

CX9VSM CRYSTAL

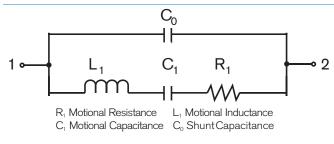
32 kHz to 250 kHz

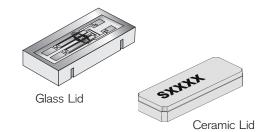
Ultra-Miniature, Low Profile Surface Mount Quartz Crystal

DESCRIPTION

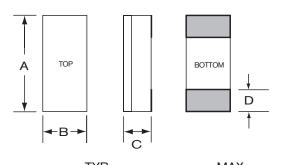
Designed and manufactured in the USA, the CX9V quartz crystal is available in frequencies from 32 kHz to 250 kHz. Using micro-machining processes, this surface-mountable crystal is hermetically sealed within a ultra-miniature ceramic package to ensure high stability and low aging. Tight calibration and custom laser tuning make the CX9V ideally suited for all low frequency applications.

FEATURES


- Ultra-miniature, surface mount design (4.1mm x 1.5mm)
- Low profile (typically 0.80mm)
- Available with glass or ceramic lid
- Hermetically sealed ceramic package
- High shock and vibration survival
- Excellent aging characteristics
- Designed for low power applications
- Full military testing available
- Designed and manufactured in the USA

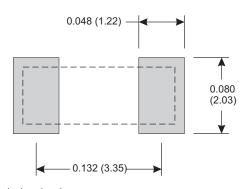

APPLICATIONS

Medical


- Pacemaker, defibrillator, and other implantables
- Medical instruments
- Industrial, Computer, & Communications
 - Smart card
 - Down hole instrumentation
 - Transponder / Animal migration
 - Process instrumentation
- Military & Aerospace
 - Airborne hybrid
 - Navigational computer
 - Real time clock

EQUIVALENT CIRCUIT

PACKAGE DIMENSIONS



	IY	Έ.	MA	λX.	
DIM	inches	mm	inches	mm	
А	0.160	4.10	0.170	4.32	
В	0.060	1.50	0.068	1.73	
С	-	-	see below		
D	0.031	0.79	0.038	0.97	

THICKNESS (DIM C) MAXIMUM

	GLASS LID		CERAMIC LID		
MAX	inches	mm	inches	mm	
SM1	0.034	0.87	0.035	0.90	
SM2/SM4	0.034	0.87	0.035	0.90	
SM3/SM5	0.036	0.91	0.037	0.94	

SUGGESTED LAND PATTERN

inches (mm)

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Parameters	Fundamental		Overtone	
I alameters	Fundamental		Overtone	
Frequency, (kHz)	32.768	100	180	240
Motional Resistance $R_1(k\Omega)$	60	19	5	4
Motional Capacitance C_1 (fF)	2.2	1.0	2.0	1.5
Quality Factor Q (k)	37	80	90	110
Shunt Capacitance C ₀ (pF)	1.0	0.85	1.0	0.9
Load Capacitance (pF) ¹	9	9	9	9
Turning Point (°C)	20	16	20	25

Standard Calibration Tolerance for $32.768 \, \text{kHz}^2$

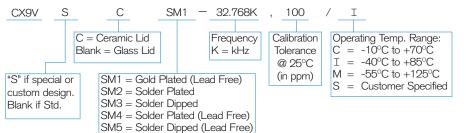
Glass Lid:	± 30 ppm	[±] 100 ppm	± 1000 ppm
	(0.003%)	(0.01%)	(0.1%)
Ceramic Lid:	± 100 ppm	± 1000 ppm	± 10000 ppm
	(0.01%)	(0.1%)	(1.0%)

Drive Level

0.5 μW MAX

Temperature Coefficient (k) -0.035 ppm/°C²

Note: Frequency f at temperature T is related to frequency f_0 at turning point temperature T_0 by: $\frac{f-f_0}{f_-} = k(T-T_0)^2$


	10
Aging, first year	3 ppm
Shock, surviva ^β	5,000 g, 0.3 ms, 1/2 sine
Vibration, survival	20 g RMS, 10-2,000 Hz random
Operating Temp. Range	-10°C to +70°C (Commercial) -40°C to +85°C (Industrial) -55°C to +125°C (Military)
Storage Temp. Range	-55°C to +125°C
Max Process Temperature	260°C for 20 sec.
 Other values available Tighter tolerances available 	3. Higher shock available

TERMINATIONS

<u>Designation</u>	Termination
SM1	Gold Plated (Lead Free)
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

Max Process Temperature 260°C for 20 sec.

HOW TO ORDER CX9VSM CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX9 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX9 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 50 to 150 ppm above the crystal's series resonant frequency (f_S).

Drive Level

 R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and $C_D.\ R_A$ also stabilizes the oscillator against changes in the amplifiers output resistance (R_0). R_A should be increased for higher voltage operation.

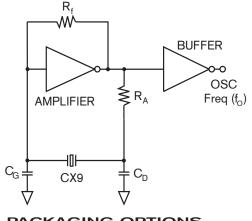
Load Capacitance

The CX9 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
(1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right] \quad (2)$$

Where f_{S} = Series resonant frequency of the crystal

 C_1 = Motional Capacitance

C₀ = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

PACKAGING OPTIONS

Tray Pack or 16mm tape, 7" or 13" reels (Reference tape and reel data sheet 10109)

10157 - Rev D

