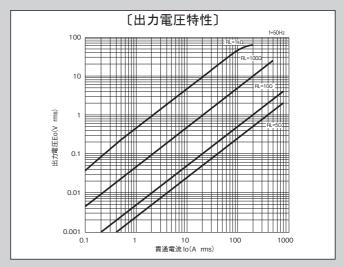
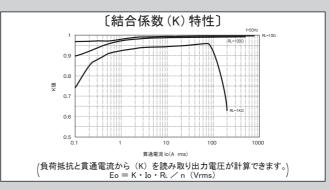

大口径、パネル取付用の大型・高変流比交流電流センサ

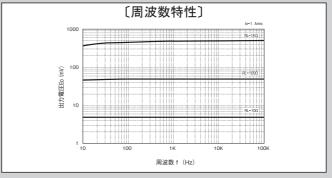
型式 CTL-36-S56-20

[特長]

- ●貫通穴径 φ 36の大口径、大型の標準電流センサの高変流比型。
- ●適用電流最大800Aで、一般計測用CTL汎用シリーズの最上位機種。
- ●2000:1の高変流比で、二次電流が小さく、直接電子回路へのインターフェースが可能。
- ●出力:M3-ネジ端子、取付穴:2-φ4.5と、大型の盤内組込に適した堅牢な構造。




〔仕 様〕Ta=25℃


型式	CTL-36-S56-20
適用電流	$0.1 \sim 800 \text{Arms} (50 / 60 \text{Hz}), R_{L} \leq 10 \Omega$
最大許容電流	800Arms連続
飽和限界電流	2000Arms (50 ∕ 60Hz), R∟≦1Ω
出力特性	出力電圧特性図参照
直線性	結合係数(K)特性図参照 (リニアセンサとしての利用は(K)特性がフラットな領域を使用 してください。)
二次巻数(n)	2000±2ターン
二次巻線抵抗	43Ω (参考値)
耐 電 圧	AC2000V (50/60Hz)、1min (貫通穴—出力端子—括間)
絶 縁 抵 抗	DC500V、≧100MΩ(貫通穴-出力端子-括間)
使用条件	-20°C~+75°C、≦80%RH、結露のないこと
保存条件	-30°C~+90°C、≦80%RH、結露のないこと
構造	ABS樹脂ケース、エポキシ片面充填封止
出力端子	M3×50 (BSネジ端子)
ネジ締めトルク	M4: 0.7N • m、M3: 0.3N • m
質 量	約180g

- 備考(1) 出力電圧は、貫通電流/負荷抵抗/結合係数 (K) 等のパラメーターにより変化します。各特性図をよく吟味して使用条件を設定してください。
 (2) 結合係数 (K) 値が 0.9 以下での使用は製品個体差が出やすい領域となるため、充分なマージンを持ってご使用く

 - ださい。
 (3) 通電中の二次側開放は高電圧が発生する場合があり危険ですし、故障の原因になります。
 (4) 電力計測をお考えの場合は、必ず弊社技術相談窓口へ直接ご相談ください。
 (5) 基本的には 50/60Hz でご使用いただく製品ですが、高周波でご使用の場合は、CTの発熱にご注意ください。

