage	V _{(BR)DSS}	1200			V	V _{GS} =0 V, I _{DS} =100 μA
	V _{GS(th)}	1.8	2.8	3.6	V	$V_{DS} = V_{GS}, I_{DS} = 2.33 \text{ mA}$
Gate Threshold Voltage			2.2		V	$V_{DS} = V_{GS}, I_{DS} = 2.33 \text{ mA}, T_{VJ} = 150^{\circ}\text{C}$
Zero Gate Voltage Drain Current	I _{DSS}		1	6	μΑ	V _{DS} = 1200V, V _{GS} = 0 V
Gate-Source Leakage Current	I _{GSS}		10	17	nA	$V_{GS} = 15 \text{ V}, V_{DS} = 0 \text{ V}$
Drain-Source On-State Resistance		112	160	208	mΩ	$V_{GS} = 15 \text{ V}, \text{ I}_{DS} = 8.5 \text{ A}$
	R _{DS(on)}		256			$V_{GS} = 15 \text{ V}, \text{ I}_{DS} = 8.5 \text{ A}, \text{ T}_{VJ} = 150^{\circ}\text{C}$
Transconductance	g _{fs}		5.2		- S	$V_{\rm DS} = 20 \text{ V}, I_{\rm DS} = 8.5 \text{ A}$
			4.9			$V_{\rm DS} = 20 \text{ V}, \text{ I}_{\rm DS} = 8.5 \text{ A}, \text{ T}_{\rm VJ} = 150^{\circ}\text{C}$
Input Capacitance	C _{iss}		632			V _{GS} = 0 V, V _{DS} = 1000V
Output Capacitance	C _{oss}		39		pF	f = 1 MHz $V_{ac} = 25 \text{mV}$
Reverse Transfer Capacitance	C _{rss}		3			AC
C _{oss} Stored Energy	E _{oss}		22.5		μJ	V _{DS} = 1200 V, f = 1 MHz
Internal Gate Resistance	R _{G(int)}		8		Ω	f = 1 MHz, V _{AC} = 25mV
Gate to Source Charge	Q _{gs}		9			y = 200 y y = 4 y/15 y
Gate to Drain Charge	Q _{gd}		12		nC	V _{DS} = 800 V, V _{GS} = -4 V/15 V I _{DS} = 8.5 A
Total Gate Charge	Q _g		38		1	

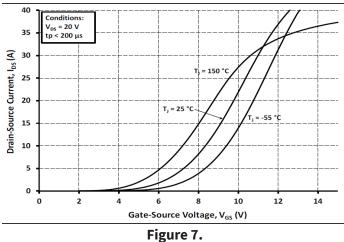

Reverse Diode Characteristics (T $_{vJ}$ = 25 °C unless otherwise specified)


Characteristics	Symbol	Тур.	Max.	Unit	Test Conditions	
Diode Forward Voltage	V	4.5		V	$V_{gS} = -4 V, I_{SD} = 3 A$	
Didde for ward voltage	V _{SD}	4.0		V	V _{GS} = -4 V, I _{SD} = 3 A, T _{VJ} = 150 °C	
Reverse Recovery Time	t _{rr}	34		ns	$V_{GS} = -4 V, I_{SD} = 8.5 A, V_{R} = 800 V$	
Reverse Recovery Charge	Q _{rr}	194		nC		
Peak Reverse Recovery Current	I _{rrm}	8		A	$dI_{t}/d_{t} = 844 \text{ A}/\mu\text{s}, T_{vJ} = 150 \text{ °C}$	

Rev. 01, 07-2022

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package


Rev. 01, 07-2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

CPM3-1200-0160A

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package

-10

-9

-8

-7

-6

-5

-4

V_{GS} = 0

-3

-2

-1

Condition

T_{vi} = -55°C t_p < 200 μs

0

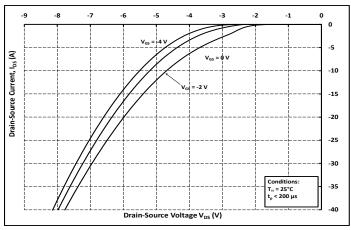
0

-5

-10

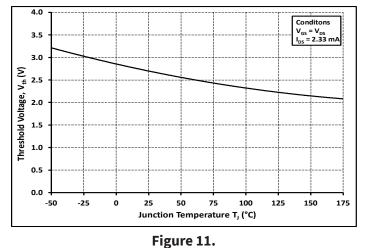
-15

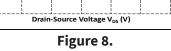
-20


-25

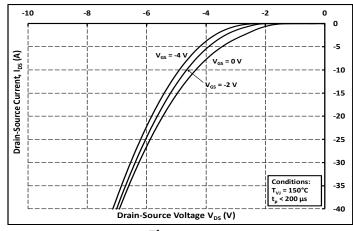
-30

-35


40



Body Diode Characteristic at T_{vi} = 25 °C



Body Diode Characteristic at T_{vi} = -55 °C

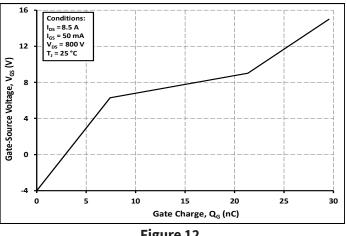
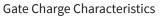
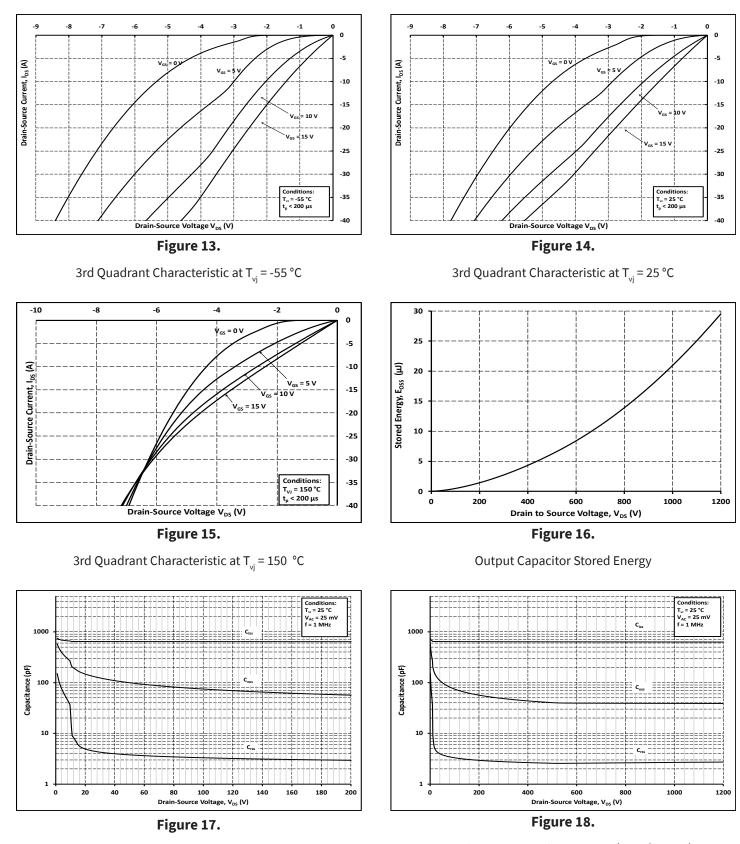



Figure 12.

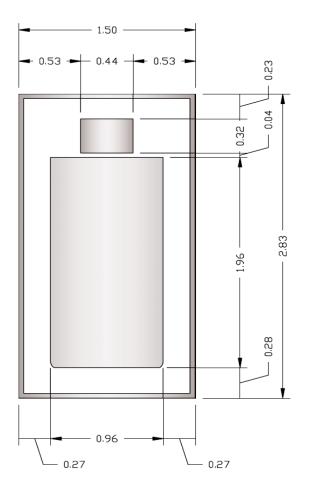

4

Rev. 01, 07-2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

Typical Performance

All the graphs are based on a die placed in a TO-247-4L package



Capacitances vs. Drain-Source Voltage (0-650V)

Rev. 01, 07-2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

Product Dimensions CPM3-1200-0160A

Product Dimensions CPM3-1200-0160A

Parameter	Typical	Units		
Die Size (L x W)	1.50 x 2.83	mm		
Exposed Source Pad Metal Dimensions	1.96 x 0.96 (x1)	mm		
Gate Pad Dimensions	0.44 x 0.32	mm		
Chip Thickness ¹	180 ± 20	μm		
Frontside (Source) metalization (Al)	4	μm		
Frontside (Gate) metalization (Al)	4	μm		
Backside (Drain) metalization (Ni:Au)	0.8 / 0.1	μm		

¹SiC wafer thickness

Rev. 01, 07-2022

6

Product Ordering Information

Order Number	Description Package	
CPM3-1200-0160A-FY6	1200V/160m Ω SiC MOSFET G3 IND UV MUL	Bare Die Product

Revision History

Revision History	Date of Change	Brief Summary
1	07/27/2022	Initial Release.

Rev. 01, 07-2022

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed. com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power

© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 01, 07-2022