

AC-DC Controller

# CXA3820M

## Description

The CXA3820M has optimum configuration to realize various power supply circuits easily and compactly by including Power-factor correction, resonant controller and various protection function in one package. (Applications: Power supply circuit, etc.)

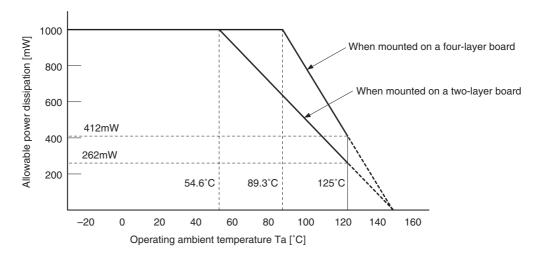
#### Features

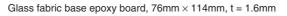
- Power-factor correction
  - Multiplierless critical conduction mode (CRM) control
  - Supports W/W input
  - Restart timer
  - Maximum frequency limit (during overcurrent detection)
  - Continuous overcurrent detection protection function
- Resonant controller
  - Timer-latch over current protection
  - Soft start function
  - Adjustment minimum frequency limit
  - Pulse over current load detection
- ♦ Common
  - · Adjacent 2-pin short protection
  - Various protection functions including overvoltage and overcurrent
  - AC off detection
  - PFC-OK signal output

#### Structure

**BiCMOS silicon monolithic IC** 

## Package

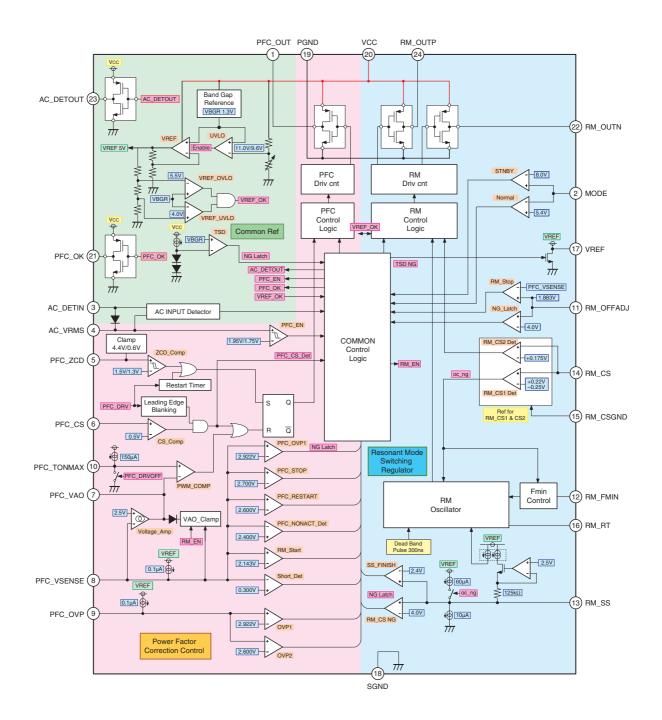

24-pin SOP


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

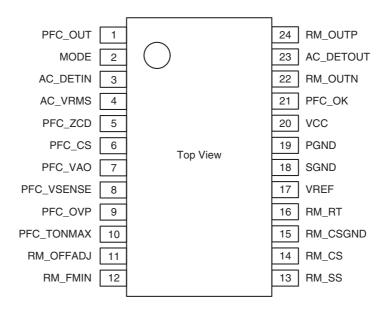
## **Absolute Maximum Ratings**

| Item                                          | Symbol | Rating            | Unit | Remarks                                                                                                         |
|-----------------------------------------------|--------|-------------------|------|-----------------------------------------------------------------------------------------------------------------|
| Maximum supply voltage                        | VCC    | 24.0              | V    | VCC                                                                                                             |
| VCC pin voltage                               | VCCIN  | -0.3 to VCC + 0.3 | V    | AC_DETIN, AC_DETOUT,<br>AC_VRMS, PFC_OK, MODE                                                                   |
| Driver output pin voltage                     | VOUT   | -0.3 to VCC + 0.3 | V    | PFC_OUT, RM_OUTP,<br>RM_OUTN                                                                                    |
| Power supply pin voltage for internal circuit | VREF   | -0.3 to +7.0      | V    | VREF                                                                                                            |
| VREF pin voltage                              | VREFIN | –0.3 to +7.0      | V    | PFC_OVP, PFC_CS, PFC_VAO,<br>PFC_TONMAX, PFC_VSENSE,<br>RM_OFFADJ, RM_RT, RM_SS,<br>RM_CS, RM_CSGND,<br>RM_FMIN |
| ZCD current                                   | IZCD   | ±7                | mA   | PFC_ZCD                                                                                                         |
| Allowable power dissipation                   | PD     | *1                | mW   | (See the thermal derating curve.)                                                                               |
| Operating ambient temperature range           | Topt   | -30 to +125       | °C   |                                                                                                                 |
| Junction temperature                          | Tjmax  | +150              | °C   |                                                                                                                 |
| Storage temperature                           | Tstg   | –55 to +150       | °C   |                                                                                                                 |

\*1 Allowable power dissipation reduction characteristics







## **Recommended Operating Conditions**

| Item                                | Symbol | Rating       | Unit | Remarks |
|-------------------------------------|--------|--------------|------|---------|
| Supply voltage (VCC system)         | VCC    | 12.0 to 18.0 | V    |         |
| Operating ambient temperature range | Topt   | –25 to +85   | °C   |         |
| Junction temperature                | Tj     | –25 to +125  | °C   |         |

## Block Diagram



## **Pin Configuration**



# SONY

## Pin Table

| Pin<br>No. | Pin name   | Description                                                          | Connection end<br>of protective<br>element |
|------------|------------|----------------------------------------------------------------------|--------------------------------------------|
| 1          | PFC_OUT    | PFC MOSFET gate driver output                                        | —                                          |
| 2          | MODE       | Mode determination                                                   | VCC, SGND                                  |
| 3          | AC_DETIN   | AC voltage sense input                                               | VCC, SGND                                  |
| 4          | AC_VRMS    | AC peak voltage sense and PFC enable                                 | VCC, SGND                                  |
| 5          | PFC_ZCD    | PFC zero current detect input                                        | VCC, SGND                                  |
| 6          | PFC_CS     | PFC current sense input                                              | VREF, SGND                                 |
| 7          | PFC_VAO    | PFC voltage control error amplifier output                           | VREF, SGND                                 |
| 8          | PFC_VSENSE | PFC output voltage sense input                                       | VREF, SGND                                 |
| 9          | PFC_OVP    | PFC output overvoltage sense input                                   | VREF, SGND                                 |
| 10         | PFC_TONMAX | PFC maximum ON time control                                          | VREF, SGND                                 |
| 11         | RM_OFFADJ  | Resonant controller stop voltage adjustment and abnormal latch input | VREF, SGND                                 |
| 12         | RM_FMIN    | Resonant controller minimum frequency setting                        | VREF, SGND                                 |
| 13         | RM_SS      | Resonant controller soft start and overcurrent timer-latch setting   | VREF, SGND                                 |
| 14         | RM_CS      | Resonant controller current sense input                              | VREF                                       |
| 15         | RM_CSGND   | Resonant controller current sense ground                             | VREF                                       |
| 16         | RM_RT      | Resonant controller frequency control                                | VREF, SGND                                 |
| 17         | VREF       | Internal supply voltage                                              | VCC, SGND                                  |
| 18         | SGND       | Signal ground                                                        | (PGND)                                     |
| 19         | PGND       | PFC, RM driver ground                                                | (SGND)                                     |
| 20         | VCC        | Power supply input                                                   | SGND                                       |
| 21         | PFC_OK     | PFC-OK signal output                                                 | _                                          |
| 22         | RM_OUTN    | Resonant controller Low-side MOSFET driver output                    | —                                          |
| 23         | AC_DETOUT  | AC off detect signal output                                          | —                                          |
| 24         | RM_OUTP    | Resonant controller High-side MOSFET driver output                   | —                                          |

F

# Pin Description

| Pin<br>No. | Symbol   | I/O | Standard pin<br>voltage | Equivalent circuit                                           | Description                                                                                  |
|------------|----------|-----|-------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1          | PFC_OUT  | 0   | VCC to GND              | VREF<br>Peh<br>Peh<br>Peh<br>Peh<br>Peh<br>Peh<br>Peh<br>Peh | PFC MOSFET gate driver<br>output<br>(Connect to the NMOS gate for<br>PFC)                    |
| 2          | MODE     | I   | VCC to GND              | MODE<br>2<br>SGND                                            | Mode select input<br>(GND connection:<br>Normal sequence<br>VCC connection:<br>Standby mode) |
| 3          | AC_DETIN | I   | VCC to GND              | VCC<br>AC_DETIN<br>3<br>W<br>SGND                            | AC voltage input<br>(Connect to AC input detection<br>resistor)                              |
| 4          | AC_VRMS  | I/O | (VCC – 2.0V)<br>to GND  | AC_VRMS                                                      | AC peak voltage sense and<br>PFC enable<br>(Connect to peak voltage hold<br>capacitor)       |

| Pin<br>No. | Symbol     | I/O | Standard pin<br>voltage                      | Equivalent circuit                                          | Description                                                                                                            |
|------------|------------|-----|----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 5          | PFC_ZCD    | I   | 4.4V to 0.6V                                 | VCC<br>VREF<br>PFC_ZCD<br>5<br>VREF<br>VREF<br>VREF<br>SGND | PFC zero current detect input<br>(Connect to boost inductor of<br>auxiliary winding)                                   |
| 6          | PFC_CS     | I   | VREF to GND                                  | PFC_CS<br>6<br>SGND                                         | PFC current sense input<br>(Connect to the detection side<br>of current sense resistor)                                |
| 7          | PFC_VAO    | 0   | 3.2V to GND                                  | PFC_VAO                                                     | PFC voltage control error<br>amplifier output<br>(Connect a phase<br>compensation circuit: between<br>PFC_VAO and GND) |
| 8          | PFC_VSENSE | I   | VREF to GND<br>During steady-<br>state: 2.5V | PFC_VSENSE                                                  | PFC output voltage sense<br>input<br>(Connect to PFC output<br>detection resistor)                                     |
| 9          | PFC_OVP    | I   | VREF to GND<br>During steady-<br>state: 2.5V | VREF<br>PFC_OVP                                             | PFC output overvoltage sense<br>input<br>(Connect to PFC output<br>detection resistor)                                 |

| Pin<br>No. | Symbol     | I/O | Standard pin voltage                         | Equivalent circuit                                     | Description                                                                                                              |
|------------|------------|-----|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 10         | PFC_TONMAX | I/O | 3.2V to GND                                  | PFC_TONMAX                                             | PFC maximum ON time<br>control<br>(Connect to ON time control<br>capacitor)                                              |
| 11         | RM_OFFADJ  | I/O | VREF to GND                                  | RM_OFFADJ                                              | Resonant controller stop<br>voltage adjustment and<br>abnormal latch input                                               |
| 12         | RM_FMIN    | I   | 1.2V                                         | RM_FMIN                                                | Resonant controller minimum<br>frequency setting<br>(Connect to minimum<br>frequency control resistor)                   |
| 13         | RM_SS      | I/O | VREF to GND<br>During steady-<br>state: 2.5V | RM_SS<br>13<br>Nch<br>Nch<br>Pch<br>Nch<br>Pch<br>SGND | Resonant controller soft start<br>and overcurrent timer-latch<br>setting<br>(Connect to the capacitor for<br>soft start) |
| 14         | RM_CS      | I   | VREF to - 0.3V                               |                                                        | Resonant controller current<br>sense input<br>(Connect to the resistor for<br>current detection)                         |
| 15         | RM_CSGND   | I   |                                              | RM_CS<br>RM_CSGND<br>(14<br>(15)<br>SGND               | Resonant controller current<br>sense ground<br>(Connect to the resistor for<br>current detection)                        |

| Pin<br>No. | Symbol    | I/O | Standard pin<br>voltage | Equivalent circuit                                                                                                                                                                                                               | Description                                                                                       |
|------------|-----------|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 16         | RM_RT     | -   | (3.5V)                  | RM_RT<br>16<br>SGND                                                                                                                                                                                                              | Resonant controller frequency<br>control<br>(Connect to the photo coupler<br>for output feedback) |
| 17         | VREF      | 0   | 5.0V                    | VCC<br>VREF<br>Pch<br>SGND                                                                                                                                                                                                       | Internal supply voltage output<br>(Connect to the capacitor for<br>stabilization)                 |
| 18         | SGND      |     |                         | -                                                                                                                                                                                                                                | Signal ground                                                                                     |
| 19         | PGND      | _   |                         | -                                                                                                                                                                                                                                | Driver ground                                                                                     |
| 20         | VCC       |     |                         | _                                                                                                                                                                                                                                | Power supply input                                                                                |
| 21         | PFC_OK    | 0   | VCC to GND              | VREF<br>PFC_OK<br>Pch<br>Pch<br>PCh<br>PCh<br>PCh<br>PCh<br>PFC_OK<br>PCC<br>PCC<br>PCC<br>PCC<br>PFC_OK<br>PCC<br>PCC<br>PFC_OK<br>PFC_OK<br>PCC<br>PCC<br>PCC<br>PFC_OK<br>PCC<br>PCC<br>PCC<br>PCC<br>PCC<br>PCC<br>PCC<br>PC | PFC-OK signal output                                                                              |
| 23         | AC_DETOUT | )   |                         | SGND PGND                                                                                                                                                                                                                        | AC off detect signal output                                                                       |
| 22         | RM_OUTN   | 0   | VCC to GND              | VCC<br>RM_OUTN<br>Pch RM_OUTP                                                                                                                                                                                                    | Resonant controller Low-side<br>MOSFET driver output<br>(Connect to the drive<br>transformer)     |
| 24         | RM_OUTP   | 0   |                         | PGND                                                                                                                                                                                                                             | Resonant controller High-side<br>MOSFET driver output<br>(Connect to the drive<br>transformer)    |

## **Electrical Characteristics**

#### Shared Blocks

(Unless otherwise specified, the conditions are  $Ta = 27^{\circ}C$ , VCC = 12V, MODE = GND)

## 1. Current Consumption (VCC and PVCC pins)

| Item                                | Symbol | Measurement conditions                                  | Min. | Тур. | Max. | Unit |
|-------------------------------------|--------|---------------------------------------------------------|------|------|------|------|
| Current consumption in standby mode | Istb   | MODE = VCC                                              |      | 700  | 1000 | μA   |
| Operating current consumption       | lact   | AC_DETIN = 1.0V,<br>PFC_VSENSE = 1.0V<br>* No Switching |      | 3.0  | 3.5  | mA   |

## 2. Under Voltage Lock Out Circuit Block (VCC pin)

| Item             | Symbol    | Measurement conditions | Min. | Тур. | Max. | Unit |
|------------------|-----------|------------------------|------|------|------|------|
| Turn-on voltage  | Vact      |                        | 10.2 | 11.0 | 11.8 | V    |
| Turn-off voltage | Voff      |                        | 9.0  | 9.6  | 10.2 | V    |
| Hysteresis       | Vact-Voff | Vact – Voff            | 1.1  | 1.4  | 1.7  | V    |

## 3. Reference Voltage Output Circuit Block (VREF pin)

| Item                                    | Symbol  | Measurement<br>conditions         | Min. | Тур. | Max. | Unit |
|-----------------------------------------|---------|-----------------------------------|------|------|------|------|
| Output voltage                          | Vvref   |                                   | 4.85 | 5.00 | 5.15 | V    |
| Input stability                         | Vline   | VCC = 10.5V to 18V                | _    | 10   | 30   | mV   |
| Load stability                          | Vload   | lload = 0.1m to 5mA               | _    | 20   | 50   | mV   |
| Pin voltage when NG latch<br>(When TSD) | Vvrefng | lout = 10mA<br>(Design guarantee) | _    | 0.1  | 0.5  | V    |

| Item                                  | Symbol  | Measurement conditions                                 | Min.  | Тур.  | Max.  | Unit |
|---------------------------------------|---------|--------------------------------------------------------|-------|-------|-------|------|
| PFC operation start                   | Vpfcon  | AC DETIN peak voltage (rise)                           | 1.85  | 1.95  | 2.05  | V    |
| and stop voltage                      | Vpfcoff | AC_DETIN peak voltage (fall)                           | 1.65  | 1.75  | 1.85  | V    |
| Hysteresis                            | Vpfchys | Vpfcon – Vpfcoff                                       | 0.17  | 0.20  | 0.23  | V    |
| AC detection reference voltage High 1 | Vthach1 | AC_VRMS = 7.5V                                         | 5.8   | 6.0   | 6.2   | V    |
| AC detection reference voltage Low 1  | Vthacl1 | AC_VRMS = 7.5V                                         | 3.925 | 4.125 | 4.325 | V    |
| AC detection reference voltage High 2 | Vthach2 | AC_VRMS = 2.0V                                         | 1.4   | 1.6   | 1.8   | V    |
| AC detection reference voltage Low 2  | Vthacl2 | AC_VRMS = 2.0V                                         | 0.9   | 1.1   | 1.3   | V    |
| AC off detection delay time 1         | Tdlyac1 | AC_DETIN < AC_VRMS × 55%<br>(State A)                  | 4     | 5     | 6     | ms   |
| AC off detection delay time 2         | Tdlyac2 | AC_VRMS × 80% > AC_DETIN<br>> AC_VRMS × 55% (State B1) | 4     | 5     | 6     | ms   |
| AC off detection delay time 3         | Tdlyac3 | AC_VRMS × 80% > AC_DETIN<br>> AC_VRMS × 55% (State B2) | 6.4   | 8     | 9.6   | ms   |
| AC off detection delay time 4         | Tdlyac4 | AC_DETIN > AC_VRMS × 80%<br>(State C)                  | 20    | 25    | 30    | ms   |

## 4. AC Input Detection Circuit Block (AC\_DETIN pin)

## 5. AC Off Detect Signal Output Circuit Block (AC\_DETOUT pin)

| Item                | Symbol  | Measurement conditions  | Min. | Тур. | Max. | Unit |
|---------------------|---------|-------------------------|------|------|------|------|
| Output Low voltage  | Vacoutl | VCC = 18V, lout = 10mA  |      | 0.5  | 1.0  | V    |
| Output High voltage | Vacouth | VCC = 18V, lout = -10mA | 17.0 | 17.5 |      | V    |

## 6. MODE Pin Voltage Detection Circuit Block (MODE pin)

| Item                           | Symbol | Measurement conditions | Min. | Тур. | Max. | Unit |
|--------------------------------|--------|------------------------|------|------|------|------|
| MODE detection<br>voltage Low  | Vmodel |                        | 5.2  | _    | 5.6  | V    |
| MODE detection<br>voltage High | Vmodeh |                        | 7.6  | _    | 8.4  | V    |
| Internal pull-up resistor      | Rmode  | MODE = 0.1V            | 35   | 50   | 65   | kΩ   |

## 7. Clock Timer

| Item      | Symbol | Measurement conditions | Min. | Тур. | Max. | Unit |
|-----------|--------|------------------------|------|------|------|------|
| 1ms clock | Tclock |                        | 972  | 1024 | 1075 | μs   |

## ♦ PFC Block

(Unless otherwise specified, the conditions are Ta = 27°C, VCC = 12V, MODE = GND)

## 8. PFC Output Circuit Block (PFC\_OUT pin)

| Item                | Symbol | Measurement conditions    | Min.  | Тур. | Max. | Unit |
|---------------------|--------|---------------------------|-------|------|------|------|
| Output Low voltage  | Vpoutl | VCC = 18V, lout = 10mA    | _     | 0.03 | 0.1  | V    |
| Output High voltage | Vpouth | VCC = 18V, lout = -10mA   | 17.85 | 17.9 | _    | V    |
| Rise time *1        | Tpoutr | VCC = 18V, CLOAD = 1000pF | _     | 35   | 100  | ns   |
| Fall time *1        | Tpoutf | VCC = 18V, CLOAD = 1000pF | —     | 25   | 100  | ns   |

 $^{*1}$   $\,$  Rise time and fall time use VCC  $\times$  0.1 to VCC  $\times$  0.9 as the judgment voltages.

## 9. PFC-OK Signal Circuit Block (PFC\_OK pin)

| Item                | Symbol  | Measurement conditions  | Min. | Тур. | Max. | Unit |
|---------------------|---------|-------------------------|------|------|------|------|
| Output Low voltage  | Vacoutl | VCC = 18V, lout = 10mA  |      | 0.5  | 1.0  | V    |
| Output High voltage | Vacouth | VCC = 18V, lout = -10mA | 17.0 | 17.5 | —    | V    |

## 10. AC Peak Voltage Sense Circuit Block (AC\_VRMS pin)

| Item                              | Symbol | Measurement conditions | Min. | Тур. | Max. | Unit |
|-----------------------------------|--------|------------------------|------|------|------|------|
| Internal pull-down resistor value | Rvrms  | AC_VRMS = 1.0V         | 0.6  | 0.8  | 1.0  | MΩ   |

#### 11. PFC Overcurrent Detection Circuit Block (PFC\_CS pin)

| Item                    | Symbol | Measurement conditions                                                    | Min. | Тур. | Max. | Unit |
|-------------------------|--------|---------------------------------------------------------------------------|------|------|------|------|
| Input threshold voltage | Vthcs  |                                                                           | 0.45 | 0.50 | 0.55 | V    |
| Blanking time           | Tleb   | PFC_CS = 1.0V                                                             | 384  | 480  | 576  | ns   |
| Delay time              | Tcsdly | CS to DRV<br>PFC_CS = 0V $\Rightarrow$ 1V<br>(Rectangular waveform input) | 100  | 150  | 200  | ns   |

| Item                                                                  | Symbol  | Measurement conditions | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------------------|---------|------------------------|------|------|------|------|
| Input threshold voltage                                               | Vthzcd  |                        | 1.2  | 1.3  | 1.4  | V    |
| Hysteresis                                                            | Vzcdhys |                        | 180  | 200  | 220  | mV   |
| Clamp High voltage                                                    | Vclph   | I = 3mA                | 4.0  | 4.4  | 5.0  | V    |
| Clamp Low voltage                                                     | Vclpl   | I = –3mA               | 0.3  | 0.6  | 1.0  | V    |
| Restart timer delay                                                   | Tstart  |                        | 180  | 200  | 220  | μS   |
| Maximum oscillation<br>frequency<br>(During overcurrent<br>detection) | Fpfcmax | PFC_CS = 1.0V          | 180  | 220  | 260  | kHz  |

## 12. PFC Zero Current Detection Circuit Block (PFC\_ZCD pin)

## 13. Error Amplifier Output Circuit Block for PFC Voltage Control (PFC\_VAO pin)

| Item                      | Symbol | Measurement conditions                                         | Min. | Тур. | Max. | Unit |
|---------------------------|--------|----------------------------------------------------------------|------|------|------|------|
| Trans-conductance         | Vvaogm | (Design guarantee)                                             | _    | (90) | —    | μA/V |
| Output High clamp voltage | Vvaoh  | PFC_VSENSE = 2.45V                                             | 2.85 | 3.0  | 3.15 | V    |
| Clamp voltage 1           | Vvao1  | PFC_VSENSE = 2.0V<br>(When other than resonant<br>operation)   | 1.2  | 1.3  | 1.4  | V    |
| Clamp voltage 2           | Vvao2  | PFC_VSENSE = 2.0V<br>(When resonant operation)<br>RM_SS = 2.5V | 1.53 | 1.6  | 1.67 | V    |
| Source current            | lvaosc | PFC_VSENSE = 2.2V,<br>PFC_VAO = 0.5V                           | 10   | 20   | 40   | μA   |
| Output Low voltage        | Vvaol  | PFC_VSENSE = 2.55V                                             | 0    | —    | 0.2  | V    |
| Sink current              | Ivaosk | PFC_VSENSE = 2.65V,<br>PFC_VAO = 3.0V                          | 5    | 15   | 25   | μΑ   |

## 14. PFC Maximum ON Time Control Circuit Block (PFC\_TONMAX pin)

| Item               | Symbol     | Measurement conditions                    | Min. | Тур. | Max. | Unit |
|--------------------|------------|-------------------------------------------|------|------|------|------|
| Charge current     | Itoncharge | PFC_TONMAX = 0.1V                         | 144  | 150  | 156  | μA   |
| Discharge time     | Tdischarge | Ct = 1500pF,<br>PFC_TONMAX = 3.2V to 0.1V |      |      | 150  | ns   |
| PFC output ON time | Ton        | PFC_VSENSE = 2.45V,<br>Ct = 1500pF        | 26   | 29   | 32   | μs   |

| Item                                                                   | Symbol     | Measurement conditions | Min.  | Тур.  | Max.  | Unit |
|------------------------------------------------------------------------|------------|------------------------|-------|-------|-------|------|
| PFC overvoltage detection voltage                                      | Vovp1      |                        | 2.849 | 2.922 | 2.995 | V    |
| PFC stop voltage                                                       | Vovp2      |                        | 2.646 | 2.7   | 2.754 | V    |
| PFC stop cancel voltage<br>Continuous overvoltage<br>detection voltage | Vovp2hys   |                        | 2.548 | 2.6   | 2.652 | V    |
| PFC control voltage                                                    | Vpfccnt    |                        | 2.475 | 2.5   | 2.525 | V    |
| PFC non-operating detection voltage                                    | Vpfcnonact |                        | 2.280 | 2.4   | 2.520 | V    |
| Resonant controller operation start voltage                            | Vrmstart   |                        | 2.036 | 2.143 | 2.250 | V    |
| Resonant controller<br>operation stop voltage                          | Vrmstop    | When RM_OFFADJ = open  | 1.789 | 1.883 | 1.977 | V    |
| Pin short-circuit detection                                            | Vshort     |                        | 0.2   | 0.3   | 0.4   | V    |
| Pull-up current                                                        | lvs        | PFC_VSENSE = 0.1V      | 0.05  | 0.1   | 0.2   | μA   |

## 15. PFC Output Voltage Detection Circuit Block (PFC\_VSENSE pin)

## 16. Resonant Controller Stop Voltage Adjustment Circuit Block (RM\_OFFADJ pin)

| Item                                       | Symbol    | Measurement conditions | Min.  | Тур.  | Max.  | Unit |
|--------------------------------------------|-----------|------------------------|-------|-------|-------|------|
| Output voltage                             | Vrmoff    |                        | 1.789 | 1.883 | 1.977 | V    |
| Latch voltage for external error detection | Voffadjng |                        | 3.8   | 4.0   | 4.2   | V    |

## 17. PFC Overvoltage Detection Circuit Block (PFC\_OVP pin)

| Item                                     | Symbol | Measurement conditions | Min.  | Тур.  | Max.  | Unit |
|------------------------------------------|--------|------------------------|-------|-------|-------|------|
| PFC overvoltage detection voltage        | Vovp11 |                        | 2.849 | 2.922 | 2.995 | V    |
| Continuous overvoltage detection voltage | Vovp21 |                        | 2.548 | 2.600 | 2.652 | V    |
| Pull-up current                          | lovp   | PFC_VSENSE = 0.1V      | 0.05  | 0.1   | 0.2   | μA   |

## Resonant Controller Block

(Unless otherwise specified, the conditions are Ta =  $27^{\circ}$ C, VCC = 12V, MODE = GND, RM\_RT = OPEN, Rfmin =  $20k\Omega$ )

## 18. Resonant Controller Output Circuit Block (RM\_OUTP, RM\_OUTN pins)

| Item                | Symbol | Measurement conditions    | Min. | Тур.  | Max. | Unit |
|---------------------|--------|---------------------------|------|-------|------|------|
| Output Low voltage  | Vroutl | VCC = 18V, lout = 10mA    | _    | 0.05  | 0.1  | V    |
| Output High voltage | Vrouth | VCC = 18V, lout = -10mA   | 17.9 | 17.95 | _    | V    |
| Rise time           | Vroutr | VCC = 18V, CLOAD = 1000pF | _    | 35    | 100  | ns   |
| Fall time           | Vroutf | VCC = 18V, CLOAD = 1000pF | —    | 35    | 100  | ns   |

Note) Rise time is judged at VCC  $\times$  0.1 and fall time is judged at VCC  $\times$  0.9 respectively.

## 19. Resonant Controller Soft Start Circuit Block (RM\_SS pin)

| Item                                                | Symbol      | Measurement conditions  | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------|-------------|-------------------------|------|------|------|------|
| Soft start current                                  | Irmss       | RM_SS = 0V              | 15   | 20   | 25   | μA   |
| Clamp voltage                                       | Vrmss       |                         | 2.3  | 2.5  | 2.7  | V    |
| Soft start end detection voltage                    | Vssok       |                         | 2.2  | 2.4  | 2.6  | V    |
| Overcurrent timer latch detection voltage           | Vtimerlatch |                         | 3.8  | 4.0  | 4.2  | V    |
| Charging current<br>during overcurrent<br>detection | locc        | RM_CS = 0.3V, SS = 3.0V | 32   | 50   | 68   | μΑ   |

## 20. Resonant Controller Frequency Control Circuit Block (RM\_RT pin)

| Item                                                     | Symbol | Measurement conditions                         | Min. | Тур. | Max. | Unit  |
|----------------------------------------------------------|--------|------------------------------------------------|------|------|------|-------|
| Maximum oscillation<br>frequency                         | Frmmax | Irt = 2mA, Rfmin = $15k\Omega$                 | 550  | _    |      | kHz   |
| Deadband width                                           | Tdb    |                                                | 270  | 300  | 330  | ns    |
| Multiple number of<br>clamp frequency when<br>soft start | Fclamp | f0/f4<br>(f0: RM_SS = 0V,<br>f4: RM_SS = 2.5V) | 3.5  | 4.5  | 5    | times |

## 21. Resonant Controller Minimum Frequency Adjustment Circuit Block (RM\_FMIN pin)

| Item                | Symbol | Measurement conditions | Min.  | Тур. | Max.  | Unit |
|---------------------|--------|------------------------|-------|------|-------|------|
| Setting frequency 1 | Fmin1  | Rfmin = 30kΩ           | (–3%) | 41   | (+3%) | kHz  |
| Setting frequency 2 | Fmin2  | Rfmin = 20kΩ           | (–3%) | 60   | (+3%) | kHz  |
| Setting frequency 3 | Fmin3  | Rfmin = $15k\Omega$    | (–3%) | 79.5 | (+3%) | kHz  |
| Output voltage      | Vfmin  |                        | 1.0   | 1.2  | 1.4   | V    |

| Item                                                | Symbol   | Measurement conditions                                                   | Min.   | Тур.   | Max.   | Unit |
|-----------------------------------------------------|----------|--------------------------------------------------------------------------|--------|--------|--------|------|
| Positive side detection                             | Vcs1p    | When RM_OUTP = High                                                      | 0.209  | 0.220  | 0.231  | V    |
| Negative side detection                             | Vcs1n    | When RM_OUTN = High                                                      | -0.285 | -0.250 | -0.225 | V    |
| Detection delay<br>time                             | Tcsdly   | CS to DRV<br>RM_CS = $-0.3V \leftrightarrow 0.3V$<br>(Rectangular input) | 100    | 150    | 200    | ns   |
| Detection mask time                                 | Tcsmask  | RM_CS = 0.3V                                                             | 384    | 480    | 576    | ns   |
| Continuous load detection voltage                   | Vcs2     | When RM_OUTP = High                                                      | 0.158  | 0.175  | 0.193  | V    |
| Continuous load detection time                      | Tcs2     | (When the time corresponds to $2.1s \times 5$ times)                     |        | (10)   |        | s    |
| Out of resonance<br>prevention<br>detection voltage | Vcsbfdet | When resonance start-up                                                  | -0.02  | 0      | 0.02   | V    |
| RS_CS pin offset<br>current                         | lcspos   | RM_CS = 0.1V                                                             | 7      | 10     | 13     | μA   |
| RS_CSGND pin<br>offset current                      | lcsneg   | RM_CSGND = 0.1V                                                          | 7      | 10     | 13     | μA   |

## 22. Resonant Controller Current Detection Circuit Block (RM\_CS pin, RM\_CSGND pin)

Note) The shipping inspection is performed at room temperature. (The design is guaranteed with respect to temperature fluctuation.)

## 23. List of Electrical Characteristics

| Item                                        |             | ification ra<br>Ta = 27°C |       | Design guarantee ratings<br>(Ta = -25 to +85°C) (*1) |       |                        | Unit |
|---------------------------------------------|-------------|---------------------------|-------|------------------------------------------------------|-------|------------------------|------|
|                                             | Min.        | Тур.                      | Max.  | Min.                                                 | Тур.  | Max.                   |      |
| Current consumption (VCC, PVCC pins)        |             |                           |       |                                                      |       |                        |      |
| Current consumption in standby mode         | —           | 700                       | 1000  | —                                                    | 700   | 1000                   | μA   |
| Current consumption in operation mode       | —           | 3                         | 3.5   | —                                                    | 3     | 3.5                    | mA   |
| Low voltage misoperation prevention circ    | uit block ( | VCC pin)                  |       |                                                      |       |                        |      |
| Operation start voltage                     | 10.2        | 11                        | 11.8  | 10.2                                                 | 11    | 11.8                   | V    |
| Operation stop voltage                      | 9           | 9.6                       | 10.2  | 9                                                    | 9.6   | 10.2                   | V    |
| Hysteresis width                            | 1.1         | 1.4                       | 1.7   | 1.1                                                  | 1.4   | 1.7                    | V    |
| Reference voltage output block (VREF pin    | n)          | •                         | •     |                                                      | •     |                        |      |
| Output voltage                              | 4.85        | 5                         | 5.15  | 4.85                                                 | 5     | 5.15                   | V    |
| Input stability                             | —           | 10                        | 30    | 0                                                    | 10    | 30.5 (* <sup>2</sup> ) | mV   |
| Load stability                              | —           | 20                        | 50    | —                                                    | 20    | 50                     | mV   |
| Pin voltage when NG latch (When TSD)        | _           | 0.1                       | 0.5   | _                                                    | 0.1   | 0.5                    | V    |
| AC input detection circuit block (AC_DET    | IN pin)     |                           |       |                                                      |       | <u>.</u>               |      |
|                                             | 1.85        | 1.95                      | 2.05  | 1.85                                                 | 1.95  | 2.05                   | V    |
| PFC operation start voltage                 | 1.65        | 1.75                      | 1.85  | 1.65                                                 | 1.75  | 1.85                   | V    |
| Hysteresis width                            | 0.17        | 0.2                       | 0.23  | 0.17                                                 | 0.2   | 0.23                   | V    |
| AC detection reference voltage High 1       | 5.8         | 6                         | 6.2   | 5.8                                                  | 6     | 6.2                    | V    |
| AC detection reference voltage Low 1        | 3.925       | 4.125                     | 4.325 | 3.925                                                | 4.125 | 4.325                  | V    |
| AC detection reference voltage High 2       | 1.4         | 1.6                       | 1.8   | 1.4                                                  | 1.6   | 1.8                    | V    |
| AC detection reference voltage Low 2        | 0.9         | 1.1                       | 1.3   | 0.9                                                  | 1.1   | 1.3                    | V    |
| AC off detection delay time 1               | 4           | 5                         | 6     | 4                                                    | 5     | 6                      | ms   |
| AC off detection delay time 2               | 4           | 5                         | 6     | 4                                                    | 5     | 6                      | ms   |
| AC off detection delay time 3               | 6.4         | 8                         | 9.6   | 6.4                                                  | 8     | 9.6                    | ms   |
| AC off detection delay time 4               | 20          | 25                        | 30    | 20                                                   | 25    | 30                     | ms   |
| AC input error detection output circuit blo | ock (AC D   | ETOUT p                   |       | -                                                    | _     |                        |      |
| Output Low voltage                          |             | 0.5                       | , 1   | _                                                    | 0.5   | 1                      | V    |
| Output High voltage                         | 17          | 17.5                      |       | 17                                                   | 17.5  |                        | V    |
| Mode pin determination circuit block (MO    | DE pin)     | ļ                         | ļ     |                                                      |       | <u> </u>               |      |
| MODE detection voltage Low                  | 5.2         | _                         | 5.6   | 5.2                                                  |       | 5.6                    | V    |
| MODE detection voltage High                 | 7.6         |                           | 8.4   | 7.6                                                  |       | 8.4                    | V    |
| Internal pull-up resistor value             | 35          | 50                        | 65    | 35                                                   | 50    | 65                     | kΩ   |
| Clock timer                                 |             | <u> </u>                  | I     | 1                                                    | 1     | 1                      |      |
| 1ms clock                                   | 972         | 1024                      | 1075  | 972                                                  | 1024  | 1075                   | μS   |
| PFC output circuit block (PFC_OUT pin)      |             |                           |       | 1                                                    | 1     | _                      | 1    |
| Output Low voltage                          |             | 0.03                      | 0.1   | _                                                    | 0.03  | 0.1                    | V    |
| Output High voltage                         | 17.85       | 17.9                      |       | 17.85                                                | 17.9  | _                      | V    |
| Rise time                                   | _           | 35                        | 100   | _                                                    | 35    | 100                    | ns   |
| Fall time                                   |             | 25                        | 100   | _                                                    | 25    | 100                    | ns   |

| Item                                                                |          | ification ra<br>Ta = 27°C |        | Design guarantee ratings<br>(Ta = -25 to +85°C) (*1) |       |                            | Unit |
|---------------------------------------------------------------------|----------|---------------------------|--------|------------------------------------------------------|-------|----------------------------|------|
|                                                                     | Min.     | Тур.                      | Max.   | Min.                                                 | Тур.  | Max.                       |      |
| PFC-OK signal circuit block (PFC_OK pin)                            |          |                           |        |                                                      |       |                            |      |
| Output Low voltage                                                  | _        | 0.5                       | 1      | —                                                    | 0.5   | 1                          | V    |
| Output High voltage                                                 | 17       | 17.5                      | _      | 17                                                   | 17.5  | —                          | V    |
| AC peak voltage monitor circuit block (AC                           | VRMS pi  | n)                        |        |                                                      |       |                            | •    |
| Internal pull-up resistor value                                     | 0.6      | 0.8                       | 1      | 0.6                                                  | 0.8   | 1                          | MΩ   |
| PFC overcurrent detection circuit block (PF                         | C_CS pi  | n)                        |        |                                                      |       | •                          |      |
| Input threshold voltage                                             | 0.45     | 0.5                       | 0.55   | 0.45                                                 | 0.5   | 0.55                       | V    |
| Blanking time                                                       | 384      | 480                       | 576    | 384                                                  | 480   | 576                        | ns   |
| Delay time                                                          | 100      | 150                       | 200    | 100                                                  | 150   | 200                        | ns   |
| PFC zero current detection circuit block (P                         | FC_ZCD   | pin)                      |        | ļ                                                    | ļ     | ļ                          | ļ    |
| Input threshold voltage                                             | 1.2      | 1.3                       | 1.4    | 1.2                                                  | 1.3   | 1.4                        | V    |
| Hysteresis width                                                    | 180      | 200                       | 220    | 180                                                  | 200   | 220                        | mV   |
| Clamp High voltage                                                  | 4        | 4.4                       | 5      | 4                                                    | 4.4   | 5                          | V    |
| Clamp Low voltage                                                   | 0.3      | 0.6                       | 1      | 0.3                                                  | 0.6   | 1                          | V    |
| Restart timer delay                                                 | 180      | 200                       | 220    | 180                                                  | 200   | 220                        | μS   |
| Maximum oscillation frequency<br>(When overcurrent is detected)     | 180      | 220                       | 260    | 180                                                  | 220   | 260                        | kHz  |
| Error amplifier output circuit block for PFC                        | voltage  | control (F                | FC_VAO | pin)                                                 | 1     | 1                          | l    |
| Trans-conductance                                                   | _        | (90)                      | —      |                                                      | (90)  |                            | μA/V |
| Output High voltage                                                 | 2.85     | 3                         | 3.15   | 2.85                                                 | 3     | 3.15                       | V    |
| Clamp voltage 1                                                     | 1.2      | 1.3                       | 1.4    | 1.2                                                  | 1.3   | 1.4                        | V    |
| Clamp voltage 2                                                     | 1.53     | 1.6                       | 1.67   | 1.53                                                 | 1.6   | 1.67                       | V    |
| Output source current                                               | 10       | 20                        | 40     | 10                                                   | 20    | 40                         | μA   |
| Output Low voltage                                                  | 0        | —                         | 0.2    | 0                                                    | _     | 0.2                        | V    |
| Output sink current                                                 | 5        | 15                        | 25     | 5                                                    | 15    | 25                         | μA   |
| PFC maximum ON time control circuit bloc                            | k (PFC_T | ONMAX                     | oin)   | 1                                                    |       | 1                          |      |
| Pin charging current                                                | 144      | 150                       | 156    | 144                                                  | 150   | 158 (* <sup>2</sup> )      | μA   |
| Pin discharging current                                             | _        | —                         | 150    | —                                                    | —     | 150                        | ns   |
| On time                                                             | 26       | 29                        | 32     | 26                                                   | 29    | 32                         | μs   |
| PFC output voltage detection circuit block                          | (PFC_VS  | ENSE pir                  | )      | ļ                                                    | ļ     | ļ                          | •    |
| PFC overvoltage detection                                           | 2.849    | 2.922                     | 2.995  | 2.849                                                | 2.922 | 2.995                      | V    |
| PFC stop voltage                                                    | 2.646    | 2.7                       | 2.754  | 2.646                                                | 2.7   | 2.754                      | V    |
| PFC stop cancel voltage<br>Continuous overvoltage detection voltage | 2.548    | 2.6                       | 2.652  | 2.548                                                | 2.6   | 2.652                      | V    |
| PFC control voltage                                                 | 2.475    | 2.5                       | 2.525  | 2.475                                                | 2.5   | 2.526<br>( <sup>*2</sup> ) | V    |
| PFC non-operating detection voltage                                 | 2.28     | 2.4                       | 2.52   | 2.28                                                 | 2.4   | 2.52                       | V    |
| Resonant controller operation start voltage                         | 2.036    | 2.143                     | 2.25   | 2.036                                                | 2.143 | 2.25                       | V    |
| Resonant controller operation stop voltage                          | 1.789    | 1.883                     | 1.977  | 1.789                                                | 1.883 | 1.977                      | V    |
| Pin short-circuit detection                                         | 0.2      | 0.3                       | 0.4    | 0.2                                                  | 0.3   | 0.4                        | V    |
| Pin pull-up current                                                 | 0.05     | 0.1                       | 0.2    | 0.05                                                 | 0.1   | 0.2                        | μA   |

| Item                                                                          |            | ification ra<br>Ta = 27°C |          | Design guarantee ratings<br>(Ta = –25 to +85°C) (*1) |       |                            | Unit  |  |
|-------------------------------------------------------------------------------|------------|---------------------------|----------|------------------------------------------------------|-------|----------------------------|-------|--|
|                                                                               | Min.       | Тур.                      | Max.     | Min.                                                 | Тур.  | Max.                       |       |  |
| Resonant controller stop voltage adjustme                                     | nt circuit | block (R                  | M_OFFA   | OJ pin)                                              |       |                            |       |  |
| RM_OFFADJ pin output voltage                                                  | 1.789      | 1.883                     | 1.977    | 1.789                                                | 1.883 | 1.977                      | V     |  |
| Latch voltage for external error detection                                    | 3.8        | 4                         | 4.2      | 3.8                                                  | 4     | 4.2                        | V     |  |
| PFC overvoltage detection circuit block (PI                                   | C_OVP      | oin)                      |          |                                                      |       |                            |       |  |
| PFC overvoltage detection voltage                                             | 2.849      | 2.922                     | 2.995    | 2.849                                                | 2.922 | 2.995                      | V     |  |
| Pin pull-up current                                                           | 0.05       | 0.1                       | 0.2      | 0.05                                                 | 0.1   | 0.2                        | μA    |  |
| Resonant controller output circuit block (R                                   | M_OUTP     | , RM_OU                   | TN pins) |                                                      |       |                            | -     |  |
| Output Low voltage                                                            | —          | 0.05                      | 0.1      | —                                                    | 0.05  | 0.1                        | V     |  |
| Output High voltage                                                           | 17.9       | 17.95                     | —        | 17.9                                                 | 17.95 | —                          | V     |  |
| Rise time                                                                     | —          | 35                        | 100      | _                                                    | 35    | 100                        | ns    |  |
| Fall time                                                                     | —          | 35                        | 100      | _                                                    | 35    | 100                        | ns    |  |
| Resonant controller soft start circuit block                                  | (RM_SS     | pin)                      |          |                                                      |       |                            |       |  |
| Soft start current                                                            | 15         | 20                        | 25       | 15                                                   | 20    | 25                         | μA    |  |
| Clamp voltage                                                                 | 2.3        | 2.5                       | 2.7      | 2.3                                                  | 2.5   | 2.7                        | V     |  |
| Soft start end detection voltage                                              | 2.2        | 2.4                       | 2.6      | 2.2                                                  | 2.4   | 2.6                        | V     |  |
| Overcurrent timer latch detection voltage                                     | 3.8        | 4                         | 4.2      | 3.8                                                  | 4     | 4.2                        | V     |  |
| Charge current when overcurrent is detected                                   | 32         | 50                        | 68       | 32                                                   | 50    | 68                         | μA    |  |
| Resonant controller soft start circuit block                                  | (RM_RT     | pin)                      | •        |                                                      |       |                            |       |  |
| Maximum oscillation frequency                                                 | 550        | _                         | _        | 550                                                  | _     | —                          | kHz   |  |
| Deadband width                                                                | 270        | 300                       | 330      | 270                                                  | 300   | 330                        | ns    |  |
| Clamp frequency magnification during soft start                               | 3.5        | 4.5                       | 5        | 3.5                                                  | 4.5   | 5                          | times |  |
| Resonant controller minimum frequency ad                                      | djustmen   | t circuit b               | lock (RM | _FMIN pir                                            | 1)    | •                          |       |  |
| Setting frequency 1                                                           | 39.77      | 41                        | 42.23    | 39.46<br>(* <sup>2</sup> )                           | 41    | 42.68<br>( <sup>*2</sup> ) | kHz   |  |
| Setting frequency 2                                                           | 58.2       | 60                        | 61.8     | 58.20                                                | 60    | 61.80                      | kHz   |  |
| Setting frequency 3                                                           | 77.12      | 79.5                      | 81.88    | 76.13<br>( <sup>*2</sup> )                           | 79.5  | 81.88                      | kHz   |  |
| Pin output voltage                                                            | 1          | 1.2                       | 1.4      | 1                                                    | 1.2   | 1.4                        | V     |  |
| Resonant controller current detection circuit block (RM_CS pin, RM_CSGND pin) |            |                           |          |                                                      |       |                            |       |  |
| Positive side detection                                                       | 0.209      | 0.22                      | 0.231    | 0.209                                                | 0.22  | 0.231                      | V     |  |
| Negative side detection                                                       | -0.285     | -0.25                     | -0.225   | -0.285                                               | -0.25 | -0.225                     | V     |  |
| Detection delay time                                                          | 100        | 150                       | 200      | 100                                                  | 150   | 200                        | ns    |  |
| Detection mask time                                                           | 384        | 480                       | 576      | 384                                                  | 480   | 576                        | ns    |  |
| Continuous load detection voltage                                             | 0.158      | 0.175                     | 0.193    | 0.158                                                | 0.175 | 0.193                      | V     |  |
| Continuous load detection time                                                | —          | (10)                      | —        |                                                      | (10)  |                            | S     |  |
| Out of resonance prevention detection voltage                                 | -0.02      | 0                         | 0.02     | -0.02                                                | 0     | 0.02                       | V     |  |
| RM_CS pin offset current                                                      | 7          | 10                        | 13       | 7                                                    | 10    | 13                         | μA    |  |
| RM_CSGND pin offset current                                                   | 7          | 10                        | 13       | 7                                                    | 10    | 13                         | μA    |  |

<sup>\*1</sup> Ratings are design guarantee values within this temperature range.

\*2 Specification values at room temperature may not be satisfied because of temperature dependence.

### Detailed Description of Each Block

- Common Circuit Block
- **1. Misdetection Prevention Circuit**

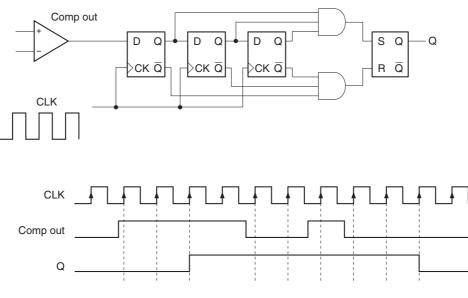
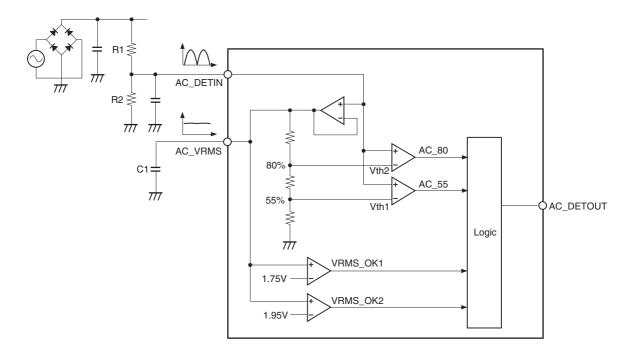



Fig. 1. Equivalent Circuit Corresponded to  $1ms \times 3$  Times

Fig. 1 above shows the equivalent circuit corresponded to  $1ms \times 3$  times. When CLK has a 1ms cycle, comp out is monitored at the rising edge of every 1ms, and the output Q is defined when it reaches three times. The 5 times-corresponded circuit also operates using a similar system, so the approach is the same.


The clocks used for each setup time are generated by frequency dividing the 1MHz clock. The setup variance time of the 1ms  $\times$  3 times correspondence circuit in the example above is as follows. Variance of 2ms < setup time < 3ms occurs due to the comp out inversion timing. In addition, taking into account the basic clock 1kHz variance, the 1ms (1024µs) clock has variance of 0.972ms to 1.075ms (±5%), so at the maximum variance the setup variance time is 1.944ms < setup time < 3.225ms.

Setup time of misdetection prevention counter (when the basic clock of 1MHz has no variance) used for this IC is shown below.

- + Corresponds to  $1\mu s \times 16$  times ...... 15  $\mu s$  to 16  $\mu s$
- + Corresponds to  $128 \mu s \times 3$  times ...... 256  $\mu s$  to  $384 \mu s$
- Corresponds to  $128\mu s \times 5$  times ......  $512\mu s$  to  $640\mu s$
- Corresponds to 1ms × 3 times ...... 2ms to 3ms (Converted by 1ms for 1.024ms)
- + Corresponds to  $1ms \times 5$  times ...... 4ms to 5ms
- Corresponds to 4.1ms × 3 times ...... 8.2ms to 12.3ms (Converted by 4.1ms for 4.096ms)
- Corresponds to 16ms × 4 times ...... 48ms to 64ms (Converted by 16ms for 16.4ms)
- Corresponds to 66ms × 8 times ...... 462ms to 528ms (Converted by 66ms for 65.5ms)
- Corresponds to 2.1s × 3 times ...... 4.2s to 6.3s (Converted by 2.1s for 2.097s)
- Corresponds to 2.1s × 5 times ...... 8.4s to 10.5s

### 2. AC Detection Circuit Block

Fig. 2-1 shows the AC detection block equivalent circuit.



## Fig. 2-1. AC Detection Block Equivalent Circuit

The AC detection circuit block detects the AC input voltage by directly monitoring the full-wave rectified AC input waveform.

The wave input to the AC\_DETIN pin is peak-held at the AC\_VRMS pin by a buffer circuit, and reference voltages equivalent to 55% (Vth1) and 80% (Vth2) of the peak value are generated internally. The AC input is constantly monitored to determine the voltage range by comparing these reference voltages and the AC\_DETIN pin voltage.

The AC\_VRMS pin voltage is compared with the internal reference voltages, and AC input is detected when the AC\_VRMS pin voltage is 1.95V or more, or AC OFF when 1.75V or less. When R1 =  $1000k\Omega$  and R2 =  $18k\Omega$  in Fig. 2-1, AC input is detected when VAC = 78Vrms or more.

In addition, connect a capacitor of at least  $0.47\mu$ F or more to the AC\_VRMS pin. An internal resistor is provided to generate the 80% and 55% voltages of the AC\_VRMS pin voltage, and when this external capacitance value is too small, discharge may make peak hold impossible.

# SONY

Fig. 2-2 shows the state transition diagram for the AC OFF detection circuit. The state transition conditions are related to the POR, AC65, AC45, VRMSOK1 and VRMSOK2 input signals, and the timer values in each state. POR is the IC reset signal, and AC65, AC45, VRMSOK1 and VRMSOK2 are the outputs of each comparator shown in Fig. 2-1.  $1\mu s \times 16$  times filter processing is applied to these signals. The state transition logic operating frequency is 7.8kHz.

In addition, regardless of the state transitions shown in Fig. 2-2, VRMSOK2 = High (AC\_VRMS pin voltage > 1.95V) must be set up to obtain AC\_DETOUT = High setup at start-up. After VRMSOK2 = High is detected (1ms  $\times$  3 times), AC\_DETOUT goes High.

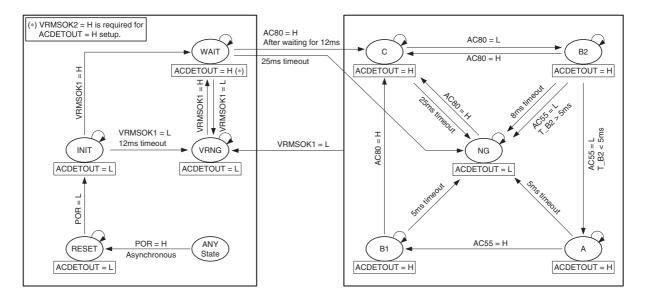



Fig. 2-2. AC Detection State Transition Diagram

The AC\_DETOUT pin is the output signal for this function, and outputs High when the AC input state is normal, or Low when AC OFF or other abnormal state is detected. However, AC\_DETOUT pin = High output of the CXA3820M requires continuous two times detections of "C". Detection sequence of AC\_DETOUT pin = Low is the same as that of the CXA3820M. Details of the sequence are as follows.

Fig. 3 shows an image of the state transitions when normal AC input continues.

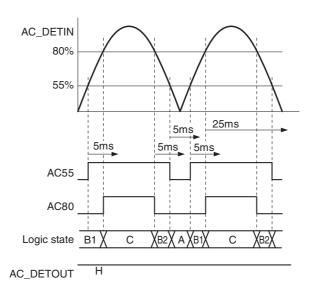
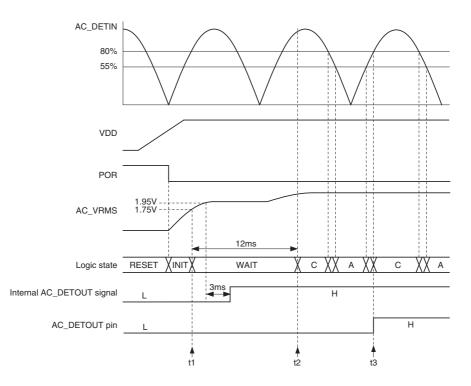
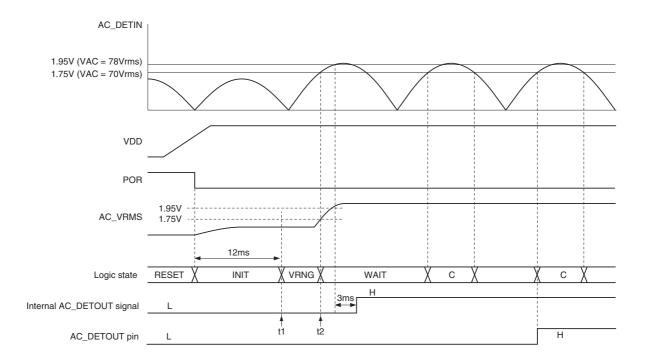



Fig. 3. AC\_DETIN Input Waveform and State Transitions


In Fig. 3, the internal logic signal transitions as follows.

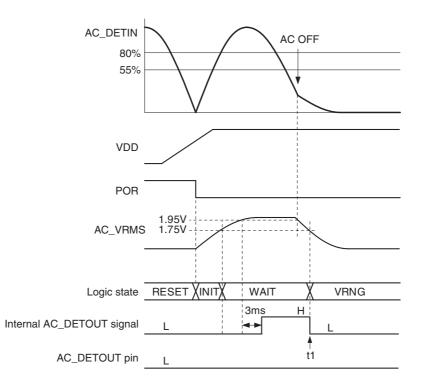
- When the AC input rises to 80% or more within 5ms after the state transitions to "B1", the state transitions to "C".
- When the AC input falls to 80% or less within 25ms after the state transitions to "C", the state transitions to "B2".
- When the AC input falls to 55% or less within 5ms after the state transitions to "B2", the state transitions to "A".
- When the AC input rises to 55% or more within 5ms after the state transitions to "A", the state transitions to "B1".

When the above cycle repeats, AC\_DETOUT continues to output High.

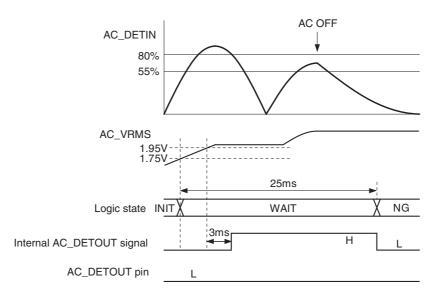

Other behaviors during start-up or AC voltage OFF are described on the following pages.

### During normal start-up




- When POR is canceled after power-on, the state transitions to "INIT". AC\_DETOUT is Low output in the "RESET" and "INIT" states.
- When the AC\_VRMS pin voltage rises to 1.75V or more in the "INIT" state, the state transitions to "WAIT" (t1), but AC\_DETOUT continues to output Low until the AC\_VRMS pin voltage reaches 1.95V.
- When the AC\_VRMS pin voltage rises to 1.95V after the state transitions to "WAIT", VRMSOK2 goes High, and then AC\_DETOUT outputs High 3ms after that.
- When the AC\_DETIN pin voltage exceeds 80% of the AC\_VRMS pin voltage after 12 ms have elapsed in the "WAIT" state, the state transitions to "C" (t2).
   After that, when the second detection of "C" without "NG" detection is performed, AC\_DETOUT pin = High output is setup and the normal state judgment cycle starts.

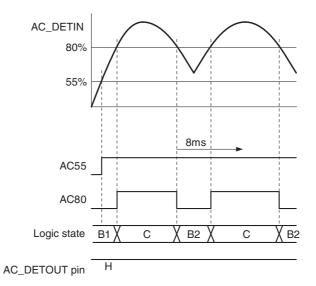
## ♦ Start-up when the AC voltage is low




- When the AC\_VRMS pin voltage does not reach 1.75V within 12ms in the "INIT" state after POR is canceled, an AC input error is judged, the state transitions to "VRNG", and AC\_DETOUT continues to output Low (t1).
- When the IC detects that the AC\_VRMS pin voltage has risen to 1.75 V or more the "VRNG" state, the state transitions to "WAIT" (t2).
   Then, 3 ms after the AC\_VRMS pin voltage rises to 1.95 V or more, internal AC\_DETOUT signal is High. After that, AC DETOUT pin = High output is setup when "C" is detected two times.

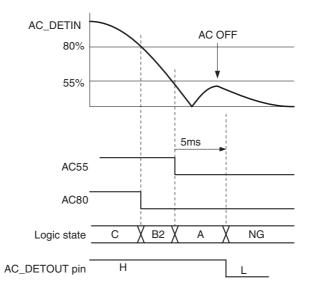
♦ When AC OFF occurs in the "WAIT" state (1)




- When the AC\_VRMS pin voltage falls to 1.75 V or less in the "WAIT" state, AC OFF is judged, the state transitions to "VRNG", and internal AC\_DETOUT signal is Low (t1). In this case, AC\_DETOUT pin does not output High because "C" has not been detected.
- ♦ When AC OFF occurs in the "WAIT" state (2)

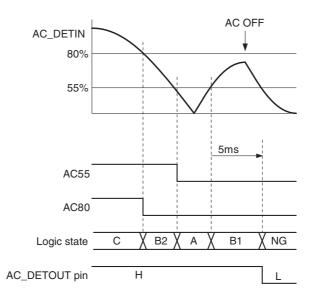


 When the AC\_VRMS pin voltage is 1.95V or more but the AC\_DETIN pin voltage has not reached 80% of the AC\_VRMS pin voltage (the state has not transitioned to "C") within 25ms after the state transitions to "WAIT", AC OFF is judged, the state transitions to "NG", and internal AC\_DETOUT signal is Low.

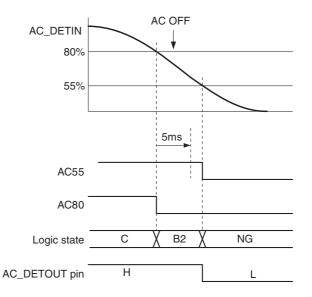

In this case, AC\_DETOUT pin also does not output High because "C" has not been detected.

## ♦ During normal AC input



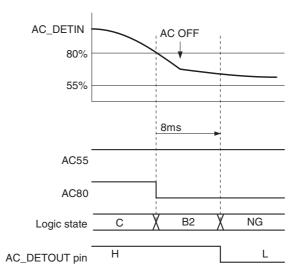

- When the AC\_DETIN pin voltage rises to 80% or more of the AC\_VRMS pin voltage within 8ms after the state transitions to "B2", the state transitions to "C".
- AC\_DETOUT continues to output High even when the "C"  $\rightarrow$  "B2"  $\rightarrow$  "C" cycle repeats.

## ♦ AC OFF in the "A" state

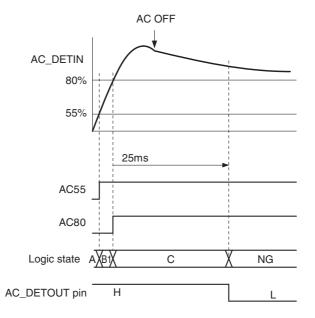



 When the AC\_DETIN pin voltage does not rise to 55% or more of the AC\_VRMS pin voltage within 5ms after the state transitions to "A", AC OFF is judged, the state transitions to "NG", and AC\_DETOUT outputs Low.

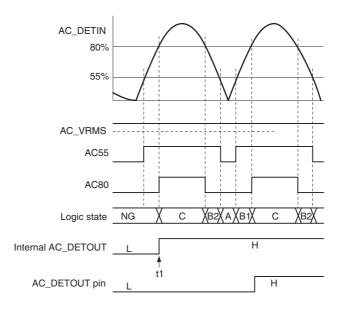
## ♦ AC OFF in the "B1" state




- When the AC\_DETIN pin voltage does not rise to 80% or more of the AC\_VRMS pin voltage within 5ms after the state transitions to "B1", AC OFF is judged, the state transitions to "NG", and AC\_DETOUT outputs Low.
- ♦ AC OFF in the "B2" state (1)

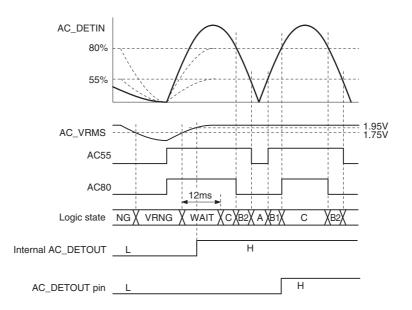



When 5ms or more have elapsed by the time the AC\_DETIN pin voltage falls to 55% or less of the AC\_VRMS pin voltage after the state transitions to "B2", AC OFF is judged, the state transitions to "NG", and AC\_DETOUT outputs Low.


♦ AC OFF in the "B2" state (2)



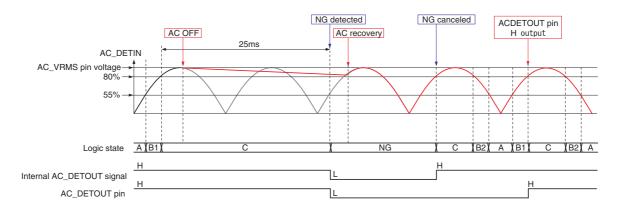
- When the AC\_DETIN pin voltage does not rise to 80% or more or fall to 55% or less of the AC\_VRMS pin voltage within 8ms after the state transitions to "B2", AC OFF is judged, the state transitions to "NG", and AC\_DETOUT outputs Low.
- ♦ AC OFF in the "C" state




 When the AC\_DETIN pin voltage does not fall to 80% or less of the AC\_VRMS pin voltage within 25ms after the state transitions to "C", AC OFF is judged, the state transitions to "NG", and AC\_DETOUT outputs Low. • Return to the normal cycle from the "NG" state (1)



• When the AC\_DETIN pin voltage rises to 80% or more of the AC\_VRMS pin voltage while the AC\_VRMS pin voltage is 1.75V or more in the "NG" state, the state transitions to "C", internal AC\_DETOUT signal is High. After that, when the second "C" is detected, AC\_DETOUT pin = High output is setup and the normal state judgment cycle starts.


#### ◆ Return to the normal cycle from the "NG" state (2)



- When the AC\_VRMS pin voltage falls to 1.75V or less in the "NG" state, the state transitions to "VRNG".
- When AC is input again and the AC\_VRMS pin voltage rises to 1.75V or more, the state transitions to "WAIT". Then, when the AC\_VRMS pin voltage rises further to 1.95V, internal AC\_DETOUT signal is High.

After that, when the AC input rises to 80% or more, the state transitions to "C". AC\_DETOUT pin = High output is setup when the second "C" is detected, and the normal state judgment cycle starts.

## ♦ Return to the normal cycle after the state transitions from "C" to "NG"



 The return sequence from the "NG" state when the "C" state has continued for 25 ms or more is as follows. After the AC\_DETIN pin voltage falls below 80% of the AC\_VRMS pin voltage, and then exceeds 80% of the AC\_VRMS pin voltage again (detects "C"). That makes internal ACDETOUT signal High. AC\_DETOUT pin High output is setup when the second "C" is detected, and the normal state judgment cycle starts.

## 3. MODE Pin Voltage Detection Circuit Block

Normal sequence mode and standby mode can be set in accordance with the MODE pin input voltage. Normal sequence mode can be set by short-circuiting the MODE pin to GND, and standby mode can be set by short-circuiting the MODE pin to VCC or leaving the pin open.

Note that this IC has a test mode used to set the minimum resonant controller. It is possible to operate only the resonant controller by setting the MODE pin voltage to the following voltage range.

#### 5.6V < MODE pin voltage < 7.6V

In addition, the mode transition setup times when the MODE pin voltage is switched are as follows.

| <ul> <li>Normal sequence mode</li> </ul> | $\Rightarrow$ Standby mode         | : $128\mu s \times 2$ times                                        |
|------------------------------------------|------------------------------------|--------------------------------------------------------------------|
| <ul> <li>Standby mode</li> </ul>         | $\Rightarrow$ Normal sequence mode | : 128μs × 2 times<br>+ internal logic setup time of 320μs to 448μs |
| <ul> <li>Normal sequence mode</li> </ul> | $\Rightarrow$ Test mode            | : $128\mu s \times 3$ times                                        |
| <ul> <li>Standby mode</li> </ul>         | $\Rightarrow$ Test mode            | : $128\mu s \times 3$ times                                        |
| <ul> <li>Test mode</li> </ul>            | $\Rightarrow$ Normal sequence mode | : $128\mu s \times 3$ times                                        |
| <ul> <li>Test mode</li> </ul>            | $\Rightarrow$ Standby mode         | : $128\mu s \times 3$ times                                        |

#### 4. PFC\_OK Signal Output Circuit Block

When the PFC output voltage (+B) rises to 330V or more, the resonant circuit operates, and the end of resonant soft start is detected, the PFC\_OK signal goes to High output. In this IC the PFC\_OK signal is controlled to High output by detecting that the RM\_SS pin voltage is 2.4V (typ.) or more (4.1ms  $\times$  3 times). In addition, when the IC detects that the PFC output voltage has fallen to the voltage set by the RM\_OFFADJ pin (default: 290V) or less (1ms  $\times$  3 times), the PFC\_OK signal is Low output.

Fig. 4 shows the PFC\_OK signal output timing chart.

In addition, the PFC\_OK signal is also Low output during the following operations.

- During NG latch
- · When transition to standby mode
- When the PFC circuit is stopped (after AC\_VRMS < 1.75V, 66ms × 8 times is set up)

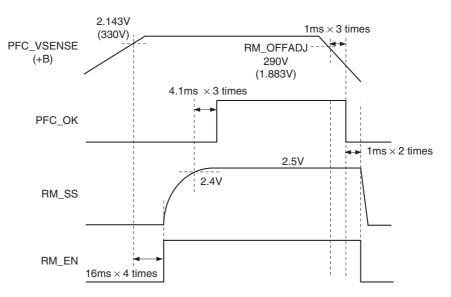



Fig. 4. PFC\_OK Signal Output Sequence

## ♦ PFC Block

#### 5. PFC Control Circuit Block

This IC has a Power-factor Correction (PFC) controller using a boost converter circuit that operates in multiplierless Critical Conduction Mode (CRM). Fig. 5 describes an overview of operation.

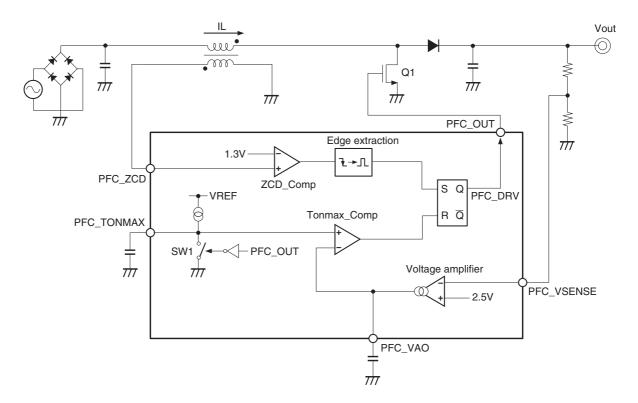



Fig. 5. Operation Circuit Block Diagram

This IC performs critical conduction mode switching operation that applies self-oscillation without using an oscillator. Fig. 6 shows the output waveform of each block in the steady state.

t1: When MOSFET Q1 goes ON, SW1 goes OFF, and the inductor current (IL) rises from zero at the slope Vin/L.
 At the same time charging starts to the PFC\_TONMAX pin external capacitor, and continues until the PFC\_TONMAX pin voltage reaches the PFC\_VAO pin voltage. The PFC\_VAO pin voltage value

corresponds to the PFC output voltage (Vout).

- t2: When the PFC\_TONMAX pin voltage reaches the PFC\_VAO pin voltage, Tonmax\_Comp inverts and a High signal is output, the RESET signal is input to the RS latch circuit, and Q1 goes OFF. When Q1 goes OFF, the inductor voltage inverts, and current is supplied to the output side via the diode. In addition, during this period the inductor current decreases at the slope (Vout Vin)/L, and a positive voltage is generated in the auxiliary winding (PFC\_ZCD pin voltage). The charge stored on the PFC\_TONMAX pin is discharged instantly by setting SW1 to ON.
- t3: When the inductor current reaches 0A, the inductor voltage drops rapidly, and at the same time the PFC\_ZCD pin voltage also drops. When the IC detects that the PFC\_ZCD pin voltage has fallen to 1.3V or less, the SET signal is input to the RS latch circuit, Q1 is turned back ON, and operation shifts to the next switching cycle.

Critical conduction mode switching is continued by repeating the above operations. Note that PFC control circuit in critical conduction mode, the switching frequently changes constantly according to the instantaneous value of the AC input voltage.

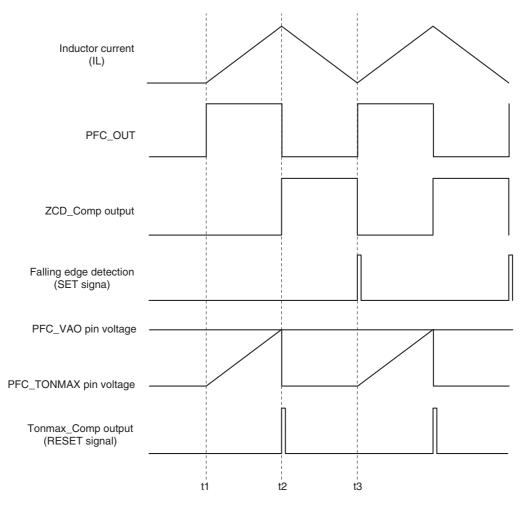



Fig. 6. Switching Operation Block Waveforms

## 6. PFC Zero Current Detection Circuit Block

The zero current detection circuit performs critical conduction mode operation, so this circuit detects that the inductor current has become 0A. When the voltage of the inductor auxiliary winding connected to the PFC-ZCD pin is set at the polarity shown in Fig. 7, a positive voltage is generated in the auxiliary winding when MOSFET\_Q1 is OFF, and a negative voltage is generated in the auxiliary winding I when MOSFET\_Q1 is ON. This auxiliary winding voltage varies greatly according to the input voltage and the circuit configuration, so internal upper limit and lower limit clamp circuits are provided. A resistor (Rzcd) is required to limit the outflow and inflow current to the clamp circuit to ensure normal IC operation. Set the Rzcd value so that this clamp circuit current is ±3mA or less.

Threshold mode control that uses self-oscillation requires a trigger signal to realize stable operation during start-up or under light load conditions. This IC has a restart timer, and when the PFC\_OUT output is continuously OFF for  $200\mu s$  (typ.) or more, the trigger signal is automatically generated and MOSFET\_Q1 is turned ON.

In addition, an internal maximum oscillation frequency limit function (Fpfcmax) is provided to prevent the PFC oscillation frequency from rising excessively during abnormal operation when an output diode short-circuit or other overcurrent state is detected. After an overcurrent is detected, the PFC output is forcibly turned OFF using pulse-by-pulse control. In this case, a counter (T\_offmin:  $4\mu s$  (typ.)) that temporarily fixes the PFC output Low operates by overcurrent detection signal. The signal from PFC\_ZCD is masked during that period, and a High output pulse is generated after counter operation ends.

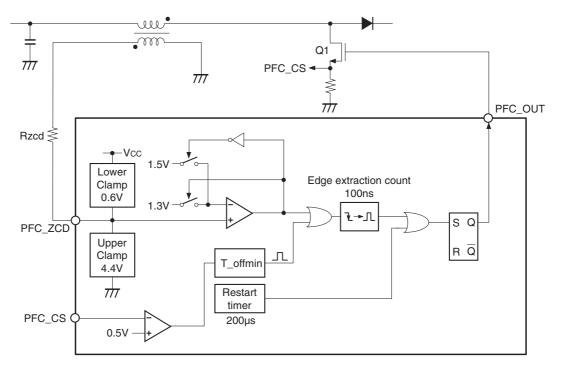



Fig. 7. ZCD Control Block Equivalent Circuit

## 7. PFC Maximum ON Time Control Circuit Block

The PFC\_OUT ON time (Ton) is determined by the capacitor (Ct) connected to the PFC\_TONMAX pin, the charging current (Icharge) from inside the IC, the PFC\_VAO pin voltage (Vamp), and the detection comparator offset voltage (Voffset).

The charging current to the PFC\_TONMAX pin is  $150\mu A$  (typ.), and the detection comparator offset voltage is 180 mV (typ.), so the ON time relative to the external capacitor is obtained by the following equation.

$$Ton = \frac{(Vamp - Voffset) \times Ct}{Icharge}$$

Example) When Ct = 1500pF, Vamp = 3.0V, Voffset = 0.18V, Icharge =  $150\mu A$ 

Ton = 28.2µs

Fig. 8 shows the equivalent circuit for the area around the PFC\_TONMAX pin.

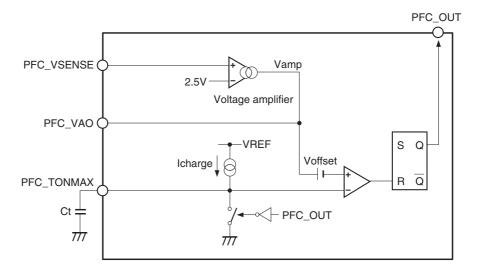



Fig. 8. Maximum ON Time Control Block Equivalent Circuit

## 8. PFC\_VAO Clamp Voltage Control Circuit Block

This IC has a function that limits the power according to the PFC\_VSENSE pin voltage (+B voltage) as a countermeasure against choke winding and film capacitor squealing due to overcurrent control during startup and AC input voltage sag return.

During start-up, the PFC\_VAO output voltage is clamped to 1.3V when the PFC\_VSENSE voltage is low, and the clamp voltage is switched as the PFC\_VSENSE voltage rises and the resonant circuit starts up. The clamp voltage switching timing is as follows.

- ◆ 1.3V ⇒ 3.2V: After PFC\_VSENSE > 2.143V is detected, and 16ms × 4 times is set up (when resonant circuit operation starts)
- ◆ 1.3V ⇔ 1.6V: When PFC\_VSENSE > 2.4V is detected (when resonant circuit operation starts)
- ◆ 1.6V ⇒ 1.3V: After PFC\_VSENSE < RM\_OFFADJ (default: 1.883V) is detected, and 1ms × 5 times is set up (when resonant circuit operation stops)

During start-up, the PFC\_VAO pin voltage is clamped to 1.3V, and voltage step-up operation is performed until PFC\_VSENSE reaches 2.143V (+B = 330V). After PFC\_VSENSE > 2.143V is detected and a 16ms × 4 times delay, resonant circuit operation starts, and the PFC\_VAO clamp voltage is switched from 1.3V to 3.2V. When AC input sag (AC momentary stop) causes the PFC\_VSENSE voltage to fall to less than 2.4V (AC SAG1), the clamp voltage switches from 3.2V to 1.6V to prevent squealing from occurring when the voltage is stepped up again. When the voltage is stepped up again and the PFC\_VSENSE voltage rises to 2.4V or more, the clamp voltage switches back to 3.2V. In addition, when the AC input sag time is long and the PFC\_VSENSE voltage falls to the resonant circuit stop voltage (RM\_OFFADJ pin setting voltage) or less (AG SAG2), the voltage step-up sequence restarts from the state with the clamp voltage lowered to 1.3V in the same manner as during start-up. Fig. 9 shows the PFC\_VAO clamp voltage sequence.

Note) The +B voltage shows an example of setting that PFC\_VSENSE = 2.5V when +B = 385V.

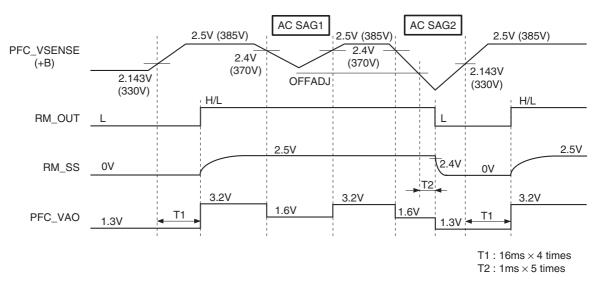
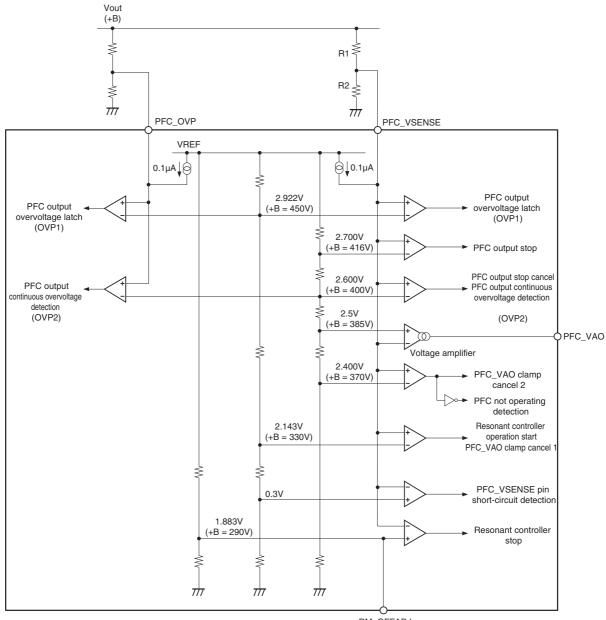




Fig. 9. PFC\_VAO Clamp Voltage Cancel Sequence

## 9. PFC Output Voltage Detection Circuit Block

Fig. 10 shows the equivalent circuit for the area around the PFC\_VSENSE and PFC\_OVP pins.



RM\_OFFADJ

Fig. 10. PFC Output Voltage Detection Block Equivalent Circuit

The PFC\_VSENSE pin detects the PFC output voltage, and is also the circuit that performs rise sequence control during start-up, and protects against output voltage fluctuations due to rapid load changes.

#### • PFC overvoltage latch (OVP1)

IC latch operation results when PFC\_VSENSE > 2.922V (+B > 450V) is detected.

#### • PFC overvoltage output stop

PFC\_OUT output is stopped when PFC\_VSENSE > 2.700V (+B > 416V) is detected. PFC\_OUT output stop is canceled when PFC\_VSENSE < 2.600V (+B < 400V) is detected.

#### • PFC continuous overvoltage detection (OVP2)

IC latch operation results when PFC\_VSENSE > 2.600V (+B > 400V) is detected for 10s ( $2.1s \times 5$  times) or more.

#### • PFC not operating detection

IC latch operation results when PFC\_VSENSE < 2.400V (+B < 370V) is detected for 10s (2.1s  $\times$  5 times) or more.

#### • PFC\_VAO clamp voltage cancel

The PFC\_VAO clamp voltage 2 (1.6V) is set or canceled when PFC\_VSENSE = 2.400V (+B = 370V) is detected.

Note) See "8. PFC VAO Clamp Voltage Control Circuit Block".

#### Resonant controller operation start

Resonant controller operation is started when PFC\_VSENSE > 2.143V (+B > 330V) is detected.

#### Resonant controller stop

Resonant controller operation is stopped when  $PFC_VSENSE < 1.883V (+B < 290V)$  is detected. (When the RM\_OFFADJ pin is open)

#### • PFC\_VSENSE pin open/short-circuit detection

It stops PFC\_OUT output when PFC\_VSENSE < 0.3V is detected by open of resistor R1, short-circuit of resistor R2, etc. In addition, when the PFC\_VSENSE pin is open, the pin voltage is forcibly pulled up by the internally supplied 0.1 $\mu$ A constant current, and the IC is latched when PFC\_VSENSE > 2.922V is detected.

The PFC\_OVP pin is a protective pin for when a PFC\_VSENSE pin abnormality occurs. Like the PFC\_VSENSE pin, the PFC\_OVP pin detects the PFC output voltage, and has only an overvoltage protection function. The PFC\_OVP pin detection voltage is the same as the PFC\_VSENSE pin detection voltage, and sets the reference voltages from the same resistor ladder.

#### • PFC overvoltage latch (PFC\_OVP pin)

IC latch operation results when PFC\_OVP > 2.922V (+B > 450V) is detected.

#### PFC continuous overvoltage detection (PFC\_OVP pin)

IC latch operation results when PFC\_OVP > 2.600V (+B > 400V) is detected for 10s (2.1s  $\times$  5 times) or more.

#### • PFC\_OVP pin open detection

When the PFC\_VSENSE pin is open, the pin voltage is forcibly pulled up by the internally supplied  $0.1\mu$ A constant current, and the IC is latched when PFC\_VSENSE > 2.922V is detected as well as the PFC\_VSENSE pin.

#### Resonant Controller Block

**10. Resonant Oscillator Block** 

#### **10-1. Resonant Oscillator Circuit Block**

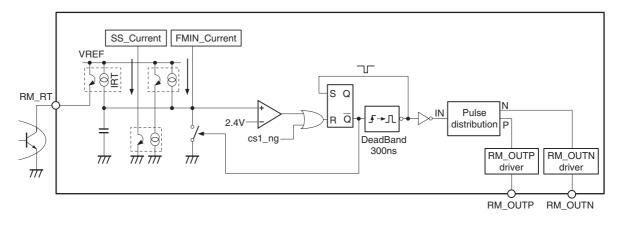





Fig. 11 shows the resonant oscillator circuit block equivalent circuit.

This circuit is the current mirror output of the current led from a photo-coupler or other device. The resonant oscillation frequency is determined by the current led from the RM\_RT pin, the current from the minimum frequency setting circuit block, and the current from the soft start circuit block. The deadband width is fixed internally to 300ns.

The Fig. 12 graph shows the resonant oscillation frequency characteristics at a minimum frequency setting of 60kHz, relative to the current led from the RM\_RT pin.

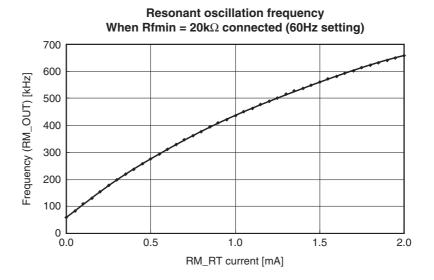
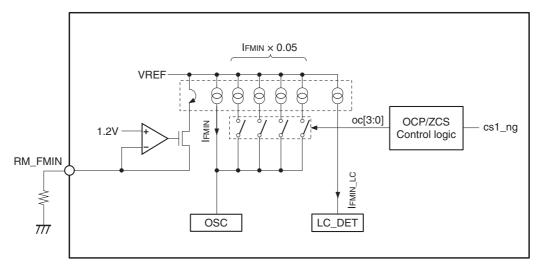




Fig. 12. Resonant Oscillation Frequency



## 10-2. Minimum Resonant Frequency Setting Circuit Block




Fig. 13 shows the minimum resonant frequency control block equivalent circuit. The minimum resonant frequency can be set by externally connecting a resistor to the RM\_FMIN pin. The Fig. 14 graph shows the minimum frequency characteristics relative to the external resistor value.

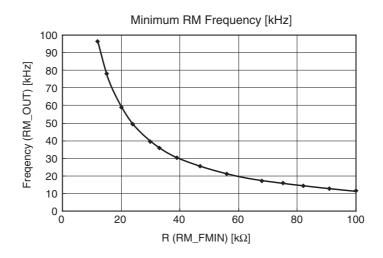
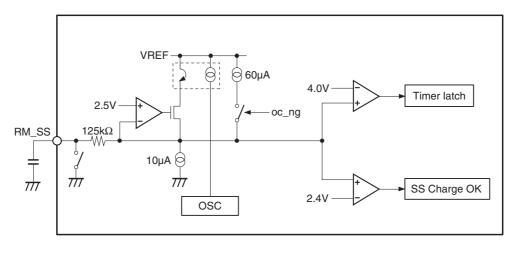



Fig. 14. Minimum Oscillation Frequency Setting

The minimum oscillation frequency decreases when the RM\_FMIN pin is left open or the current led from the pin decreases. IC latch operation forcibly results when the current led from the pin is detected as being continuously  $10\mu A$  or less (LC\_DET) for 6s (2.1s  $\times$  3 times).

#### 10-3. Resonant Soft Start Circuit Block



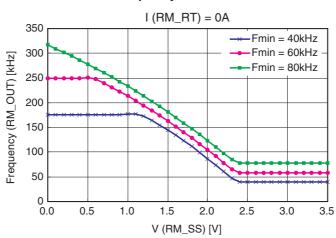
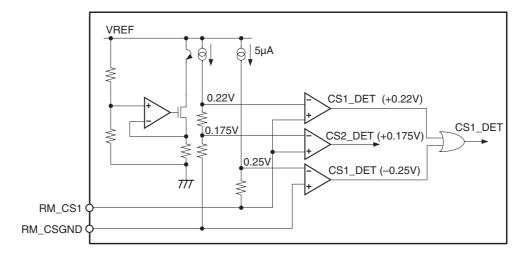




Fig. 15 shows the resonant soft start block equivalent circuit.

The resonant controller soft start circuit feeds back the current, determined by the internal 2.5V output, the internal  $125k\Omega$  resistor, and the time constant that corresponds to the external capacitor, to the oscillator of the resonant controller. This enables to start oscillation from a high frequency during resonant start-up. In addition, the maximum frequency during soft start is limited to 5 times (max.) the minimum frequency determined by the RM\_FMIN pin external resistor.

Note that the frequency other than during soft start is not limited to 5 times the minimum frequency. In these cases the frequency is controlled according to the current led from the RM\_RT pin.


The Fig. 16 graph shows the resonant oscillation frequency characteristics during soft start.



#### **Oscillation Frequency when Resonant Soft Start**

Fig. 16. Resonant Oscillation Frequency during Soft Start

# **11. Resonant Overcurrent Detection Circuit Block**



# 11-1. Resonant Overcurrent Detection Circuit Block

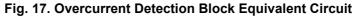



Fig. 17 shows the resonant overcurrent detection block equivalent circuit.

The voltage between the RM\_CS and RM\_CSGND pins is monitored, and overcurrents in both the positive (+0.22V) and negative (-0.25V) directions are detected according to RM\_OUTP and RM\_OUTN pin operation.

Operation in overcurrent detection mode is as shown in Fig. 18. When an overcurrent is detected, regardless of positive or negative direction, the output pulse is forcibly turned off by pulse-by-pulse control. In addition, when an overcurrent is detected, the minimum oscillation frequency is controlled to 1.2 times the setting value.

Thereafter, the minimum oscillation frequency limit changes in the order of 1.2 times  $\rightarrow$  1.15 times  $\rightarrow$  1.1 times  $\rightarrow$  1.05 times  $\rightarrow$  1.0 times the setting value with each dead band pulse, and control is performed to return to the original setting frequency with each pulse (4 steps). The minimum oscillation frequency is controlled to 1.2 times the setting value in this manner each time an overcurrent is detected again during the frequency limit period.

In addition, in overcurrent detection mode, the capacitor connected to the RM\_SS pin is charged by approximately 50 $\mu$ A, and when the RM\_SS pin voltage reaches 4.0V (128 $\mu$ s × 5 times), the IC is NG latched and the output goes off (both the RM\_OUTP and RM\_OUTN pins output Low). (Timer latch operation) 10 $\mu$ A is constantly discharged from the RM\_SS pin to the inside of the IC, so when the overcurrent is canceled partway, the RM\_SS pin is discharged until the clamp voltage is reached.

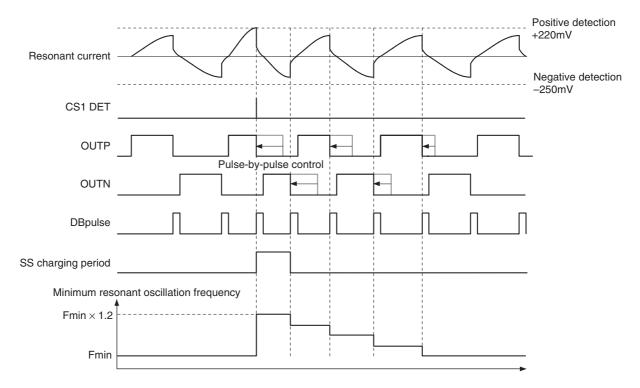



Fig. 18. Operating Waveform in Overcurrent Detection Mode

Continuous pulse overcurrent detection (CS2\_DET: +0.175V detection) has the same circuit configuration as CS1\_DET except for the negative side detector (Fig. 17). However, continuous overcurrent detection mode operation differs from the operation shown in Fig. 18, and instead normal operation continues. When CS2 overcurrent detection continues for approximately 10s (set up by  $2.1s \times 5$  times), NG latch results and the IC forcibly stopped. When CS2 overcurrent is not detected for even one cycle during the approximately 10s count, the counter is reset. Then, when an overcurrent is detected again, the 10s counter starts from zero.

#### 11-2. Resonant Reverse Current Detection Circuit Block

To prevent out of resonance during resonant converter start-up, the CXA3809M performs control to widen the output pulse width up to 1.5 times (max.) the normally controlled pulse width until the resonant current inverts. (See "Fig. 11. Resonant Oscillator Equivalent Circuit".) For example, when the resonant current is negative while RM\_OUTP is High output, the backflow\_ng signal is High output, and is limited at a peak value of up to 3.6V (max.) instead of the normal 2.4V peak value limit cycle.

This function shifts to the next cycle after the resonant current reaches the positive side when RM\_OUTP is High output, or the negative side when RM\_OUTN is High output. The out of resonance prevention detection (rise) function is valid only during resonant converter start-up, and goes OFF after 4 RM\_OUTP pulses and 4 RM\_OUTN pulses (8 dead band pulses) have been output. Fig. 19 shows the resonant reverse current detection circuit block equivalent circuit.



Fig. 19. Resonant Back Flow Detection Block Equivalent Circuit

# 12. Resonant Circuit Stop Voltage Detection Block

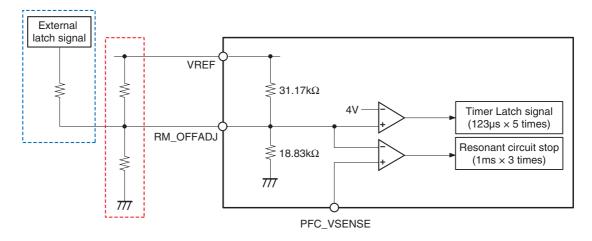





Fig. 20 shows the RM\_OFFADJ pin internal equivalent circuit.

The RM\_OFFADJ pin normally outputs 1.883V. Resonant circuit stop is controlled by comparing the PFC\_VSENSE pin with the RM\_OFFADJ pin, so the resonant circuit stop voltage can be changed by adding the circuit enclosed by the red dotted line in Fig. 20, and changing the RM\_OFFADJ pin voltage.

Note) When the PFC output voltage is set to 385V (PFC\_VSENSE = 2.5V) and the RM\_OFFADJ pin is open, the resonant circuit is stopped when the PFC output voltage falls to 290V or less (1ms × 5 times).

The RM\_OFFADJ pin has an error latch detection function that activates at 4.0V or more, so the IC can be forcibly set to latch operation using the secondary side overvoltage detection or other signal by externally adding the circuit enclosed by the blue dotted line in Fig. 20.

#### 13. NG Latch Operation

#### PFC overvoltage latch

Latch operation results after PFC\_VSENSE > 2.922V (+B > 450V) is detected and set up by 1ms × 3 times.

Note) PFC\_VSENSE > 2.700V (+B > 416V) overvoltage detection does not result in latch operation, and PFC output stops.

In addition, latch operation results after PFC\_VSENSE > 2.600V (+B > 400V) is set up by  $2.1s \times 5$  times. The PFC\_OVP pin also performs overvoltage latch operation using the same detection sequence as PFC\_VSENSE.

## ◆ PFC continuous overcurrent detection latch

IC latch operation results when a pin abnormality such as PFC\_VAO pin open or PFC\_TONMAX pin shortcircuited to GND occurs, and the overcurrent detection state is continuously detected due to abnormal PFC oscillation. When a PFC overvoltage outside the C range is detected 4 times or more per commercial half cycle during AC detection operation, this is counted as one NG time. Latch operation results when the 2.1s counter detects this NG state 5 consecutive times.

#### ◆ PFC not operating detection latch

When a pin abnormality such as PFC\_OUT pin open occurs, the AC input voltage is high, and the load is light, the PFC output voltage (+B voltage) maintains the high state, and the resonant circuit continues to operate. To avoid this phenomenon, latch operation results when PFC\_VSENSE < 2.4V (+B < 370V) is continuously detected for  $2.1s \times 5$  times.

## Resonant overcurrent timer latch

When RM\_CS > 0.22V or RM\_CS < -0.25V is detected, the RM\_SS pin is charged by a charging current of 50µA. Latch operation results after RM\_SS > 4.0V is detected and set up by  $128\mu s \times 5$  times.

#### Resonant continuous overcurrent latch

Latch operation results after RM\_CS > 0.18V is detected continuously and set up by  $2.1s \times 5$  times.

#### ◆ TSD (IC overheat) latch

Latch operation results after a chip temperature of approximately 140°C is detected and set up by  $128\mu s\times 5$  times.

#### ♦ RM\_OFFADJ latch

Latch operation results after RM\_OFFADJ > 4.0V is detected and set up by  $128\mu s \times 5$  times.

#### Other latch

Latch operation results after any of the following operations are detected and set up by  $2.1s \times 3$  times.

- VREF\_OVLO detection: 5.5V or more
- PFC\_VAO pin overcurrent detection: 80µA or more
- PFC\_ZCD clamp circuit overcurrent detection: +6.0mA or more, –6mA or less
- PFC\_VSENSE short-circuit detection: 0.3V or less
- RM\_FMIN pin low current: 10µA or less

Circuit operation stops after NG latch, but the VREF pin continues to output High, and the AC detection function remains enabled. In addition, PFC\_OK outputs Low. NG latch is canceled by transitioning to standby mode. However, during TSD latch the VREF pin outputs Low, and the TSD latch state is canceled only by turning the IC power off and on again, or by detecting VCC UVLO (VCC < 9.6V).

Note) No latch operation in standby mode.

# **Timing Chart**

# 1. PFC $\rightarrow$ Resonant controller startup sequence

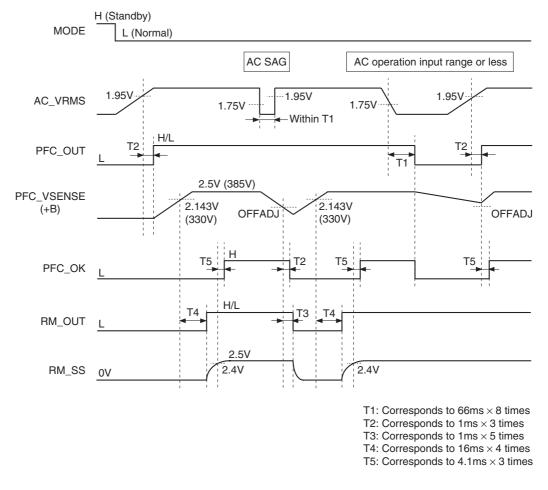



Fig. 21. Startup Waveform

Note) The +B voltage shows an example of setting that PFC\_VSENSE = 2.5V when +B = 385V.

## 2. Overvoltage detection

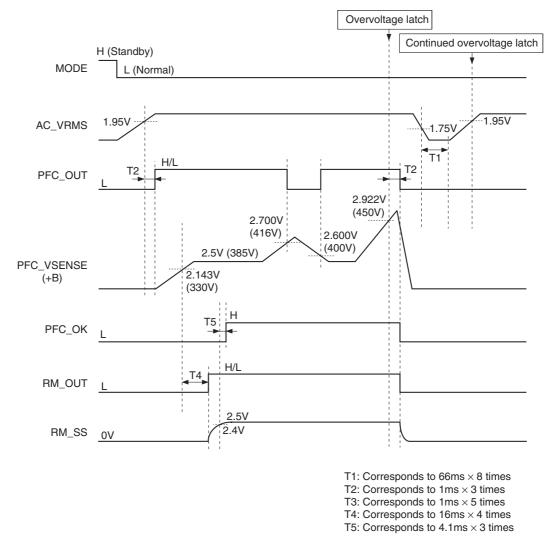
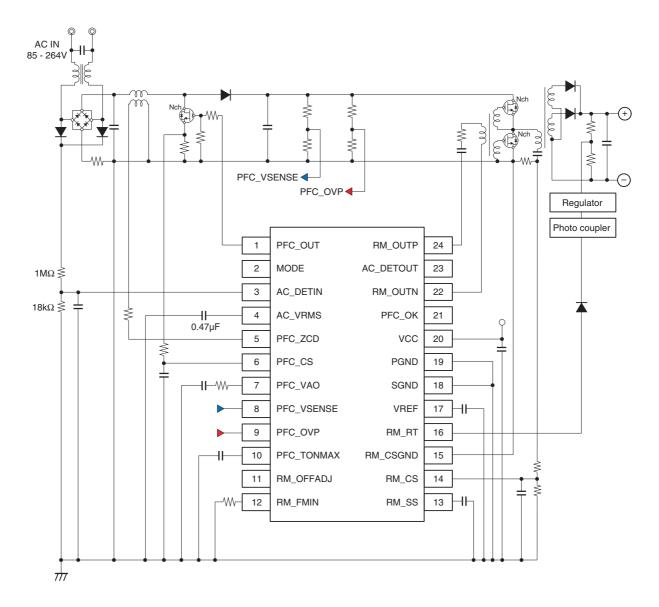
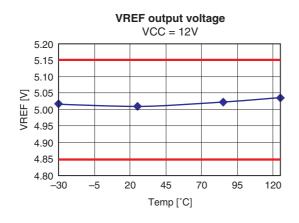
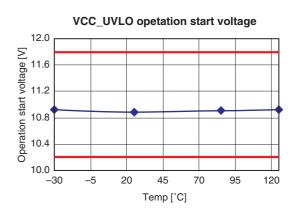




Fig. 22. Operating Waveform with Overvoltage

Note) The +B voltage shows an example of setting that PFC\_VSENSE = 2.5V when +B = 385V.


# **Application Circuit**




Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Fig. 23. Application Circuit

# **Example of Representative Characteristics**





Current comsumption in standby mode  $\dot{VCC} = 12V$ 1100 1000 Current consumption in standby mode [µA] 900 800 700 600 500 400 L -30 -5 20 45 70 95 120 Temp [°C]

Current comsumption in operation mode

VCC = 12V No Switching

4.0

3.5

3.0

2.5

2.0

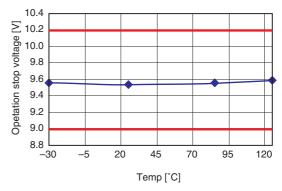
1.5

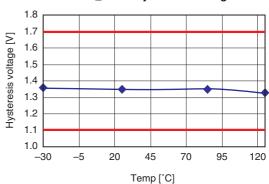
\_30

-5

20

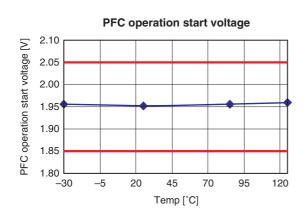
45

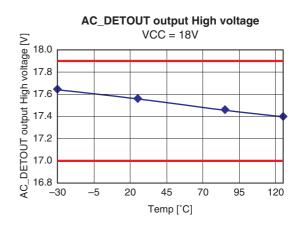

Temp [°C]

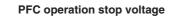

70

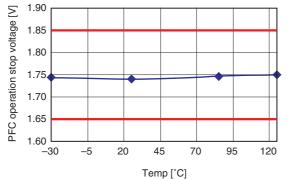
95

Current consumption in operation mode [mA]

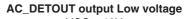

VCC\_UVLO opetation stop voltage

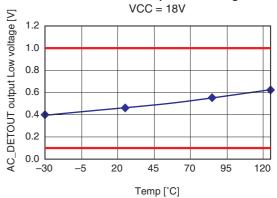


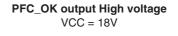



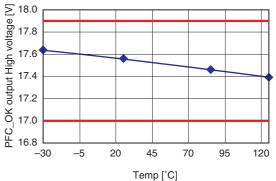


#### VCC\_UVLO hysteresis voltage

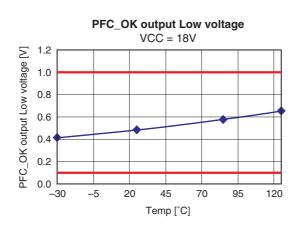
120

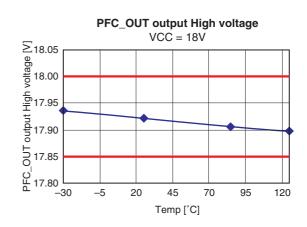


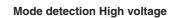



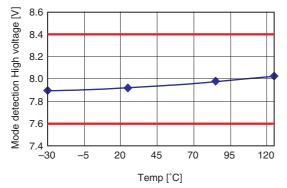



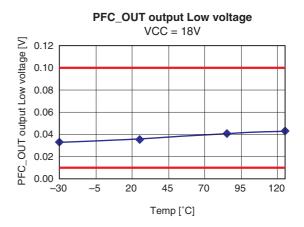



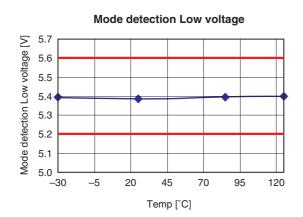









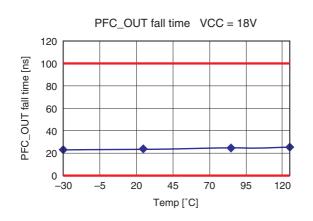







Temp [°C]

0.56


0.54 0.52 0.50 0.48 0.46

0.44 L -30

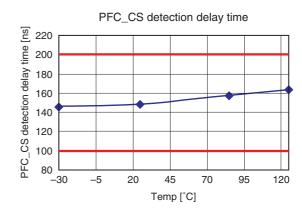
-5

20

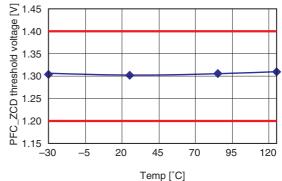
PFC\_CS threshold voltage [V]

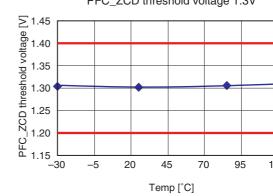


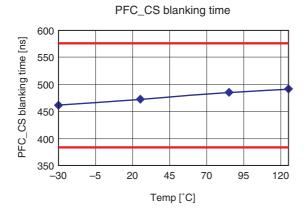
PFC\_CS threshold voltage


45

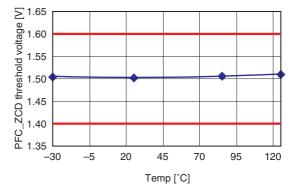
Temp [°C]

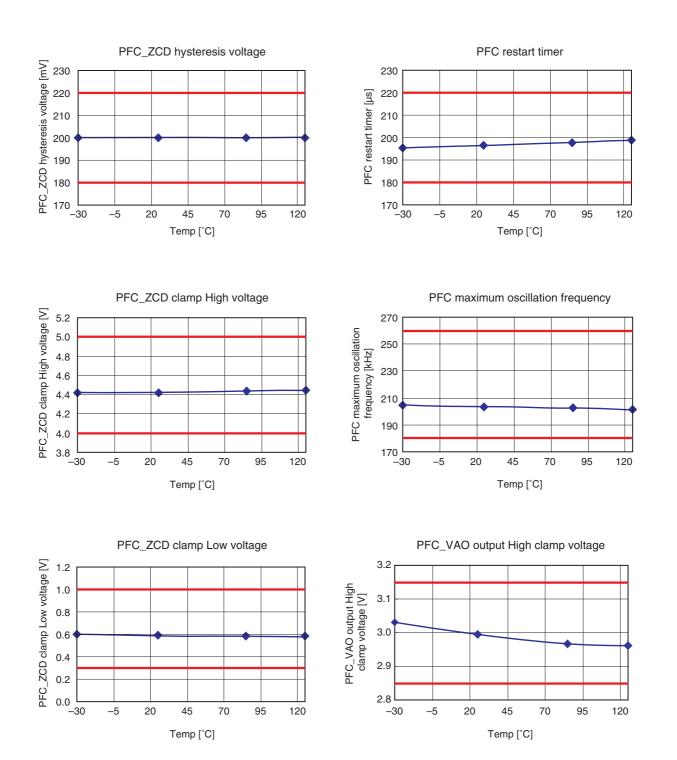

70

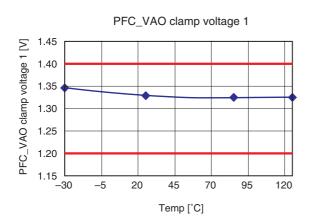

95

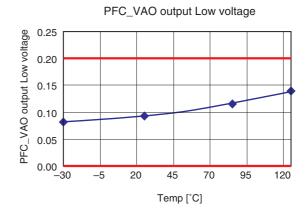

120

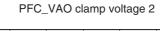


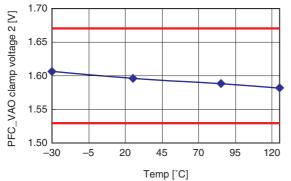

PFC\_ZCD threshold voltage 1.3V



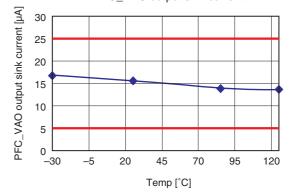



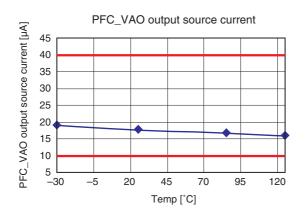


PFC\_ZCD threshold voltage 1.5V

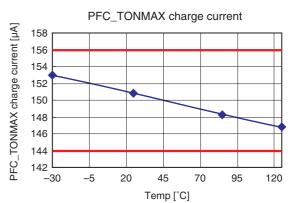


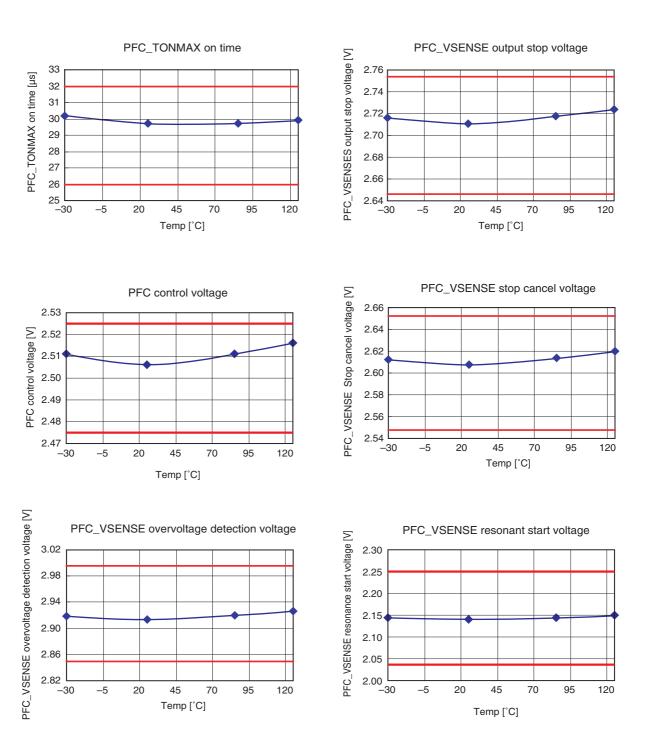






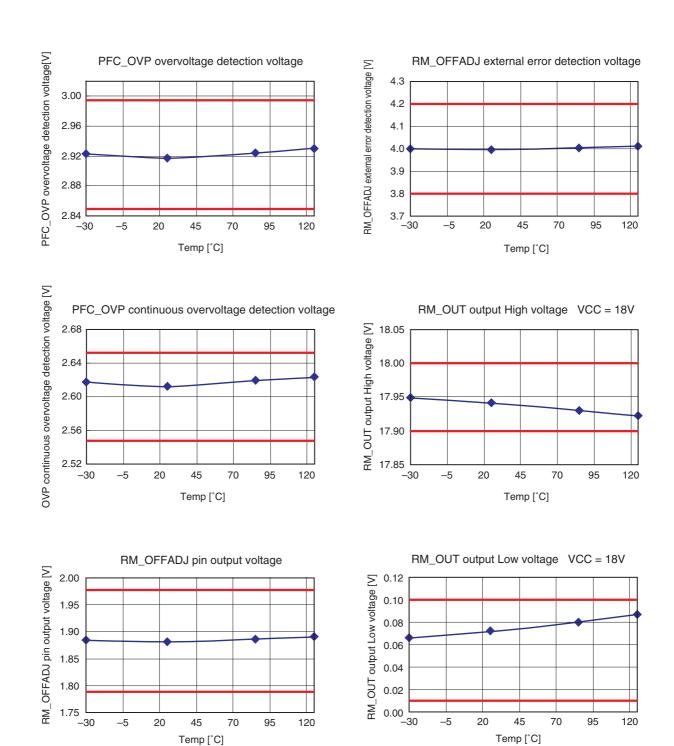



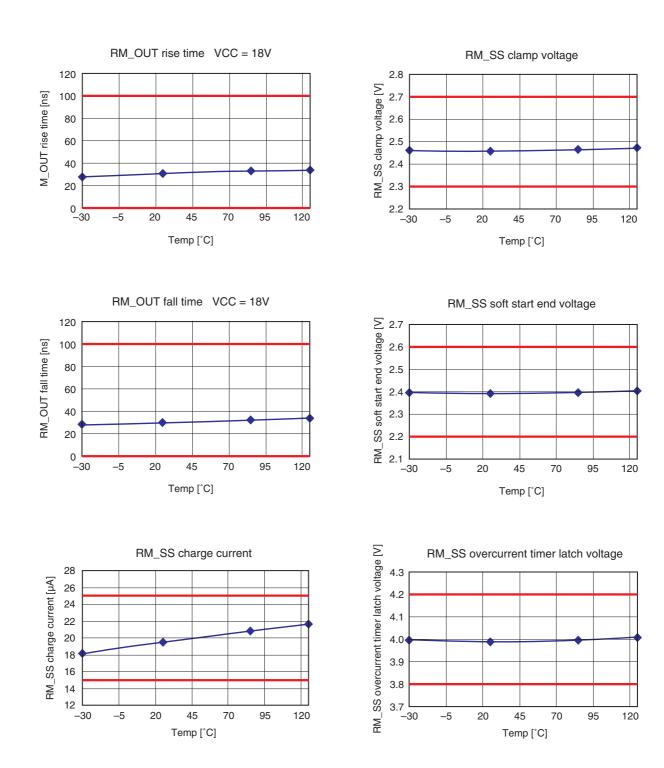



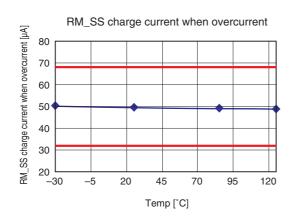



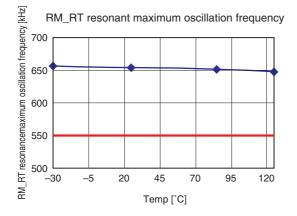


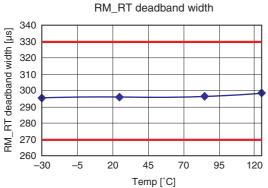


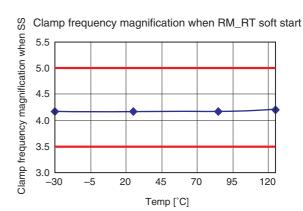



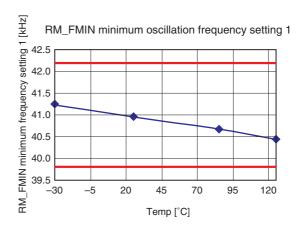



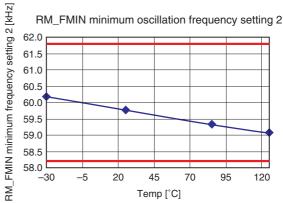





- 57 -


CXA3820M





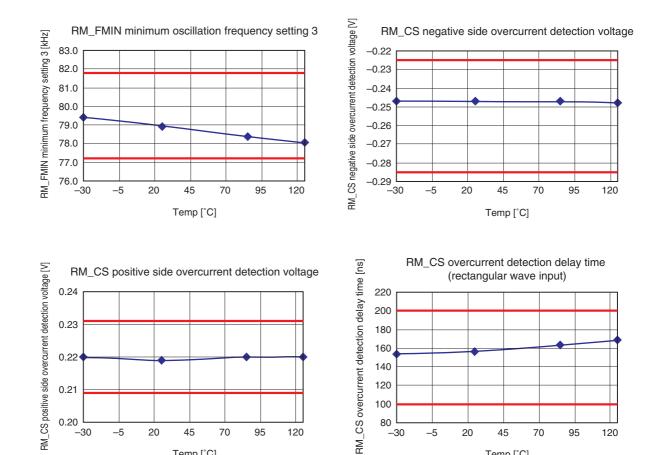









0.21


0.20

-30

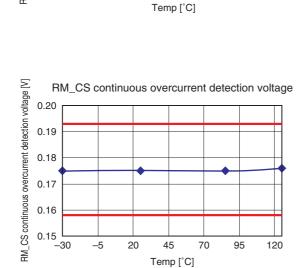
-5

20

45



120


100

80

-30

-5

20

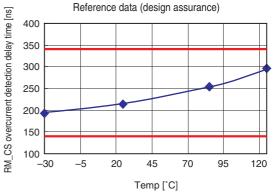


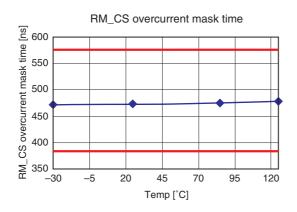
70

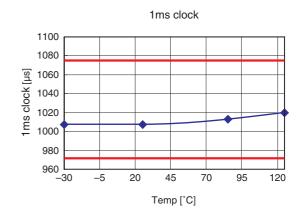
95

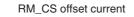
120

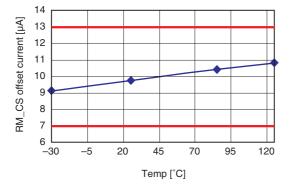
RM\_CS overcurrent detection delay time (sine wave input: 90kHz)

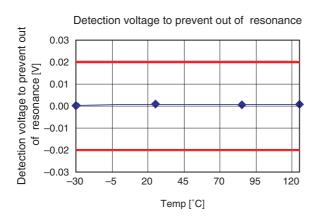

45


Temp [°C]


70


95


120

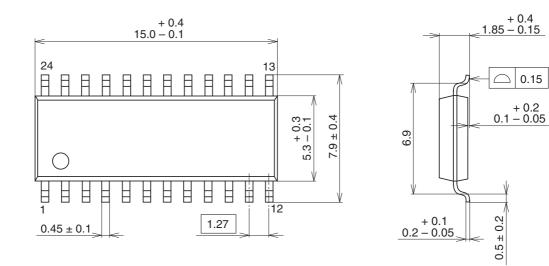


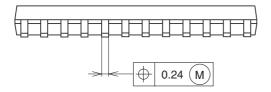










0.15

# Package Outline

## (Unit: mm)

24PIN SOP (PLASTIC)





| [          |               |
|------------|---------------|
| SONY CODE  | SOP-24P-L01   |
| EIAJ CODE  | SOP024-P-0300 |
| JEDEC CODE |               |

# PACKAGE STRUCTURE

| MOLDING COMPOUND | EPOXY RESIN     |
|------------------|-----------------|
| LEAD TREATMENT   | SOLDER PLATING  |
| LEAD MATERIAL    | 42/COPPER ALLOY |
| PACKAGE MASS     | 0.3g            |

#### LEAD PLATING SPECIFICATIONS

| ITEM               | SPEC.           |
|--------------------|-----------------|
| LEAD MATERIAL      | COPPER ALLOY    |
| SOLDER COMPOSITION | Sn-Bi Bi:1-4wt% |
| PLATING THICKNESS  | 5-18µm          |