

CSE7780 用户手册

Rev.1.1

通讯地址:深圳市南山区蛇口南海大海 1079 号花园城数码大厦 A座 9楼

邮政编码: 518057

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com

历史修改记录

时间	记录	版本号
2011-9-30	初版发行	1.0
2011-11-29	修改有功功率 offset 校正方法; 修改电流通道 1、电流通道 2和电压通道管脚功能描述。	1.1

目录

历	史修改记录	2
目	录	3
1	· 芯片介绍	4
	l.1 芯片特性 l.2 功能简介	
	1.3 功能框图	
1	1.4 管脚定义	
1	1.5 典型应用	7
2	系统功能	8
-	2.1 电源监测	5
	2.2 系统复位	
	2.3 模数转换	
2	2.4 有功功率	
2	2.5 有效值	9
	2.6 能量计算	
	2.7 通道切换	
	2.8 频率测量	
	2.9 过零检测	
4	2.10 中断 2.10.1 SPI 读 RIF 寄存器过程	
	2. 10. 1 SIT 医 KIT 司行船过程	
	2. 10. 3 中断处理过程	
2	2.11 寄存器	
	2.11.1 寄存器列表	
	2.11.2 校表参数寄存器	14
	2.11.3 计量参数寄存器	
	2.11.4 中断状态寄存器	
	2.11.5 系统状态寄存器	
3	校表方法	23
3	3.1 概述	2
	3.2 校表流程和参数计算	
	3.2.1 校表流程	23
	3.2.2 参数设置	
	3.2.3 有功校正	
_	3.2.4 有效值校正	
3	3.3 举例	27
4	通讯接口	29
_	4.1 SPI 接口信号说明	29
	4.2 SPI 帧格式	
	4.3 SPI 写操作	29
4	1.4 SPI 读操作	31
5	电气特性	32
6	芯片封装	34
v	- L / 1 ~ L * ~ L	,

CSE7780 芯片介绍

1 芯片介绍

1.1 芯片特性

- √ 计量
- 提供3路∑-△ADC
- 有功电能误差在 2000:1 的动态范围内<0.1%, 支持 IEC62053-22:2003 标准
- 提供一路电压、两路电流有效值测量,在 400:1 的动态范围内,有效值误差小干<0.5%
- 潜动阀值可调
- 提供反相功率指示
- 提供电压通道频率测量
- 提供电压通道过零检测

√ 软件校表

- 电表常数(HFConst)可调
- 提供 A/B 通道的增益校正
- 提供 A/B 通道的相位校正
- 提供A/B 通道的有功offset校正
- 提供A/B 通道的有效值offset校正
- 提供小信号加速校正功能
- 提供校表数据自动校验功能
- √ 提供 SPI 接口
- √ 具有电源监测功能
- √ 单+5V 电源供电,功耗为 30mW
- √ 内置 2. 45V±3%参考电压,温度系数典型值为 25ppm/℃
- ✓ 采用 SSOP24 无铅封装

1.2 功能简介

CSE7780 能够测量有功功率、有功电能,并能同时提供两路独立的有功功率和电流有效值、电压有效值、线频率,过零中断等,可实现灵活的防窃电方案。CSE7780 支持全数字的增益、相位和 offset 校正;有功电能脉冲从 PF 管脚输出。CSE7780 提供 SPI 串行接口,方便与外部 MCU 之间进行通讯。CSE7780 内部的电源监控可以保证上电和断电时芯片可靠性工作。

1.3 功能框图

Rev1.1 第 4 页, 共 34 页

CSE7780 芯片介绍

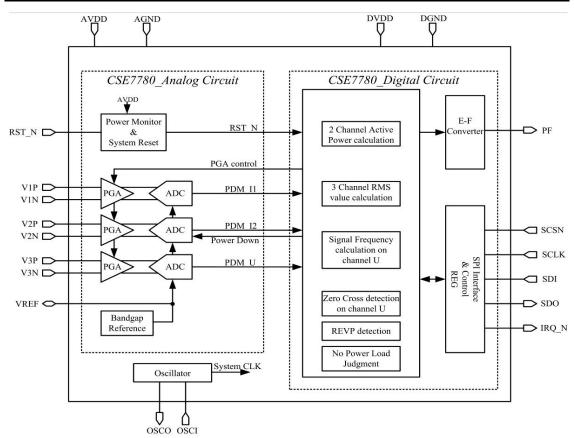


图 1 芯片原理框图

1.4 管脚定义

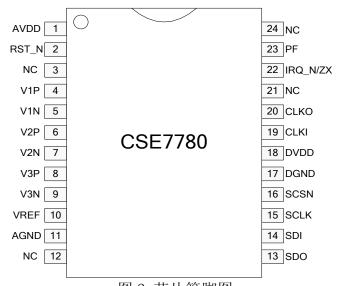


图 2 芯片管脚图

表 1 CSE7780 管脚功能说明

引脚	名称	特性	功能描述
1	AVDD	电源	模拟电源; 需要外接 10 μ F 和 0.1 μ F 的电容进行去耦,正常应用电压范围 4.5V~5.5V。

2	RST_N	输入	复位引脚; 低有效, 复位内部所有寄存器。
3	NC	_	不连接。
			电流通道1的模拟输入引脚;采用全差分输入方式。
			PGA 通道允许输入最大值(峰峰值)
	****	44.5	$\pm 700 \text{mV}$
4, 5	V1P, V1N	输入	$\pm 350 \text{mV}$
			4 ±175mV
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			电流通道 2 的模拟输入引脚;采用全差分输入方式,正常
6, 7	V2P, V2N	输入	应用时通道允许输入最大值(峰峰值)同电流通道1功能
0, 1	V 21 , V 21V	1111/	描述。
			电压通道的模拟输入引脚;采用全差分输入方式,正常应
9.0	V3P, V3N	输入	用时通道允许输入最大值(峰峰值)同电流通道1功能描
8, 9	VOF, VON	和八	用的
			②. 45V 基准电压的输入/输出引脚:外部基准电压可通过此
1.0	VDDD	输入/	
10	VREF	输出	引脚接入芯片,无论使用内部还是外部基准电压都需要外
11	ACNID	et ME	接 0.1 μ F 的电容进行去耦。
11	AGND	电源	模拟地。
12	NC	<u> </u>	不连接。
13	SD0	输出	SPI 串行数据输出口 SDO; 复位后输出高阻态。
14	SDI	输入	该引脚为 SPI 串行数据输入。
15	SCLK	输入	该引脚为 SPI 串行时钟输入。
16	SCSN	输入	该引脚为 SPI 片选信号;低有效,内部悬空,由外部上
10	Sesiv	11107	拉。
17	DGND	电源	数字地。
18	DVDD	电源	数字电源;需要外接 10 μ F 和 0.1 μ F 的电容进行去耦,正
10	עטיט	电源	常应用电压范围 4.5V~5.5V。
19	CLKI	输入	外部晶体的输入端;或者外部系统时钟的输入;晶体频率
19	CLKI	和八	典型值为 3.579545MHz。
00	CI VO	#A III	外部晶体的输出端; 当 0SCI 外接时钟时, 0SC0 引脚能驱
20	CLKO	输出	动一个 CMOS 负载。
21	NC	_	不连接。
			中断/过零检测输出引脚;复位后为中断引脚;
		/.A . I .	Zxcfg=0(EMUCON-Bit7)时,作为中断请求 IRQ_N;
22	IRQ_N/ZX	输出	Zxcfg=1(EMUCON-Bit7)时,作为 ZX: 电压信号的过零输
			出。
			有功电能校验脉冲输出:默认状态为低电平输出,其频率
23	PF	输出	反映瞬时有功功率的大小,具有 5mA 的驱动能力。
24	NC		不连接。
1	1.0		1.52.

第6页,共34页

CSE7780 芯片介绍

1.5 典型应用

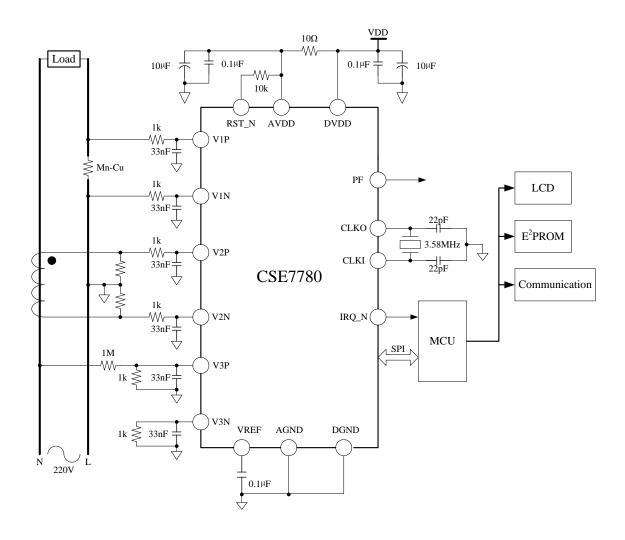


图 3 单相防窃电表典型应用

Rev1.1

注: 在 UI 通道 PGA 都为=1 时, Umax*Imax≤VREF 2/34.2;

Umax: 电压通道引脚上允许输入的最大信号量的峰峰值; Imax: 电流通道引脚上允许输入的最大信号量的峰峰值;

建议: 电压通道输入信号量 Urms 在 180mV 左右。

2 系统功能

2.1 电源监测

CSE7780片内包含一个电源监测电路,连续对模拟电源(AVDD)进行监控。 当电源电压低于4V±0.1V时芯片被复位,当电源电压高于4.3V±0.1V时芯片正常 工作。

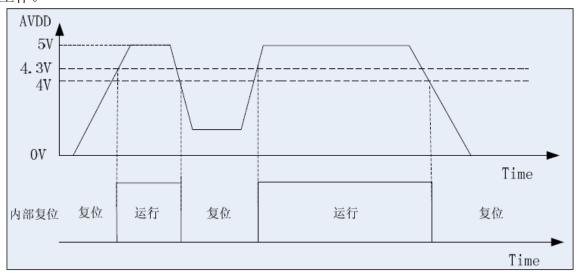


图 4 电源检测特性

为保证芯片正常工作,AVDD的波动不应超过5V±5%。

2.2 系统复位

CSE7780 支持两种复位方式:

- 上下电;
- 外部引脚复位。

上述任一复位发生时,寄存器恢复到复位初值,外部引脚电平恢复到初始状态。

相关寄存器:

系统状态寄存器中的 RST 是复位标志: 当外部 RST_N 引脚或者上电复位结束时,该位置 1,读后清零。可用于复位后校表数据请求。

2.3 模数转换

CSE7780包括三路ADC,一路用于相线电流采样,一路用于零线电流采样,一路用于电压采样。配置系统控制寄存器中的ADC20N 寄存器位打开/关闭电流通道B。

ADC采用全差分方式输入,电流、电压通道最大信号输入幅度为峰值700mV。通过配置系统控制寄存器(SYSCON 0x00H)中的 Bit9~Bit7、Bit5~Bit0 位,可以分别对三路 ADC 配置放大倍数,放大倍数 5 档可选: 1、2、4、8、16。电流通道 A 的增益放大倍数默认为 16 倍。

2.4 有功功率

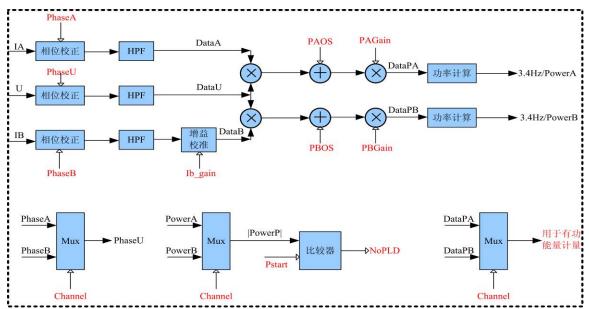


图 5 有功功率框图

CSE7780提供两路有功功率的计算和校正,分别为电流A和电压有功功率计算和校正、电流B和电压有功功率计算和校正。

寄存器也包含A/B两套相位校正、有功Offset校正、有功增益校正和平均功率寄存器,另外为了保证两个通道的一致性,还提供了电流通道B的增益校正寄存器IBGain。

当前用于判断潜动和启动的平均有功功率(PowerP)通道,以及当前用于计算有功电能的瞬时有功功率通道(DataP),由特殊命令决定。

用户可以通过特殊命令对通道选择进行配置,配置的结果可以通过 Channel_sel 寄存器位进行查询。图中的数字高通滤波器主要是用于去除电流、 电压采样数据中的直流分量。

2.5 有效值

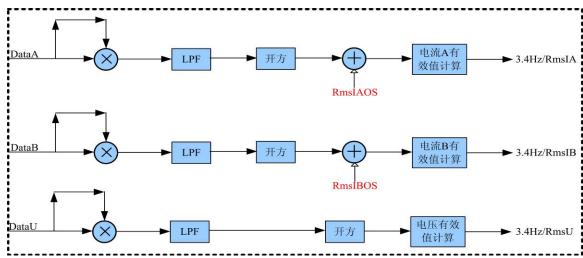


图6 有效值计算框图

CSE7780提供三个通道的真有效值参数输出,包括RmsU、RmsIA、RmsIB。字长为24bits,3.4Hz更新一次。此外还包括两个有效值Offset寄存器:RmsIAOS和RmsIBOS。

注:通道B增益校正(IBGain)会影响到RmsIB的输出,其他的相位校正、功率增益校正、功率offset校正等不会影响有效值的计算结果。

2.6 能量计算

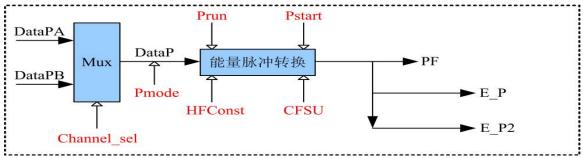


图 7 能量计算

能量脉冲输出:

脉冲输出,也即校表脉冲输出,可以直接接到标准电能表进行误差比对。 PF输出满足下面时序关系:

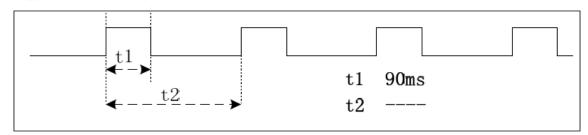


图 8 PF输出时序

注意: 当脉冲输出周期小于180ms时, 脉冲以50%的占空比输出。

PFCnt、HFConst、脉冲输出、能量寄存器的关系:

当PFCnt(0x20H)=HFConst(0x03H)时,PF 有一个脉冲输出,同时能量寄存器EnergyP(0x29H)和EnergyP2(0x2AH)加1。

脉冲输出、能量寄存器和PRun以及PStart的关系:

有功能量寄存器和PF输出还受到PRun以及PStart的控制。

当PRun=0或者 | P | 小于PStart时,PF不输出脉冲,PFCnt和有功能量寄存器不增加。

脉冲输出加速:

为加快小信号校正速度,提供脉冲输出加速功能。在小信号校正时可以配置 EMUCON(0x01H)寄存器的CFSUEN和CFSU[1:0]位,使PF的输出频率提高,最快可 以提高16倍。

反向指示:

当有功功率为负时,EMUStatus寄存器的REVP位会变为1,REVP位与PF脉冲同步更新。

2.7 通道切换

CSE7780专门提供一路ADC用于零线电流有效值和有功功率测量,并提供相线电流和零线电流通道的切换功能,供用户选择用某一路电流计量有功电能。

电流通道切换是通过特殊命令字来实现的。通过寄存器位Channel_sel可以查询配置结果。

2.8 频率测量

CSE7780可以直接输出线频率参数(Ufreq 0x25H),测量基波频率,测量带宽250Hz。

2.9 过零检测

通过配置ZXCFG(EMUCON.7)选择引脚IRQ_N/ZX开启/关闭过零输出。 通过配置ZXD1(EMUCON.9)、ZXD0(EMUCON.8)寄存器位选择四种过零输出 方式。

2.10 中断

当通信接口选择为SPI时,CSE7780中断资源包括1个中断允许寄存器IE、2个中断状态寄存器IF和RIF、一个复用的中断请求管脚IRQ_N/ZX。

2.10.1 SPI 读 RIF 寄存器过程

MCU读RIF操作的时序如图9 所示:

1)在SCLK时钟的驱动下,MCU先通过SDI引脚发出读寄存器命令,在读命令字节最后一个比特(LSB)的SCLK下降沿清中断状态寄存器IF,而此时RIF寄存器内容保持不变,同时IRQ N由低电平变为高电平。

第 11 页,共 34 页

2) 芯片响应读RIF命令,在SCLK时钟的驱动下,将RIF寄存器内容移出SD0引脚。RIF在此过程中始终保持读操作前的值,而IF寄存器在SPI该过程中能接收新的中断。

3)在最后一个比特移出SD0后,SCSN由低至高时将RIF寄存器的内容和IF同步。

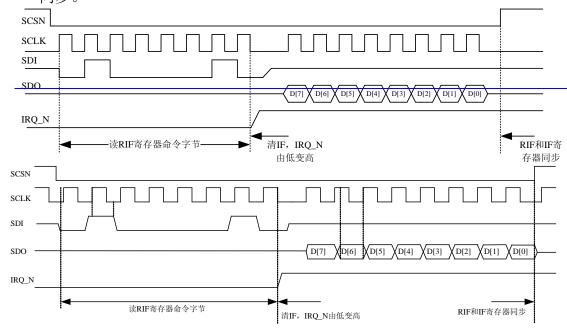


图 9 读 RIF 寄存器时序图

除了读RIF寄存器操作,其他情况下IF和RIF都保持一致。为了在SPI读中断标志过程中不丢失中断,在中断处理程序中推荐用户使用RIF寄存器。

2.10.2 中断请求信号 IRQ N

IRQ_N/ZX引脚为IRQ_N和过零检测输出ZX复用,通过配置EMUCON寄存器(0x01H)的ZXCFG位确定该引脚的用途。

当中断允许寄存器相应的中断允许位使能且中断事件发生时,IRQ_N引脚为低电平。当CPU通过SPI接口读RIF,先写命令寄存器,在写完命令字节最后一个比特(LSB)的SCLK下降沿,IRQ N引脚恢复为高电平,如图9所示。

2.10.3 中断处理过程

硬件: CSE7780的IRQ_N通常和MCU的外部中断管脚/INT相连,当IRQ_N由高变低时MCU产生/INT中断。MCU作为SPI主机,CSE7780作为SPI从机。

中断处理程序:

步骤一: MCU中断初始化

- 1. MCU读CSE7780 RIF, 清IF和RIF中断标志;
- 2. 配置CSE7780 IE寄存器, 使能需要的中断允许位以产生IRQ N;
- 3. MCU使能/INT外部中断,等待CSE7780中断事件发生,IRQ_N输出触发/INT中断,跳入/INT 的中断入口地址。

步骤二: MCU 中断服务程序

1. 关闭MCU全局中断和/INT中断;

第12页,共34页

2. MCU通过SPI读RIF寄存器,清IF和RIF寄存器,将IRQ_N恢复到高电平:

- 3. MCU通过判断RIF的中断标志来判断CSE7780的中断源,转而执行相应的中断处理程序。在此过程中,CSE7780若发生新的中断事件,IF相关标志置位,IRQ N也会由高变低,触发MCU /INT中断标志置位,记录了此事件;
- 4. 执行完中断处理程序,MCU打开全局中断和/INT中断,并恢复现场后中断返回。中断返回后,若检测到/INT中断标志,程序又进入到外部中断ISR中,重复2。若未检测到/INT中断标志,说明中断处理过程中未发生中断事件,程序继续运行。

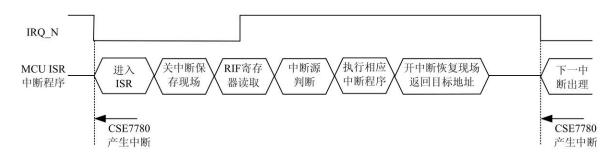


图 10 CSE7780 中断处理过程

2.11 寄存器

2.11.1 寄存器列表

表 2 CSE7780 寄存器列表

地址	名称	字长	复位值	功能描述	写保护	R/W
	校表参数和计量控制寄存器					
00Н	SYSCON	2	0080h	系统控制寄存器	Yes	R/W
01H	EMUCON	2	0001h	计量控制寄存器	Yes	R/W
02H	HFConst	2	1000h	脉冲频率寄存器	Yes	R/W
03H	Pstart	2	0060h	有功起动功率设置	Yes	R/W
04H	保留					
05H	PAGain	2	0000h	通道 A 功率增益校正寄存器	Yes	R/W
06H	PBGain	2	0000h	通道 B 功率增益校正寄存器	Yes	R/W
07H	PhaseA	1	00h	通道 A 相位校正寄存器	Yes	R/W
08H	PhaseB	1	00h	通道 B 相位校正寄存器	Yes	R/W
09Н	保留					
OAH	PAOS	2	0000h	通道 A 有功功率 Offset 校正	Yes	R/W
0BH	PB0S	2	0000h	通道 B 有功功率 Offset 校正	Yes	R/W
0CH	保留					
ODH	保留					
0EH	RmsIAOS	2	0000h	电流通道 A 有效值 Offset 补偿	Yes	R/W
0FH	RmsIBOS	2	0000h	电流通道 B 有效值 Offset 补偿	Yes	R/W
10H	IBGain	2	0000h	电流通道 B 增益设置	Yes	R/W
	计量参数和状态寄存器					
20H	PFCnt	2	0000h	快速有功脉冲计数	Yes	R/W

21H	保留					
22H	RmsIA	3	000000h	通道 A 电流的有效值		R
23H	RmsIB	3	000000h	通道 B 电流的有效值		R
24H	RmsU	3	000000h	电压有效值		R
25H	Ufreq	2	0000h	电压频率		R
26H	PowerA	4	00000000h	有功功率 A		R
27H	PowerB	4	00000000h	有功功率 B		R
28H	保留					
29H	E_P	3	000000h	有功能量,读后不清零		R
2AH	E_P2	3	000000h	有功能量,读后清零		R
2BH	保留					
2CH	保留					
2DH	EMUStatus	3	00EF1Eh	计量状态及校验和寄存器(3)		R
			中	功寄存器		
40H	IE	1	00h	中断允许寄存器(4)	Yes	R/W
41H	IF	1	00h	中断标志寄存器(5)		R
42H	RIF	1	00h	复位中断状态寄存器(6)		R
			系统	於状态寄存器		
43H	SysStatus	1		系统状态寄存器		R
44H	Rdata	4		上一次 SPI 读出的数据		R
45H	Wdata	2		上一次 SPI 写入的数据		R
7FH	DeviceID	3	778000h	芯片 ID		R

注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。

2.11.2 校表参数寄存器

系统控制寄存器

Rev1.1 第14页, 共34页

表 3 系统控制寄存器

	SYSCON(SYSTEM C	ontrol Register) 地址:0x00H 默认值: 0080H
位	名称	功能描述
15-10	保留	不可写, 读出为 0。仍按照 2 个 byte 寄存器操作。
9, 5, 4	PGAIB[2:0]	电流通道 B 模拟增益选择位: PGAIB[2:0]=1XX, 电流通道 B 的 PGA=16; PGAIB[2:0]=011, 电流通道 B 的 PGA=8; PGAIB[2:0]=010, 电流通道 B 的 PGA=4; PGAIB[2:0]=001, 电流通道 B 的 PGA=2; PGAIB[2:0]=000, 电流通道 B 的 PGA=1。
8, 3, 2	PGAU[2:0]	电压通道模拟增益选择位,配置同 PGAIB。
7, 1, 0	PGAIA[2:0]	电流通道 A 模拟增益选择位,配置同 PGAIB。
6	ADC20N	=1,表示 ADC 电流通道 B 开启; =0,表示 ADC 电流通道 B 关闭,输出恒为 0。

计量控制寄存器

第15页,共34页

表 4 计量控制寄存器

EMUC	CON(Energy Measu	re Control Register) 地址:0x01H 默认值: 0001H
位	名称	功能描述
15-14	保留	读出为 0。
13-12	保留	读出为 0。
11-10	PMode[1:0]	有功能量累加方式选择: PMode =2'b00,正反向功率都参与累加,累加方式是代数和方式,负功率有 REVP 符号指示; PMode =2'b01,只累加正向功率; PMode =2'b10,正反向功率都参与累加,累加方式是绝对值方式,无负功率指示; QMode =2'b11,保留,模式同 PMode =2'b00 相同。
9	ZXD1	ZX 输出初始值为 0,根据 ZXD1 和 ZXD0 的配置输出不同的波形 =0,表示仅在选择的过零点处 ZX 输出发生变化; =1,表示在正向和负向过零点处 ZX 输出均发生变化。
8	ZXD0	=0,表示选择正向过零点作为过零检测信号; =1,表示选择负向过零点作为过零检测信号。
7	ZXCFG	=0,引脚 IRQ_N/ZX 作为 IRQ_N; =1,引脚 IRQ_N/ZX 作为 ZX。
6	HPFIOFF	=0,使能 IA 和 IB 通道数字高通滤波器; =1,关闭 IA 和 IB 通道数字高通滤波器。
5	HPFU0FF	=0,使能 U 通道数字高通滤波器; =1,关闭 U 通道数字高通滤波器。
4	CFSUEN	CFSUEN 是 PF 脉冲输出加速模块的控制位 =0, 关闭脉冲加速模块,脉冲正常输出; =1, 使能脉冲加速模块,脉冲的输出速率提高 2^(CFSU[1:0]+1)倍。
3-2	CFSU[1:0]	该位和 CFSUEN 配合使用。
1	保留	读出为0。
0	PRUN	=0, 关闭 PF 脉冲输出和有功电能寄存器累加; =1, 使能 PF 脉冲输出和有功电能寄存器累加,默认为 1。

脉冲频率寄存器

HFConst			
W/R	Bit15	141	Bit0

HFConst 是16位无符号数,做比较时,将其与快速脉冲计数寄存器PFCnt寄存器值做比较,如果大于等于HFConst的值,那么就会有PF脉冲输出。

潜动与启动阈值寄存器

Pstart	地址:0x03H 默认值:0060H			
W/R	Bit15	141	Bit0	

启动阈值可由PStart寄存器配置。它是16 位无符号数,做比较时,将其与PowerP (32bit有符号数)的高24位的绝对值进行比较,进行起动判断。 |PowerP|小于PStart时,PF不输出脉冲。

增益校正寄存器

PAGain	地址:0x05H 默认值:0000H				
W/R	Bit15	141	Bit0		

PBGain			
W/R	Bit15	141	Bit0

包括两个寄存器: PAGain和PBGain,为二进制补码格式,最高位为符号位。PAGain用于电流通道A和电压通道有功功率的增益校正。PBGain用于电流通道B和电压通道有功功率的增益校正。校正范围为正负100%。对于电流通道A,校正公式为: P1=P0(1+η_{PAGain})。对于电流通道B,校正公式为: P1=P0(1+η_{PBGain})。其中η_{PAGain}和η_{PBGain}分别为PAGain和PBGain增益校正寄存器的归一化值。

相位校正寄存器

PhaseA	地址:0x07H 默认值:00H		
W/R	Bit7	6···5	Bit4···Bit0
	符号位	保留位	数据位

PhaseB	地址:0x08H 默认值:00H		
W/R	Bit7 65 Bit4Bit0		Bit4…Bit0
	符号位	保留位	数据位

包括IA和U通道的相位校正PhaseA以及IB和U通道的相位校正PhaseB。这两个寄存器均为带符号二进制补码,Bit0~Bit4和Bit7有效,其中Bit7为符号位。

1 LSB 代表 1/895kHz=1. 12us/LSB 的延时,在 50Hz 下,1LSB 代表 1. 12μs×360°×50/10°=0.02°/LSB 相位校正。相位校正范围:50Hz 下,±0.62°。

有功 Offset 校正寄存器

PAOS			
W/R	Bit15	141	Bit0

PB0S	地址:0x0BH 默认值:0000H		
W/R	Bit15	141	Bit0

有功OFFSET 校正适合小信号的精度校正。这两个寄存器均为二进制补码格式,最高位为符号位。

PAOS 寄存器为电流通道 A 和 U 通道有功功率 Offset 校准值。PBOS 寄存器为电流通道 B 和 U 通道有功功率 Offset 校准值。

有效值Offset校正寄存器

RmsIAOS	地址:0x0EH 默认值:0000H

W/R	Bit15	14·····1	Bit0

RmsIBOS	地址:0x0FH 默认值:0000H		
W/R	Bit15	141	Bit0

有效值0ffset校正寄存器用于电流有效值小信号精度的校正。这两个寄存器均为二进制补码格式,最高位为符号位。

RmsIAOS寄存器为电流A有效值Offset校准值,RmsIBOS寄存器为电流B有效值Offset校准值。

电流通道B 增益设置

IBGain			
W/R	Bit15	141	Bit0

电流通道B增益设置寄存器用于防窃电表两路电流通道的一致性校正。一致性校正在100%Ib一点校正。使用方法见校表方法。

通道B电流增益寄存器采用二进制补码形式,最高位为符号位,表示范围(-1,+1)。

如果IBGain≥2¹⁵,则η_{IBGain}=(IBGain-2¹⁶)/2¹⁵; 否则η_{IBGain}=IBGain/2¹⁵。 通道B电流在校正之前为IB1,校正之后为IB2,两者关系为: IB2=IB1+IB1*η_{IBGain}。

2.11.3 计量参数寄存器

快速脉冲计数器

	——————————————————————————————————————				
PFCnt					
W/R	Bit15	141	Bit0		

为了防止上下电时丢失电能,掉电时MCU将寄存器PFCnt值读回并进行保存,然后在下次上电时MCU将这些值重新写入到PFCnt中去。

当快速脉冲计数寄存器PFCnt值等于HFConst值时,PF会有脉冲溢出,能量寄存器的值会相应的加1。

电流电压有效值寄存器

RmsIA	地址:0x22H 默认值:000000H		
R	Bit23	22·····1	Bit0

RmsIB			
R	Bit23	22·····1	Bit0

RmsU			
R	Bit23	22••••1	Bit0

有效值Rms是24位有符号数,最高位为0表示有效数据,最高位为1时读数做零处理,参数更新的频率为3.4Hz。

电压频率寄存器

Ufreq	地址:0x25H 默认值:0000H			
R	Bit15 141 Bit0			

主要测量基波频率,测量带宽250Hz左右。频率值是一个16位的无符号数,参数格式化公式为: f=CLKIN/8/Ufreq。

例如,如果系统时钟为CLKIN=3.579545MHz,Ufreq=8948,那么测量到的实际频率为:f=3579545/8/8948=49.9908Hz。

电压频率测量值更新的周期为0.7s。

平均有功功率寄存器

PowerA	地址:0x26H 默认值:00000000H		
R	Bit31	Bit31 301	

PowerB	地址:0x27H 默认值:0000000H		
R	Bit31	Bit0	

有功功率参数PowerA/B是二进制补码格式,32位数据,其中最高位是符号位。功率参数更新的频率为3.4Hz。

PowerA 是 U 通道和 IA 通道的平均有功功率寄存器, PowerB 是 U 通道和 IB 通道的平均有功功率寄存器。

有功电能寄存器

,,,,, —,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
E_P	地址:0x29H 默认值:000000H		
R	Bit23 221		Bit0

E_P寄存器是累加型有功能量寄存器。在0xFFFFFF 溢出到0x000000时,会产生溢出标志PEOIF(参见IF 0x41H)。

电能参数是无符号数,E_P的寄存器值代表PF脉冲的累加个数。寄存器最小单位代表的能量为1/ECkWh。其中EC为脉冲常数。

有功电能寄存器2

E_P2	地址:0x2AH 默认值:000000H		
R	Bit23	Bit0	

E P2寄存器是清零型有功能量寄存器。

计量状态寄存器

表5 计量状态寄存器

	EMUStatus(EMU ST	TATUS Register) 地址:0x2DH 默认值: 00EF1EH	
位	名称	功能描述	
23-11	保留	读出为 0	
21	Channel_sel	电流通道选择状态标识位。默认为 0。 =1 表示当前用于计算有功的电流通道为通道 B; =0 表示当前用于计算有功的电流通道为通道 A;	
20	保留	读出为 0	
19	Nopld	当有功功率小于起动功率时,Nopld 被置为 1; 否则置为 0。	
18	保留	读出为 0	
17	REVP	反向有功功率指示标识信号。当检测到负有功功率时,该信 号	

		为 1. 当再次检测到正有功功率时,该信号为 0。在 PF 发生脉冲时更新该值。
16	ChksumBusy	校表数据校验计算状态寄存器。 =0,表示校表数据校验和计算已经完成。校验值可用。 =1,表示校表数据校验和计算未完成。校验值不可用。
150	Chksum	校验和输出

EMUStatus [15:0]是CSE7780专门提供一个寄存器来存放校表参数配置寄存器的16位校验和,外部MCU可以检测这个寄存器来监控校表数据是否错乱。

校验和的算法为双字节累加后取反。对于单字节寄存器PhaseA和PhaseB,将其扩展为双字节后累加,扩展的字节为00H。

CSE7780参与校验和计算的寄存器地址是00H-10H,根据CSE7780默认值计算得到的校验和为0xEF1E。

以下三种情况下,重新开始一次校验和计算:系统复位、00H-10H某个寄存器发生写操作、EMUStatus寄存器发生读操作。一次校验和计算需要2个系统时钟周期。

2.11.4 中断状态寄存器

中断配置和允许寄存器

该寄存器适用于SPI。当中断允许位配置为1且中断产生时,IRQ_N引脚输出低电平。写保护寄存器,配置该寄存器前需将写使能打开。

	次 6				
	IE(Interrupt Enable Register) 地址:0x40H 默认值: 0000H				
位	名称	功能描述			
7-6	保留	不可写,读出为0。			
5	ZXIE	ZXIE=0:关闭过零中断; ZXIE=1:打开过零中断。			
4	保留	读出为 0。			
3	PE01E	PEOIE=0:关闭有功电能寄存器溢出中断; PEOIE=1:打开有功电能寄存器溢出中断。			
2	保留	读出为 0。			
1	PFIE	PFIE=0:关闭 PF 中断; PFIE=1:打开 PF 中断。			
0	DUPDIE	DUPDIE =0:关闭数据更新中断; DUPDIE =1:打开数据更新中断。(3.4Hz)			

表 6 中断允许寄存器

表 7 中断状态寄存器

が・ 内(Va-2 1) H					
	IF(Interrupt Flag Register) 地址:0x41H 默认值: 0000H				
位	名称	功能描述			
7–6	保留	不可写,读出为0。			
5	ZXIF	ZXIF =0:未发生过零事件; ZXIF =1:发生过零事件。			
4	保留	读出为 0。			
3	PEOIF	PEOIF=0:未发生有功电能寄存器溢出事件; PEOIF=1:发生有功电能寄存器溢出事件。			
2	保留	读出为 0。			
1	PFIF	PFIF=0:未发生 PF 脉冲输出事件;			

		PFIF=1:发生 PF 脉冲输出事件。
0	DUDDIE	DUPDIF =0:未发生数据更新事件;
0	DUPDIF	DUPDIF =1: 发生数据更新事件。 (3.4Hz)

IF 适用于SPI接口。当某中断事件产生时,硬件会将相应的中断标志置1。

IF 中断标志的产生不受中断允许寄存器IE的控制,只由中断事件是否发生决定。

IF 为只读寄存器,读后清零。

表 8 复位中断状态寄存器

第21页, 共34页

F	RIF(Reset Interrupt Flag Register) 地址:0x42H 默认值: 0000H			
位	名称	功能描述		
7-6	保留	不可写,读出为0。		
5	RZXIF	RZXIF =0:未发生过零事件; RZXIF =1:发生过零事件。		
4	保留	读出为 0。		
2	3 RPEOIF	RPEOIF=0:未发生有功电能寄存器溢出事件;		
J		RPEOIF=1:发生有功电能寄存器溢出事件。		
2	保留 读出为 0。			
1	RPFIF	RPFIF=0:未发生 PF 脉冲输出事件;		
1	WLI, II,	RPFIF=1:发生 PF 脉冲输出事件。		
0	RDUPDIF	RDUPDIF =0:未发生数据更新事件;		
	KUUPUIF	RDUPDIF =1:发生数据更新事件。		

对于SPI, RIF的位定义和IF相同, 当某中断事件产生时, 相应的中断标志也置1。读后清零, 读RIF 可以同时清IF 和RIF 寄存器。

RIF 为在 SPI 读中断标志寄存器过程中仍然能接收新的中断而设计。

2.11.5 系统状态寄存器

系统状态寄存器

表9 系统状态寄存器

	7.7.2.7.10.14.14					
SysStatus(System Status Register) 地址: 0x43H 只读					只读	
位	位名称	功能描述				
7-5	保留	读出为0。				
4	WREN	写使能标志: =1 允许写入 的寄存器。	带写保护的寄	存器;=0不	允许写入带写保护	
3	保留	读出为0。				
2	保留	读出为0。				
1	保留	读出为0。				
0	RST	硬件复位标志。当外部RST 后清零。可用于复位后校表		上电复位结束日	时,该位置1。读	

SPI读校验寄存器

RData	地址:0x44H 默认值:0000000H				
R	Bit31	30·····1	Bit0		

RData(0x44H)寄存器保存前次SPI读出的数据,可用于SPI读出数据时的校验。

SPI写校验寄存器

Wdata	地址:0x45H 默认值:0000H			
R	Bit15	141	Bit0	

WData(0x45H)寄存器保存前次 SPI 写入的数据,可用于 SPI 写入数据时的校验。

3 校表方法

3.1 概述

CSE7780 可以实现软件校表,经过校正的仪表,有功精度可达 0.5s 级, CSE7780 的校正手段包括

- 电表常数(HFConst)可调
- 提供 A/B 通道的增益校正和一致性校正
- 提供 A/B 通道的相位校正
- 提供 A/B 通道的有功和有效值 offset 校正
- 提供小信号加速校正功能
- 提供校表数据自动校验功能

3.2 校表流程和参数计算

在对 CSE7780 设计的单相液晶表进行校正时,必须提供标准电能表。利用标准电能表校表时,有功能量脉冲 PF 可以通过光耦直接连接到标准表上去,然后根据标准电能表的误差读数对 CSE7780 进行校正。

3.2.1 校表流程

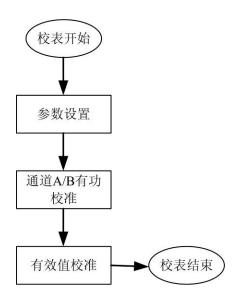


图 11 校表流程

Rev1.1

3.2.2 参数设置

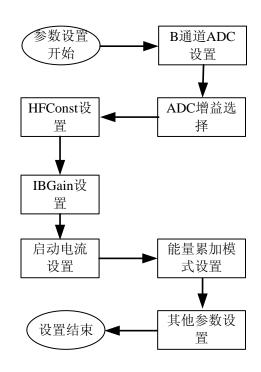


图 12 参数设置流程

HFConst 参数计算:

OSCI=3.579545MHz, HFConst的计算公式(以A通道的电流大小进行计算): HFConst=INT[39.3143*Vu*Vi*10¹¹/(EC*Un*Ib)]。

Vu: 额定电压输入时, 电压通道的电压(引脚上电压×放大倍数);

Vi: 额定电流输入时,电流通道的电压(引脚上电压×放大倍数);

Un: 额定输入的电压; Ib: 额定输入的电流; EC: 脉冲常数。

IBGain的计算:

 $\eta_{IBGain} = (IA-IB)/IB_{\circ}$

如果 η_{IBGain} ≥0,则IBGain =INT[η_{IBGain} *2¹⁵];

否则 η_{IBGain} <0, 则IBGain =INT[2¹⁶+ η_{IBGain} *2¹⁵];

IA:A电流通道的电流(RmsIA寄存器值);

IB:B电流通道的电流(RmsIB寄存器值)。

Rev1.1 第 24 页, 共 34 页

3.2.3 有功校正

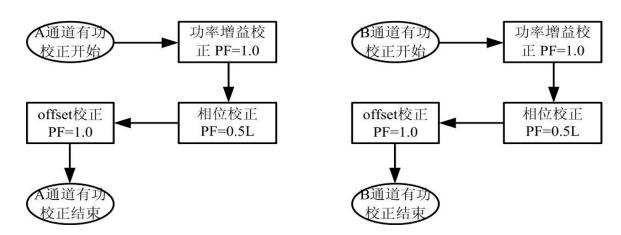


图 13 有功校正流程

1. A 通道功率增益校正可通过配置PAGain寄存器实现, PAGain的计算方法如下: 若标准表在A 通道100% Ib、PF=1 上读出误差为err:

 $\eta_{PAGain} = -err/(1+err)$.

如果 $\eta_{PAGain} \ge 0$,则PAGain =INT[$\eta_{PAGain} *2^{15}$];

否则 $\eta_{PAGain} < 0$,则PAGain =INT[$2^{16} + \eta_{PAGain} * 2^{15}$];

B通道功率增益校正可通过配置PBGain寄存器实现,方法同PAGain。

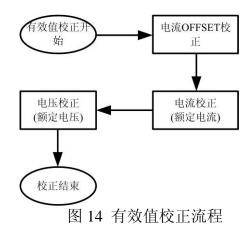
2. A/B通道相位校正寄存器的计算方法:

若标准表在A/B通道,100%Ib, PF=0.5L上读出误差为err,则相位补偿公式: $\theta = \arcsin(-\text{err/sqrt}(3))$ 。

对50HZ, PhaseA/B有0.02°/LSB的关系,则有

如果 $\theta \ge 0$, PhaseA/B = INT[θ /0.02];

如果 $\theta < 0$, PhaseA/B = INT[$2^8 + \theta / 0.02$]-96。


3. 有功offset 校正是在外部噪声(PCB噪声,变压器噪声等等)较大,积分所得能量影响到小信号精度的情况下,提高小信号有功精度的一种有效手段。若外部噪声对小信号有功精度影响较小,该步骤可忽略。

若标准表给电能表施加Un、A通道5%Ib、PF=1情况下读出误差为err, PowerA寄存器的值为PA(连续读取16次的平均值,PowerA刷新频率3.4Hz左右),那么PAOS寄存器的值计算过程如下:

PAOS = INT[-(PA*err)];

PBOS寄存器计算过程与此相同。

3.2.4 有效值校正

1. 电流offset校正可提高小信号电流有效值精度 RmsIAOS寄存器计算过程:

- 1) 配置标准表台, 使U=Un、电流通道输入Vi=0;
- 2)等待DUPDIF标识位更新(每秒3.4Hz左右刷新);
- 3) MCU取RmsIA寄存器值,暂存;
- 4)步骤2和3重复11次,第1个数据不要,取后10个数据求平均得 Iave [23:0];
- 5)对Iave按位取反(包括符号位)再加1,取符号位填入RmsIAOS寄存器的Bit15,取Bit14~Bit0填入RmsIAOSBit14~Bit0得RmsIAOS;
 - 6) 有效值offset校正结束

RmsIBOS校正公式和RmsIAOS寄存器计算过程与此相同。

2. 校好电流offset后,再进行A/B通道电流转换系数KiA/KiB 以及电压转换系数Ku 的校正,该步由MCU 完成,计算过程如下:

若额定电流Ib下RmsIA寄存器读数为RmsIAreg,则KiA=Ib/RmsIAreg。 其中KiA为额定输入时额定值与相应寄存器的比值。

B 通道转换系数 KiB 和电压转换系数 Ku 的计算过程相同。

3.3 举例

假设设计一块 220V (Un)、10A (Ib)额定输入,脉冲常数为 1200 imp/kWh (EC)的样表,A 通道电流使用 $250\mu\Omega$ 的锰铜,通道 A 模拟通道增益为 16 倍,B 通道电流采样使用电流互感器,选择 B 通道增益为 1 倍,电压采样使用电阻分压输入,模拟通道增益为 1 倍,芯片引脚值为 0.16V。

1:计算 HFConst

 $\label{eq:Vu=0.16V} \mbox{Vu=0.16V, Vi=10*0.00025*16=0.040V, EC=1200imp/kWh, Un=220V, Ib=10A.}$

HFConst=INT[39.3143*Vu*Vi*10¹¹/(EC*Un*Ib)]=9530=253AH, 取整后 HFConst 为 253AH, 将该值写入 HFConst 寄存器, 完成 HFConst 校正。

2: A 通道有功校正

2.1 A 通道功率增益校正

功率源上输出 220V 10A 功率因数为 1. 0,标准表上显示误差为 1. 2%,则: $\eta_{PAGain} = -0.012/(1+0.012) = -0.01186$, $\eta_{PAGain} < 0$,PAGain=INT[$2^{16} + \eta_{PAGain} *2^{15}$]= $-0.01186*2^{15}+2^{16}=0$ xFE7BH,将 FE7BH 写入 PAGain 寄存器,完成 A 通道增益校正。

2.2 A通道相位校正

校完阻性增益后,把功率因数改为0.5L,标准表显示的误差为-0.4%,则 $\theta > 0.$

PhaseA = INT[θ /0.02]=(arcsin(-(-0.004)/sqrt(3)))/0.02=7, 输入07H到 PhaseA寄存器,完成A通道相位校正。

2.3 A通道offset校正

Rev1.1 第 27 页, 共 34 页

若标准表给电能表施加Un、A通道5%Ib、PF=1情况下读出误差为err=0.3%, PowerA寄存器的值为PA=000F5AB7H(连续读取16次的平均值,PowerA刷新频率3.4Hz左右),那么PAOS寄存器的值为PAOS = INT[-(000F5AB7H*0.3%)]=F436H;

B通道有功校正和A通道类似。

3: 有效值校正

芯片提供了电流有效值偏置校正寄存器,在电流输入为0的条件下,读取电流有效值寄存器值为268H(可以读若干次取平均值),取反加1为FFFD98,取符号位填入RmsIAOS寄存器的Bit15,取Bit14~Bit0填入PAOS Bit14~Bit0得FD98H,写入 RmsIAOS寄存器,完成A通道有效值校正。

B通道有效值校正和A通道类似。

CSE7780 通讯接口

4 通讯接口

4.1 SPI 接口信号说明

SCSN: SPI 从设备片选信号,低电平有效,输入信号,内部悬空,建议外接上 拉电阻; SCSN 由高电平变为低电平时,表示当前芯片被选中,处于通讯 状态; SCSN 由低变电平变为高电平,表示通讯结束,通讯口复位处于空 闲状态。在每一次的读/写操作结束之后,必须拉高 SCSN 使,复位 SPI 接口复位等待下一次的读/写操作。

SCLK: 串行时钟输入脚,决定数据移出或移入 SPI 口的传输速率。 所有的数据传输操作均与 SCLK 同步, CSE7780 在上升沿将数据从 SDO 引脚输出;主机在上升沿将数据从 SDI 引脚输出,CSE7780 和主机都在下降沿读取数据。

SDI: 串行数据输入脚,用于把主设备数据传输到 CSE7780 芯片内部。

SDO: 串行数据输出脚,用于把 CSE7780 的数据传输给主设备,SCSN 为高时,为高阳。

4.2 SPI 帧格式

SPI 是四线制: CS、SDI、SDO 和 SCLK,包括一个读寄存器 RDATA 和一个写寄存器 WDATA。所用数据传输操作均与 SLCK 同步,CSE7780 在上升沿将数据从SDO 引脚输出,在下降沿从 SDI 引脚读取数据。

SPI 的命令寄存器是一个 8bit 宽的寄存器。对于读写操作,命令寄存器的 Bit7 用来确定本次数据传输操作的类型是读操作还是写操作,命令寄存器的 Bit6-0 是读写的寄存器的地址。对于特殊命令操作,命令寄存器的 Bit7-0 固定为 0xEA。

命令名称	命令寄存器	数据	描述
读命令	$\{0, REG_ADR[6:0]\}$	RDATA	从地址为 REG_ADR[6:0]的寄存器中读数
			据。
			注:读无效地址,返回值为00h。
写命令	$\{1, REG_ADR[6:0]\}$	WDATA	向地址为 REG_ADR[6:0]的寄存器中写数
			据。
写使能命令	0xEA	0xE5	使能写操作。
写保护命令	0xEA	0xDC	关闭写操作。
电流通道 A 选择	0xEA	0x5A	电流通道 A 设置命令,指定当前用于计算
			有功电能的电流通道为通道 A。
电流通道 B 选择	0xEA	0xA5	电流通道 B 设置命令,指定当前用于计算
			有功电能的电流通道为通道 B。

表 10 SPI 命令列表

4.3 SPI 写操作

工作过程:

主机在 SCSN 有效后, 先通过 SPI 写入命令字节, 再写入数据字节。注意:

- 1). 以字节为单位传输,高比特位在前,低比特位在后;
- 2). 多字节寄存器, 先传输高字节内容, 再传输低字节内容;
- 3). 主机在 SCLK 上升沿写数据,从机在 SCLK 下降沿读取数据;
- 4). 数据字节之间的时间 t1 要大于等于半个 SCLK 周期;
- 5). 最后一个字节的 LSB 传送完毕, SCSN 由低变高结束数据传输。SCLK 下降沿和 SCSN 上升沿之间的时间 t2 要大于等于半个 SCLK 周期。
- 6). 在开始下一次写或者读操作时, SCSN 高电平持续时间要大于 1 个系统时钟 周期。

注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。

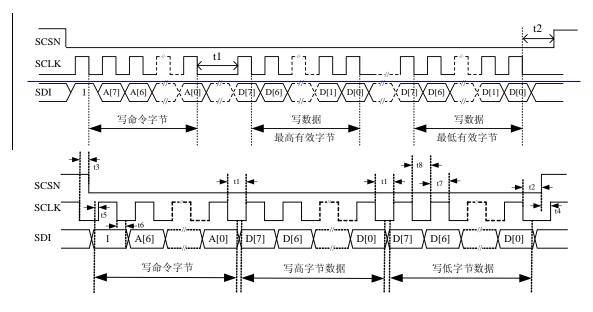
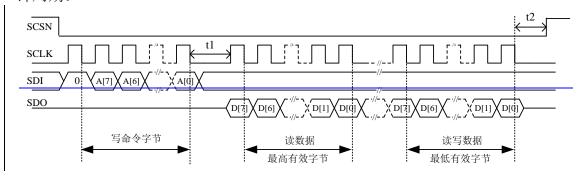


图 15 SPI 写操作时序 (DVDD=AVDD=5V, DGND=VGND=0V, CLKI=3. 579545MHz, 常温)

			typ		uni
		min	е	max	t
t		558.			
1	数据字节之间 SCLK 维持低电平的时间	8		_	ns
t	最后一个 sclk 的下降沿与 CSSN 上升沿之间的时间间	558.			
2	隔	8	_	_	ns
t					
3	SCSN 下降沿之前 SCLK 保持为低的时间	5		ı	ns
t					
4	SCSN 上升沿之后 SCLK 保持为低的时间	5		_	ns
t					
5	在 SCLk 上升沿之前,SDI 上有效数据的建立时间	5	_	_	ns
t		279.			
6	在 SCLk 下降沿之后,SDI 上有效数据的保持时间	4		_	ns


t		558.	_	4.55m	
8	SCLK 的高电平宽度	8		S	ns
t		558.	_	4.55m	
9	SCLK 的低电平宽度	8		S	ns

4.4 SPI 读操作

工作过程:

主机在 SCSN 有效后,先通过 SPI 写入命令字节,从机收到读命令后,在 SCLK 的上升沿将数据按位从 SDO 引脚输出。注意:

- 1). 以字节为单位传输, 高比特位在前, 低比特位在后;
- 2). 多字节寄存器, 先输出高字节内容, 再传输低字节内容:
- 3). 主机在 SCLK 上升沿写命令字节,从机在 SCLK 上升沿将数据从 SDO 输出;
- 4). 数据字节之间的时间 t1 要大于等于半个 SCLK 周期;
- 5). 最后一个字节的 LSB 传送完毕, SCSN 由低变高结束数据传输。SCLK 下降 沿和 SCSN 上升沿之间的时间 t2 要大于等于半个 SCLK 周期;
- 6). 在开始下一次写或者读操作时, SCSN 高电平持续时间要大于 1 个系统时钟周期。

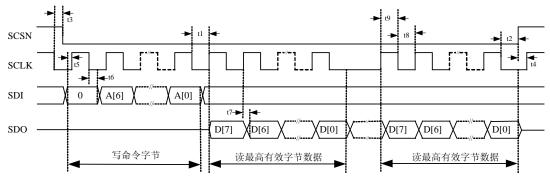


图 16 SPI 读操作时序 (DVDD=AVDD=5V, DGND=VGND=0V, CLKI=3. 579545MHz, 常温)

		min	type	max	unit
t7	在 SCLk 上升沿之后,SDO 能稳定输出所需要的时间	50	I	1	ns

CSE7780 电气特性

5 电气特性

表 11 电气特性

参数	符号	最小值	典型值	最大值	单位			
精度								
有功电能测量误差,在动态范围 2000:1	ERR	_	± 0.1	_	%			
有效值测量误差,在动态范围 400:1(信	ERR			± 0.5	%			
号输入频率 50Hz 或者 60Hz)	EKK	_	_	±0.5	%			
;	模拟输入		<u> </u>					
最大信号电平	Vpp	_	_	± 700	mV			
直流输入阻抗	Zdc	300	_	=	kΩ			
ADC 失调误差	DCoff	_	10	_	mV			
	电源							
(AVDD=DVDD=5V \pm 5%	,温度范围	: -40℃~	~+85℃)					
模拟电源	AVDD	-	5	-	V			
数字电源	AVDD	-	5	-	V			
功耗(AVDD = DVDD = 5 V)	Idd	-	6	-	mA			
<u></u>	基准电压		l					
输出电压	VREFOUT	_	+2.45	_	V			
温漂(注释1)	TC _{VREF}	-	25	-	ppm/°C			
输入阻抗	_	_	2	_	kΩ			
	时钟		I					
主时钟频率	MCLK	3. 1	3. 579545	4.6	MHz			
主时钟占空比	_	45	_	55	%			
SPI	接口速度	ŧ	I					
SPI 接口速率	-	-	-	MCLK/4	Hz			

注释: 1. 温度范围内 VREF 的温漂计算公式如下:

$$TC_{VREF} = (\frac{VREFOUT_{MAX} - VREFOUT_{MIN}}{VREFOUT_{AVG}})(\frac{1}{T_{A_MAX} - T_{A_MIN}})(1 \times 10^6)$$

表 12 极限额定值

第32页,共34页

参数	符号	最小值	典型值	最大值	单位
数字电源	DVDD	-0.3	-	+6.0	V
模拟电源	AVDD	-0.3	-	+6.0	V
DVDD to DGND		-0.3	-	+6.0	V
DVDD to AVDD		-0.3		+0. 3	V
V1P, V1N, V2P, V2N, V3P, V3N,		-6		+6	V
模拟输入电压	V_{INA}	-0.3	-	AVDD+0.3	V
数字输入电压	V_{IND}	-0.3	-	DVDD+0.3	V
数字输出电压	V_{OUTD}	-0.3	-	DVDD+0.3	V
工作环境温度	TA	-40	-	85	$^{\circ}\!\mathbb{C}$
存储温度	$T_{ m stg}$	-65	-	150	$^{\circ}$

第33页,共34页

CSE7780 芯片封装

6 芯片封装

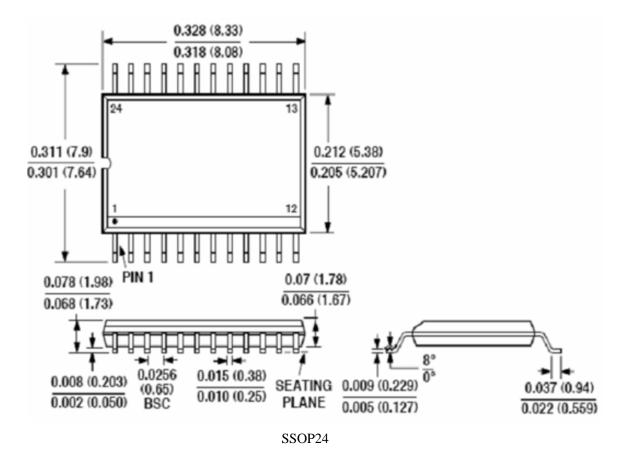


图 19 CSE7780 封装尺寸

