

Features

- Compatible to Intel[®] CK-Titan & CK-408 Clock Synthesizer/Driver Specifications
- System frequency synthesizer for Intel Brookdale 845 and Brookdale - G Pentium[®] 4 Chipsets
- Programmable clock output frequency with less than
 1 MHz increment
- Integrated fail-safe Watchdog timer for system recovery
- Automatically switch to HW selected or SW programmed clock frequency when watchdog timer time-out
- Capable of generating system RESET after a Watchdog timer time-out occurs or a change in output frequency via SMBus interface

- Support SMBus byte read/write and block read/ write operations to simplify system BIOS development
- Vendor ID and Revision ID support
- · Programmable drive strength support
- Programmable output skew support
- Power management control inputs
- Available in 48-pin SSOP

CPU	3V66	PCI	REF	48M	24_48M
x 3	x 4	x 10	x 2	x 1	x 1

Note:

1. Signals marked with '*' and "^" has internal pull-up and pull-down resistors respectively.

3901 North First Street •

San Jose • C

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
X1	3	I	<i>Crystal Connection or External Reference Frequency Input:</i> This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.
X2	4	0	<i>Crystal Connection:</i> Connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.
REF0/MULTSEL0	48	I/O	Reference Clock 0/Current Multiplier Selection 0: 3.3V 14.318-MHz clock output. This pin also serves as a power-on strap option to determine the current multiplier for the CPU clock outputs. The MULTSEL1:0 definitions are as follows:MULTSEL1:000 = Ioh is 4 x IREF01 = Ioh is 5 x IREF10 = Ioh is 6 x IREF11 = Ioh is 7 x IREF
REF1/MULTSEL1	1	I/O	Reference Clock 1/Current Multiplier Selection 1: 3.3V 14.318-MHz clock out- put. This pin also serves as a power-on strap option to determine the current multiplier for the CPU clock outputs. The MULTSEL1:0 definitions are as follows: MULTSEL1:0 00 = Ioh is 4 x IREF 01 = Ioh is 5 x IREF 10 = Ioh is 6 x IREF 11 = Ioh is 7 x IREF
CPU0:1, CPU0:1#	41, 38, 40, 37	0	CPU Clock Outputs: Frequency is set by the FS0:4 inputs or through serial input interface.
CPU_ITP, CPU_ITP#	44, 45	I/O	CPU Clock Output for ITP: Frequency is set by the FS0:4 inputs or through serial input interface.
3V66_0:3	31, 30, 28, 27	0	66-MHz Clock Outputs: 3.3V fixed 66-MHz clock.
PCI_F0/FS2	6	I/O	Free-running PCI Output 0/Frequency Select 2: 3.3V free-running PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in the Frequency Selection Table.
PCI_F1/FS3	7	I/O	Free-running PCI Output 1/Frequency Select 3: 3.3V free-running PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in the <i>Table 4</i> .
PCI_F2	8	I/O	Free-running PCI Output 2: 3.3V free-running PCI output.
PCI0/FS4	10	I/O	PCI Output 0/Frequency Select 4: 3.3V PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4.</i>
PCI1:6	11, 12, 14, 15, 16, 17	0	PCI Clock Output 1 to 6: 3.3V PCI clock outputs.
48MHz/FS0	22	I/O	48-MHz Output/Frequency Select 0: 3.3V fixed 48-MHz, non-spread spectrum output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> . This output will be used as the reference clock for USB host controller in Intel 845 (Brookdale) platforms. For Intel Brookdale - G platforms, this output will be used as the VCH reference clock.

Pin Definitions (continued)

Pin Name	Pin No.	Pin Type	Pin Description
24_48MHz/FS1	23	I/O	24- or 48-MHz Output/Frequency Select 1: 3.3V fixed 24-MHz or 48-MHz non-spread spectrum output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> .
			This output will be used as the reference clock for SIO devices in Intel 845 (Brookdale) platforms. For Intel Brookdale - G platforms, this output will be used as the reference clock for both USB host controller and SIO devices. We recommend system designer to configure this output as 48 MHz and "HIGH Drive" by setting Byte [5], Bit [0] and Byte [9], Bit [7], respectively.
PWR_DWN#	42	I	Power Down Control: 3.3V LVTTL-compatible input that places the device in power-down mode when held LOW.
SCLK	26	I	SMBus Clock Input: Clock pin for serial interface.
SDATA	25	I/O	SMBus Data Input: Data pin for serial interface.
RST#	20	O (open- drain)	System Reset Output: Open-drain system reset output.
IREF	35	I	<i>Current Reference for CPU Output:</i> A precision resistor is attached to this pin which is connected to the internal current reference.
VTT_PWRGD#	19	I	Powergood from Voltage Regulator Module (VRM): 3.3V LVTTL input. VTT_PWRGD# is a level-sensitive strobe used to determine when FS0:4 and MULTSEL0:1 inputs are valid and OK to be sampled (Active LOW). Once VTT_PWRGD# is sampled LOW, the status of this input will be ignored.
VDD_REF, VDD_PCI, VDD_48MHz, VDD_3V66, VDD_CPU	2, 9, 18, 24, 32, 39, 46	Ρ	3.3V Power Connection: Power supply for CPU outputs buffers, 3V66 output buffers, PCI output buffers, reference output buffers and 48-MHz output buffers. Connect to 3.3V.
GND_PCI, GND_48MHz, GND_3V66, GND_CPU, GND_REF,	5, 13, 21, 29, 36, 43, 47	G	<i>Ground Connection:</i> Connect all ground pins to the common system ground plane.
VDD_CORE	34	Р	3.3V Analog Power Connection: Power supply for core logic, PLL circuitry. Connect to 3.3V.
GND_CORE	33	G	Analog Ground Connection: Ground for core logic, PLL circuitry.

Swing Select Functions

MULTSEL1	MULTSEL0	Board Target Trace/Term Z	Reference R, IREF = VDD/(3*Rr)	Output Current	V _{OH} @ Z
0	0	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 4*Iref	1.0V @ 50
0	0	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 4*Iref	1.2V @ 60
0	1	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 5*Iref	1.25V @ 50
0	1	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 5*Iref	1.5V @ 60
1	0	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 6*Iref	1.5V @ 50
1	0	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 6*Iref	1.8V @ 60
1	1	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 7*Iref	1.75V @ 50
1	1	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 7*Iref	2.1V @ 60
0	0	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 4*Iref	0.47V @ 50
0	0	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 4*Iref	0.56V @ 60
0	1	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 5*Iref	0.58V @ 50
0	1	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 5*Iref	0.7V @ 60
1	0	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 6*Iref	0.7V @ 50
1	0	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 6*Iref	0.84V @ 60
1	1	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 7*Iref	0.81V @ 50
1	1	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 7*Iref	0.97V @ 60

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions such as individual clock output buffers, etc. can be individually enabled or disabled.

The register associated with the Serial Data Interface initializes to its default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write and block read operation from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individual indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 1*.

The block write and block read protocol is outlined in *Table 2* while *Table 3* outlines the corresponding byte write and byte read protocol.

The slave receiver address is 11010010 (D2h).

Table 1. Command Code Definition

Bit	Descriptions
7	0 = Block read or block write operation 1 = Byte read or byte write operation
6:0	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'.

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Byte Count – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29:36	Data byte 0 – 8 bits	28	Read
37	Acknowledge from slave	29	Acknowledge from slave
38:45	Data byte 1 – 8 bits	30:37	Byte count from slave – 8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte N/Slave Acknowledge	39:46	Data byte from slave – 8 bits
	Data Byte N – 8 bits	47	Acknowledge
	Acknowledge from slave	48:55	Data byte from slave – 8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data byte N from slave – 8 bits
			Not Acknowledge
			Stop

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code - 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the off- set of the byte to be accessed	11:18	Command Code - 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the off- set of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		30:37	Data byte from slave – 8 bits
		38	Not Acknowledge
		39	Stop

Data Byte Configuration Map

Data Byte 0

Bit	Pin#	Name	Description	Power On Default
Bit 7		Spread Select2	'000' = OFF	0
Bit 6		Spread Select1	'001' = Reserved	0
Bit 5		Spread Select0	'010' = Reserved	0
			'011' = Reserved	
			'100' = ±0.25%	
			'101' = <i>-</i> 0.5%	
			'110' = ±0.5%	
			'111' = ±0.38%	
Bit 4		SEL4	SW Frequency selection bits. See Table 4.	0
Bit 3		SEL3		0
Bit 2		SEL2		0
Bit 1		SEL1		0
Bit 0		SEL0		0

Bit	Pin#	Name	Description	Power On Default
Bit 7	38, 37	CPU1, CPU1#	(Active/Inactive)	1
Bit 6	41, 40	CPU0, CPU0#	(Active/Inactive)	1
Bit 5	22	48MHz	(Active/Inactive)	1
Bit 4	23	24_48MHz	(Active/Inactive)	1
Bit 3	27	3V66_3	(Active/Inactive)	1

Data Byte 1 (continued)

Bit	Pin#	Name	Description	Power On Default
Bit 2	28	3V66_2	(Active/Inactive)	1
Bit 1	30	3V66_1	(Active/Inactive)	1
Bit 0	31	3V66_0	(Active/Inactive)	1

Data Byte 2

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6	17	PCI6	(Active/Inactive)	1
Bit 5	16	PCI5	(Active/Inactive)	1
Bit 4	15	PCI4	(Active/Inactive)	1
Bit 3	14	PCI3	(Active/Inactive)	1
Bit 2	12	PCI2	(Active/Inactive)	1
Bit 1	11	PCI1	(Active/Inactive)	1
Bit 0	10	PCI0	(Active/Inactive)	1

Data Byte 3

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	8	PCI_F2	(Active/Inactive)	1
Bit 6	7	PCI_F1	(Active/Inactive)	1
Bit 5	6	PCI_F0	(Active/Inactive)	1
Bit 4		Reserved	Reserved	0
Bit 3	44, 45	CPU_ITP, CPU_ITP#	(Active/Inactive)	1
Bit 2		Reserved	Reserved	0
Bit 1	1	REF1	(Active/Inactive)	1
Bit 0	48	REF0	(Active/Inactive)	1

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		MULTSEL_Override	This bit control the selection of IREF multiple.	0
			0 = HW control; IREF multiplier is determined by MULTSEL[0:1] input pins	
			1 = SW control; IREF multiplier is determined by Byte[4], Bit[5:6].	
Bit 6		SW_MULTSEL1	IREF multiplier	0
Bit 5		SW_MULTSEL0	00 = Ioh is 4 x IREF	0
			01 = 10h is 5 x IREF	
			$10 = 10h is 6 \times IREF$	
			11 = loh is 7 x IREF	
Bit 4		Reserved	Reserved	Reserved
Bit 3		Reserved	Reserved	Reserved
Bit 2		Reserved	Reserved	Reserved
Bit 1		Reserved	Reserved	Reserved
Bit 0		Reserved	Reserved	Reserved

Data Byte 5

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	10	Latched FS4 input	Latched FS[4:0] inputs. These bits are read only.	Х
Bit 6	7	Latched FS3 input		Х
Bit 5	6	Latched FS2 input		Х
Bit 4	23	Latched FS1 input		Х
Bit 3	22	Latched FS0 input		Х
Bit 2		FS_Override	0 = Select operating frequency by FS[4:0] input pins 1 = Select operating frequency by SEL[4:0] settings	0
Bit 1		Reserved	Reserved	0
Bit 0	23	SEL 48MHZ	0 = 24 MHz 1 = 48 MHz	0

Data Byte 6

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Revision_ID3	Revision ID bit[3]	0
Bit 6		Revision_ID2	Revision ID bit[2]	0
Bit 5		Revision_ID1	Revision ID bit[1]	0
Bit 4		Revision_ID0	Revision ID bit[0]	0
Bit 3		Vendor_ID3	Bit[3] of Cypress Semiconductor's Vendor ID. This bit is read-only.	1
Bit 2		Vendor_ID2	Bit[2] of Cypress Semiconductor's Vendor ID. This bit is read-only.	0
Bit 1	1	Vendor _ID1	Bit[1] of Cypress Semiconductor's Vendor ID. This bit is read-only.	0
Bit 0		Vendor _ID0	Bit[0] of Cypress Semiconductor's Vendor ID. This bit is read-only.	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6		Reserved	Reserved	0
Bit 5		Reserved	Reserved	0
Bit 4		Reserved	Reserved	0
Bit 3		Reserved	Reserved	0
Bit 2		Reserved	Reserved	0
Bit 1		Reserved	Reserved	0
Bit 0		Reserved	Reserved	0

Data Byte 8

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6		Reserved	Reserved	0
Bit 5		WD_TIMER4	These bits store the time-out value of the WATCHDOG	1
Bit 4		WD_TIMER3	timer. The scale of the timer is determine by the prescaler.	1
Bit 3		WD_TIMER2	The timer can support a value of 150 ms to 4.8 sec when the prescaler is set to 150 ms. If the prescaler is set to	1
Bit 2		WD_TIMER1	2.5 sec, it can support a value from 2.5 sec to 80 sec.	1
Bit 1		WD_TIMER0	When the Watchdog Timer reaches "0," it will set the WD_TO_STATUS bit and generate Reset if RST_EN_WD is enabled.	1
Bit 0		WD_PRE_SCALER	0 = 150 ms 1 = 2.5 sec	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		48MHz_DRV	 48-MHz & 24_48-MHz clock output drive strength 0 = Normal 1 = High Drive (Recommend to set to high drive if this output is being used to drive both USB and SIO devices in Intel® Brookdale - G platforms) 	0
Bit 6		PCI_DRV	PCI clock output drive strength 0 = Normal 1 = High Drive	0
Bit 5		3V66_DRV	3V66 clock output drive strength 0 = Normal 1 = High Drive	0
Bit 4		RST_EN_WD	This bit will enable the generation of a Reset pulse when a Watchdog Timer time-out occurs. 0 = Disabled 1 = Enabled	0
Bit 3		RST_EN_FC	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled 1 = Enabled	0
Bit 2		WD_TO_STATUS	Watchdog Timer Time-out Status bit 0 = No time-out occurs (Read); Ignore (Write) 1 = time-out occurred (Read); Clear WD_TO_STATUS (Write)	0
Bit 1		WD_EN	0 = Stop and reload Watchdog Timer 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs. Note: CY28323 will generate system reset, reload a recov- ery frequency, and lock itself into a recovery frequency mode after a Watchdog timer time-out occurs. Under re- covery frequency mode, CY28323 will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28323 from its re- covery frequency mode by clearing the WD_EN bit.	0
Bit 0		Reserved	Reserved	0

CY28323

Data Byte 10

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		CPU_Skew2	CPU skew control	0
Bit 6		CPU_Skew1	000 = Normal	0
Bit 5		CPU_Skew0	001 = -150 ps 010 = -300 ps	0
			011 = -450 ps 100 = +150 ps 101 = +300 ps	
			110 = +450 ps 110 = +450 ps 111 = +600 ps	
Bit 4		Reserved	Reserved	0
Bit 3		PCI_Skew1	PCI skew control	0
Bit 2		PCI_Skew0	00 = Normal 01 = -500 ps 10 = Reserved 11 = +500 ps	0
Bit 1		3V66_Skew1	3V66 skew control	0
Bit 0		3V66_Skew0	00 = Normal 01 = -150 ps 10 = $+150 \text{ ps}$ 11 = $+300 \text{ ps}$	0

Data Byte 11

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		ROCV_FREQ_N7	If ROCV_FREQ_SEL is set, the values programmed in	0
Bit 6		ROCV_FREQ_N6	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be use to determine the recovery CPU output frequency	0
Bit 5		ROCV_FREQ_N5	when a Watchdog timer time-out occurs.	0
Bit 4		ROCV_FREQ_N4	The setting of FS_Override bit determines the frequency	0
Bit 3		ROCV_FREQ_N3	ratio for CPU and other output clocks. When the FS_Override bit is cleared, the same frequency ratio stat-	0
Bit 2		ROCV_FREQ_N2	ed in the Latched FS[4:0] register will be used. When it is	0
Bit 1		ROCV_FREQ_N1	set, the frequency ratio stated in the SEL[4:0] register will	0
Bit 0		ROCV_FREQ_N0	be used.	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		ROCV_FREQ_SEL	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0] 1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0]	0

Data Byte 12 (continued)

Bit	Pin#	Name	Pin Description	Power On Default
Bit 6		ROCV_FREQ_M6	If ROCV_FREQ_SEL is set, the values programmed in	0
Bit 5		ROCV_FREQ_M5	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be use to determine the recovery CPU output frequen-	0
Bit 4		ROCV_FREQ_M4	cy.when a Watchdog timer time-out occurs.	0
Bit 3		ROCV_FREQ_M3	The setting of FS_Override bit determines the frequency	0
Bit 2		ROCV_FREQ_M2	ratio for CPU and other output clocks. When the FS_Override bit is cleared, the same frequency ratio stat-	0
Bit 1		ROCV_FREQ_M1	ed in the Latched FS[4:0] register will be used. When it is	0
Bit 0		ROCV_FREQ_M0	set, the frequency ratio stated in the SEL[4:0] register will be used.	0

Data Byte 13

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		CPU_FSEL_N7	If Prog_Freq_EN is set, the values programmed in	0
Bit 6		CPU_FSEL_N6	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] will be used to determine the CPU output frequency. The new frequency	0
Bit 5		CPU_FSEL_N5	will start to load whenever CPU_FSELM[6:0] is updated.	0
Bit 4		CPU_FSEL_N4	The setting of the FS_Override bit determines the frequen-	0
Bit 3		CPU_FSEL_N3	cy ratio for CPU and other output clocks. When it is cleared, the same frequency ratio stated in the Latched	0
Bit 2		CPU_FSEL_N2	FS[4:0] register will be used. When it is set, the frequency	0
Bit 1		CPU_FSEL_N1	ratio stated in the SEL[4:0] register will be used.	0
Bit 0		CPU_FSEL_N0		0

Data Byte 14

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Pro_Freq_EN	Programmable output frequencies enabled	0
			0 = disabled	
			1 = enabled	
Bit 6		CPU_FSEL_M6	If Prog_Freq_EN is set, the values programmed in	0
Bit 5		CPU_FSEL_M5	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] will be used to determine the CPU output frequency. The new frequency	0
Bit 4		CPU_FSEL_M4	will start to load whenever CPU_FSELM[6:0] is updated.	0
Bit 3		CPU_FSEL_M3	The setting of the FS_Override bit determines the frequen-	0
Bit 2		CPU_FSEL_M2	cy ratio for CPU and other output clocks. When it is cleared, the same frequency ratio stated in the Latched	0
Bit 1		CPU_FSEL_M1	FS[4:0] register will be used. When it is set, the frequency	0
Bit 0		CPU_FSEL_M0	ratio stated in the SEL[4:0] register will be used.	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6		Reserved	Reserved	0
Bit 5		Reserved	Reserved	0
Bit 4		Reserved	Reserved	0
Bit 3		Reserved	Reserved	0
Bit 2		Reserved	Reserved	0

Data Byte 15 (continued)

Bit	Pin#	Name	Pin Description	Power On Default
Bit 1		Vendor Test Mode	Reserved. Write with "1"	1
Bit 0		Vendor Test Mode	Reserved. Write with "1"	1

Data Byte 16

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6		Reserved	Reserved	0
Bit 5		Reserved	Reserved	0
Bit 4		Reserved	Reserved	0
Bit 3		Reserved	Reserved	0
Bit 2		Reserved	Reserved	0
Bit 1		Reserved	Reserved	0
Bit 0		Reserved	Reserved	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7		Reserved	Reserved	0
Bit 6		Reserved	Reserved	0
Bit 5		Reserved	Reserved	0
Bit 4		Reserved	Reserved	0
Bit 3		Reserved	Reserved	0
Bit 2		Reserved	Reserved	0
Bit 1		Reserved	Reserved	0
Bit 0		Reserved	Reserved	0

Table 4. Frequency Selection Table

Input Conditions					Output Frequency			
FS4	FS3	63 FS2	FS1 FS0	FS0				PLL Gear Constants
SEL4	SEL3	SEL2	SEL1	SEL0	CPU	3V66	PCI	(G)
0	0	0	0	0	102.0	68.0	34.0	48.00741
0	0	0	0	1	105.0	70.0	35.0	48.00741
0	0	0	1	0	108.0	72.0	36.0	48.00741
0	0	0	1	1	111.0	74.0	37.0	48.00741
0	0	1	0	0	114.0	76.0	38.0	48.00741
0	0	1	0	1	117.0	78.0	39.0	48.00741
0	0	1	1	0	120.0	80.0	40.0	48.00741
0	0	1	1	1	123.0	82.0	41.0	48.00741
0	1	0	0	0	126.0	63.0	31.5	48.00741
0	1	0	0	1	130.0	65.0	32.5	48.00741
0	1	0	1	0	136.0	68.0	34.0	48.00741
0	1	0	1	1	140.0	70.0	35.0	48.00741
0	1	1	0	0	144.0	72.0	36.0	48.00741
0	1	1	0	1	148.0	74.0	37.0	48.00741
0	1	1	1	0	152.0	76.0	38.0	48.00741
0	1	1	1	1	156.0	78.0	39.0	48.00741
1	0	0	0	0	160.0	80.0	40.0	48.00741
1	0	0	0	1	164.0	82.0	41.0	48.00741
1	0	0	1	0	166.6	66.6	33.3	48.00741
1	0	0	1	1	170.0	68.0	34.0	48.00741
1	0	1	0	0	175.0	70.0	35.0	48.00741
1	0	1	0	1	180.0	72.0	36.0	48.00741
1	0	1	1	0	185.0	74.0	37.0	48.00741
1	0	1	1	1	190.0	76.0	38.0	48.00741
1	1	0	0	0	66.8	66.8	33.4	48.00741
1	1	0	0	1	100.2	66.8	33.4	48.00741
1	1	0	1	0	133.6	66.8	33.4	48.00741
1	1	0	1	1	200.4	66.8	33.4	48.00741
1	1	1	0	0	66.6	66.6	33.3	48.00741
1	1	1	0	1	100.0	66.6	33.3	48.00741
1	1	1	1	0	200.0	66.6	33.3	48.00741
1	1	1	1	1	133.3	66.6	33.3	48.00741

Programmable Output Frequency, Watchdog Timer and Recovery Output Frequency Functional Description

The Programmable Output Frequency feature allows users to generate any CPU output frequency in the range of 50 MHz to 248 MHz. Cypress offers the most dynamic and the simplest programming interface for system developers to utilize this feature in their platforms.

The Watchdog Timer and Recovery Output Frequency features allow users to implement a recovery mechanism when the system hangs or getting unstable. System BIOS or other control software can enable the Watchdog timer before they attempt to make a frequency change. If the system hangs and a Watchdog Timer time-out occurs, a system reset will be generated and a recovery frequency will be activated.

All the related registers are summarized in Table 5.

Table 5.	Register	Summary
----------	----------	---------

Name	Description
Pro_Freq_EN	Programmable output frequencies enabled 0 = Disabled (default)
	1 = Enabled When it is disabled, the operating output frequency will be determined by either the latched value of FS[4:0] inputs or the programmed value of SEL[4:0]. If the FS_Override bit is clear, latched FS[4:0] inputs will be used. If the FS_Override bit is set, the programmed value of SEL[4:0] will be used.
	When it is enabled, the CPU output frequency will be determined by the programmed value of CPUFSEL_N, CPUFSEL_M and the PLL Gear Constant. The program value of FS_Override, SEL[4:0] or the latched value of FS[4:0] will determine the PLL Gear Constant and the frequency ratio between CPU and other frequency outputs
FS_Override	 When Pro_Freq_EN is cleared or disabled, 0 = Select operating frequency by FS input pins (default) 1 = Select operating frequency by SEL bits in SMBus control bytes When Pro_Freq_EN is set or enabled, 0 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the latched value of FS input pins (default)
	1 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the programmed value of SEL bits in SMBus control bytes
CPU_FSEL_N, CPU_FSEL_M	When Prog_Freq_EN is set or enabled, the values programmed in CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] determines the CPU output frequency. The new frequency will start to load whenever there is an update to either CPU_FSEL_N[7:0] or CPU_FSEL_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation. The setting of FS_Override bit determines the frequency ratio for CPU, AGP and PIC. When FS_Override is cleared or disabled, the frequency ratio follows the latched value of the FS input pins.
	When FS_Override is set or enabled, the frequency ratio follows the programmed value of SEL bits in SMBus control bytes.
ROCV_FREQ_SEL	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0]
ROCV_FREQ_N[7:0], ROCV_FREQ_M[6:0]	1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0] When ROCV_FREQ_SEL is set, the values programmed in ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency when a Watchdog timer time-out occurs
	The setting of the FS_Override bit determines the frequency ratio for CPU, AGP and PIC. When it is cleared, the same frequency ratio stated in the Latched FS[4:0] register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used.
	The new frequency will start to load whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation.
WD_EN	0 = Stop and reload Watchdog Timer 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs.

Table 5. Register Summary (continued)

Name	Description
WD_TO_STATUS	Watchdog Timer Time-out Status bit
	0 = No time-out occurs (READ); Ignore (WRITE)
	1 = Time-out occurred (READ); Clear WD_TO_STATUS (WRITE)
WD_TIMER[4:0]	These bits store the time-out value of the Watchdog Timer. The scale of the timer is determine by the prescaler.
	The timer can support a value of 150 ms to 4.8 sec when the prescaler is set to 150 ms. If the prescaler is set to 2.5 sec, it can support a value from 2.5 sec to 80 sec.
	When the Watchdog timer reaches "0", it will set the WD_TO_STATUS bit.
WD_PRE_SCALER	0 = 150 ms
	1 = 2.5 sec
RST_EN_WD	This bit will enable the generation of a Reset pulse when a Watchdog timer time-out occurs. 0 = Disabled 1 = Enabled
RST_EN_FC	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled
	1 = Enabled

Program the CPU Output Frequency

When the programmable output frequency feature is enabled (Pro_Freq_EN bit is set), the CPU output frequency is determined by the following equation:

Fcpu = G * (N+3)/(M+3)

"N" and "M" are the values programmed in Programmable Frequency Select N-Value Register and M-Value Register, respectively. "G" stands for the PLL Gear Constant, which is determined by the programmed value of FS[4:0] or SEL[4:0]. The value is listed in *Table 4*.

The ratio of (N+3) and (M+3) need to be greater than "1" [(N+3)/(M+3) > 1].

The following table lists set of N and M values for different frequency output ranges. This example use a fixed value for the M-Value Register and select the CPU output frequency by changing the value of the N-Value Register.

Table 6. Examples of N and M Value for Different CPU Frequency Range

Frequency Ranges	Gear Constants	Fixed Value for M-Value Register	Range of N-Value Register for Different CPU Frequency
50 MHz–129 MHz	48.00741	93	97–255
130 MHz–248 MHz	48.00741	45	127–245

CY28323

Maximum Ratings

(Above which the useful life may be impa lines, not tested.)	ired. For user guide-
Supply Voltage	–0.5 to +7.0V
Input Voltage	.–0.5V to V _{DD} + 0.5

Storage Temperature (Non-Condensing)65°C to +150°C
Max. Soldering Temperature (10 sec) +260°C
Junction Temperature +150°C
Package Power Dissipation1 Ω
Static Discharge Voltage
(per MIL-STD-883, Method 3015)>2000V

Operating Conditions^[2] Over which Electrical Parameters are Guaranteed

Parameter	Description	Min.	Max.	Unit
V _{DD_REF} , V _{DD_PCI} ,V _{DD_CORE} , V _{DD_3V66} , V _{DD_48} MHz, V _{DD_CPU} ,	3.3V Supply Voltages	3.135	3.465	V
T _A	Operating Temperature, Ambient	0	70	°C
C _{in}	Input Pin Capacitance		5	pF
C _{XTAL}	XTAL Pin Capacitance		22.5	pF
CL	Max. Capacitive Load on 48MHz, REF PCICLK, 3V66		20 30	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

Electrical Characteristics Over the Operating Range

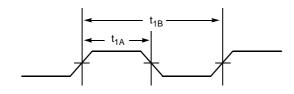
Parameter	Description	Test Condi	tions	Min.	Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = $V_{DD}/2$		2.0		V
V _{IL}	Low-level Input Voltage	Except Crystal Pads			0.8	V
V _{OH}	High-level Output Voltage	48MHz, REF, 3V66	I _{OH} = -1 mA	2.4		V
		PCI	I _{OH} = -1 mA	2.4		V
V _{OL}	Low-level Output Voltage	48MHz, REF, 3V66	I _{OL} = 1 mA		0.4	V
		PCI	I _{OL} = 1 mA		0.55	V
I _{IH}	Input High Current	$0 \le V_{IN} \le V_{DD}$		-5	5	mA
IIL	Input Low Current	$0 \le V_{IN} \le V_{DD}$		-5	5	mA
I _{OH}	High-level Output Current	CPU	Type X1, V _{OH} = 0.65V	12.9		mA
		For I _{OH} = 6*IRef Configuration	Type X1, V _{OH} = 0.74V		14.9	1
		REF, 48 MHz	Type 3, V _{OH} = 1.00V	-29]
			Type 3, V _{OH} = 3.135V		-23]
		3V66, PCI	Type 5, V _{OH} = 1.00V	-33]
			Type 5, V _{OH} = 3.135V		-33]
I _{OL}	Low-level Output Current	REF, 48MHz	Type 3, V _{OL} = 1.95V	29		mA
			Type 3, V _{OL} = 0.4V		27]
		3V66, PCI,	Type 5, V _{OL} =1.95 V	30		
			Type 5, V _{OL} = 0.4V		38	1
I _{OZ}	Output Leakage Current	Three-state			10	mA
I _{DD3}	3.3V Power Supply Current	t V _{DD_CORE} /V _{DD33} = 3.465V, F _{CPU} = 133 MHz			250	mA
I _{DDPD3}	3.3V Shutdown Current	tdown Current $V_{DD CORE}/VDDQ3 = 3.465V$			20	mA

Notes:

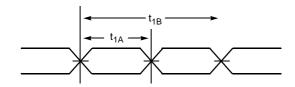
2. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

Description Parameter Output **Test Conditions** Min. Max. Unit Output Duty Cycle^{[[4]]} All $t_{1A}/(t_{1B})$ 45 55 % t₁ CPU **Rise Time** Measured at 20% to 80% of Voh 175 700 t₂ ps 48MHz. REF **Rising Edge Rate** Between 0.4V and 2.4V 0.5 2.0 V/ns t₂ PCI. 3V66. Between 0.4V and 2.4V **Rising Edge Rate** 4.0 V/ns 1.0 t₂ CPU Fall Time Measured at 80% to 20% of Voh 175 700 t₃ ps 48MHz. REF Falling Edge Rate Between 2.4V and 0.4V 0.5 2.0 V/ns t₃ Between 2.4V and 0.4V PCI, 3V66 Falling Edge Rate 1.0 V/ns 4.0 t₃ CPU **CPU-CPU Skew** Measured at Crossover 150 t₄ ps 3V66 [0:1] 3V66-3V66 Skew Measured at 1.5V 500 t₅ ps PCI PCI-PCI Skew Measured at 1.5V t₆ 500 ps 3V66-PCI Clock Skew 3V66 leads. Measured at 1.5V 3V66.PCI t₇ 1.5 3.5 ns Measured at Crossover $t_8 = t_{8A} - t_{8B}$ CPU Cycle-Cycle Clock Jitter 200 t₈ ps With all outputs running Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$ 3V66 Cycle-Cycle Clock Jitter 250 ps tg Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$ 48MHz Cycle-Cycle Clock Jitter 350 ps t₉ PCI Cycle-Cycle Clock Jitter Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$ 500 t₉ ps REF Cycle-Cycle Clock Jitter Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$ 1000 ps tg CPU and PCI clock stabilization from CPU, PCI Settle Time 3 ms power-up Measured with test loads^{[[5], [6]]} CPU **Rise/Fall Matching** 20% Measured with test loads[[6]] V_{oh} + 0.2 CPU V Overshoot Measured with test loads^{[[6]]} CPU Undershoot -0.2 V Measured with test loads[[6]] CPU V High-level Output Voltage 0.65 0.74 Voh Measured with test loads^{[[6]]} Vol CPU Low-level Output Voltage 0.0 0.05 V Measured with test loads^{[[6]]} Vcrossover CPU 45% 55% V **Crossover Voltage** of of 0.65 0.74

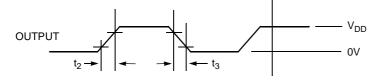
Switching Characteristics^{[[3]]} Over the Operating Range

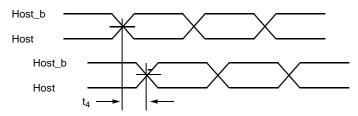

Notes:

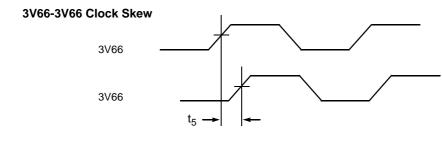
All parameters specified with loaded outputs.
Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V.
Determined as a fraction of 2*(t_{RP} - t_{RN})/(t_{RP} + t_{RN}) Where t_{RP} is a rising edge and t_{RN} is an intersecting falling edge.
The test load is R_s = 33.2Ω, R_p = 49.9Ω in test circuit.



Switching Waveforms

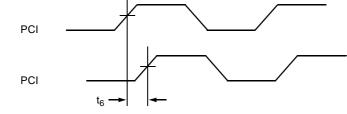

Duty Cycle Timing (Single Ended Output)

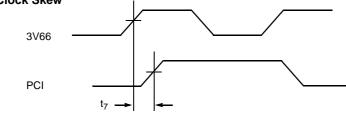

Duty Cycle Timing (CPU Differential Output)



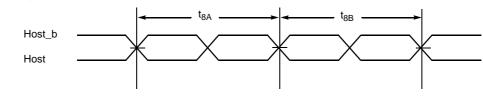
All Outputs Rise/Fall Time

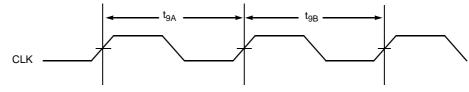
CPU-CPU Clock Skew





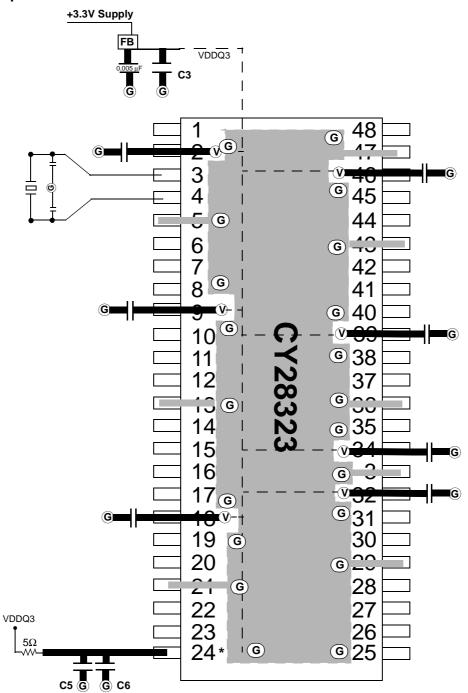
Switching Waveforms (continued)


PCI-PCI Clock Skew


3V66-PCI Clock Skew

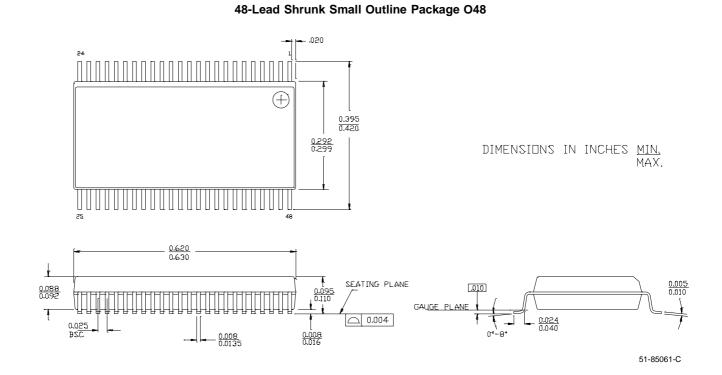
CPU Clock Cycle-Cycle Jitter

Cycle-Cycle Clock Jitter



Ordering Information

Ordering Code	Package Type	Operating Range
CY28323PVC	48-pin Small Shrunk Outline Package (SSOP)	Commercial


Layout Example

FB = Dale ILB1206 - 300 (300Ω @ 100 MHz)

Package Diagram

Document #: 38-07004 Rev. *B

Page 21 of 22

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY28323 FTG For Intel Pentium 4 CPU and Chipsets

Docume	ent Number: 3	t Number: 38-07004				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	106090	06/27/01	IKA	New Data Sheet		
*A	110677	11/15/01	IKA	Revised 2nd bullet on page 1 (add "845" to first Brookdale, Bookdale-G to Brookdale-G)		
*В	122712	12/14/02	RBI	Added power up requirements to operating conditions information.		