

Description

CRM60GK10E4 are 3-phase Integrated Power Modules (IPM) designed for advanced appliance motor drive applications such as fan, water pump, refrigerator, etc.

CRM60GK10E4 Integrated 6 low-loss IGBTs and FRDs, 3-phase half bridge high voltage gate drivers in a familiar package. The modules are optimized for low EMI characteristics.

CRM60GK10E4 internal integration of undervoltage, short circuit and other protection functions, providing excellent protection and a wide range of safe working area. Since each phase has an independent negative DC terminal, its current can be detected separately.

Features

- 600V/10A three-phase inverter
- Works with 3.3V/5V MCU
- Built-in high voltage gate drive circuit
- Integrated over temperature protection
- Integrated under-voltage protection
- Integrated high accurate over-current protection
- Integrated enable shut down function
- Integrated double high interlock function
- Integrated bootstrap functionality
- Three independent negative DC terminals are used for inverter current detection
- Isolation rating: 1500 Vrms/min

Applications

- Freezer compressor
- Pumps

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Quantity	VOT
CRM60GK10E4	CRM60GK10E4	DIP-25A	Tube	308	Yes

Internal Electrical Schematic

DIP-25A

Module Pin-Out Description

Top view

Pin Number	Pin Name	Description	
1	Р	DC Bus Voltage Positive	
2	U	Output - Phase U, High Side Floating Supply Offset U	
3	NU	Phase U Low Side Source	
4	V	Output - Phase V, High Side Floating Supply Offset V	
5	NV	Phase V Low Side Source	
6	W	Output - Phase W, High Side Floating Supply Offset W	
7	NW	Phase W Low Side Source	
8	COM	Logic Ground	
9	/FO,/SD _w ,VOT	Fault output ,W phase shut down,Temperature Output	
10	CSC	External capacitance, Over current shutdown input	
11	VCCW	W phase IC supply voltage	
12	LINW	Logic Input for Low Side Gate Driver - Phase W	
13	HINW	Logic Input for High Side Gate Driver - Phase W	
14	VBW	High Side Floating Supply Voltage W	
15	/SD _V	V phase shut down	
16	VCCV	V phase IC supply voltage	
17	LINV	Logic Input for Low Side Gate Driver - Phase V	
18	HINV	Logic Input for High Side Gate Driver - Phase V	
19	VBV	High Side Floating Supply Voltage V	
20	/SD _U	U phase shut down	
21	VCCU	U phase IC supply voltage	
22	LINU	Logic Input for Low Side Gate Driver - Phase U	
23	HINU	Logic Input for High Side Gate Driver - Phase U	
24	COM	Logic Ground	
25	VBU	High Side Floating Supply Voltage U	

Application Circuit

Remark:

- 1. To prevent malfunction, the wiring of each input should be as short as possible.
- 2. Input drive is High-Active type.There is a $20k\Omega$ (typ.) pull-down resistor integrated in the IC input circuit.And adding RC filter circuit to the input will prevent the surgenoise caused by incorrect input.
- 3. To prevent surge damage, it is recommended to add a high-frequency non-inductive flat capacitor (0.1uF to 0.22uF)between P and N. The cable connection of the capacitor should be as short as possible.
- 4. The line between the current detection resistor and the IPM should be as short as possible, otherwise the large surge voltage generated by the connecting inductor may cause damage.
- 5. All capacitors should be mounted as close to the terminals of the IPM as possible.
- 6. FO output is open drain type.It should be pulled up to the positive side of 5V power supply by a resistor of about $10k\Omega$.
- 7. The time constant Rf and Cf of the protection circuit should be selected in the range of 1.5-2.0 μs .

Package Outline

DIP-25A UNIT:mm

