

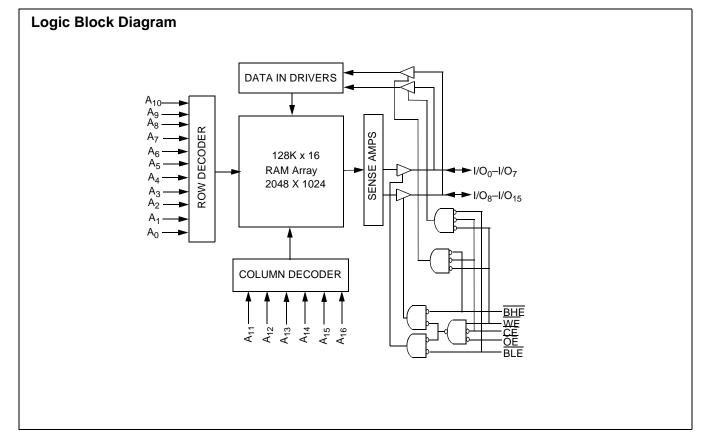
CY62136CV18 MoBL2™

Features

- High Speed
 55 ns and 70 ns availability
- Low voltage range:
 - —1.65V–1.95V
- Pin Compatible with CY62136BV18
- Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
 - Typical Active Current: 1.5 mA @ f = f_{max} (70 ns speed)
- · Low standby power
- · Easy memory expansion with CE and OE features
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

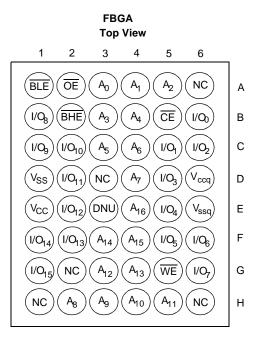
The CY62136CV18 is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[®] (MoBLTM) in portable applications such as cellular telephones. The device also has


128K x 16 Static RAM

an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>add</u>ress pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.


The CY62136CV18 is available in 48-ball FBGA packaging.

Cypress Semiconductor Corporation • Document #: 38-05016 Rev. *C

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.2V to +2.4V

DC Voltage Applied to Outputs

in High Z State ^[3]	–0.2V to V _{CC} + 0.2V
DC Input Voltage ^[3]	–0.2V to V _{CC} + 0.2V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62136CV18	Industrial	–40°C to +85°C	1.65V to 1.95V

Product Portfolio

						Power Dissipation (Indus				
					Operating (I _{CC})			Standby	(I _{SB2})	
	V _{CC} Range				f = 1	f = 1 MHz f = f _{max}		f _{max}		
Product	V _{CC(min)}	V _{CC(typ)} ^[4]	V _{CC(max)}	Speed	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62136CV18	1.65V	1.80V	1.95V	55 ns	0.5 mA	2 mA	2 mA	7 mA	1 μΑ	8 μΑ
				70 ns	0.5 mA	2 mA	1.5 mA	6 mA		

Notes:

1. NC pins are not connected to the die. 2. E3 (DNU) can be left as NC or V_{SS} to ensure proper application. 3. $V_{|L}(min) = -2.0V$ for pulse durations less than 20 ns.

4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

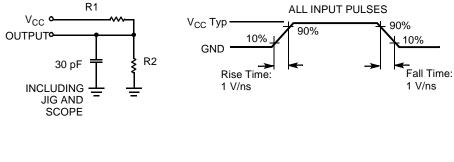
Electrical Characteristics Over the Operating Range

			CY6	2136CV	18-55	CY6				
Parameter	Description	Test Conditions			Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{\rm CC} = 1.65 V$	1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{\rm CC} = 1.65 V$			0.2			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} + 0.2V	1.4		V _{CC} + 0.2V	V
V _{IL}	Input LOW Voltage			-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1		+1	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}, C$	Output Disabled	-1		+1	-1		+1	μΑ
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{\rm CC} = 1.95V$		2	7		1.5	6	mA
ICC	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	2		0.5	2	mA
I _{SB1}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:central_constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2V \\ f &= f_{MAX} \left(\underline{Address \ and \ Data \ Only} \right), \\ f &= 0 \ (\overline{OE}, \ WE, \ BHE, \ and \ BLE) \end{split}$			1	8		1	8	μΑ
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:VCC} \begin{array}{l} \hline \hline CE \ge V_{CC} - 0.2V \\ V_{IN} \ge V_{CC} - 0.2V \\ f = 0, \ V_{CC} = 1.95V \end{array}$	or V _{IN} <u>≤</u> 0.2V,							

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

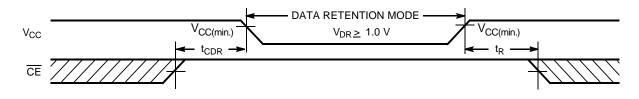

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		Θ_{JC}	16	°C/W

Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT RTH


OUTPUT • V

Parameters	1.8V	UNIT
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

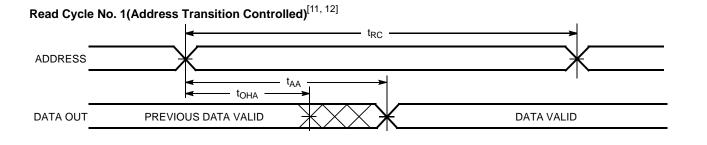
Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V_{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\label{eq:V_CC} \begin{split} & \frac{V_{CC}}{CE} = 1.0V\\ & \overline{CE} \geq V_{CC} - 0.2V,\\ & V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \end{split}$		0.5	5	μA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

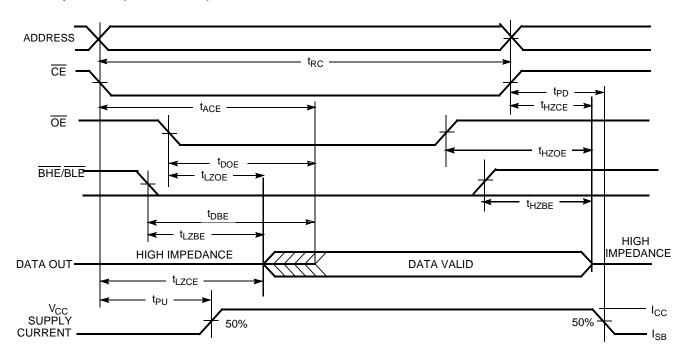
Note:

6. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs.

Switching Characteristics Over the Operating Range^[7]


		55	ns	70) ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8]	5		10		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[8]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[8, 9]		20		25	ns
Write Cycle ^[10]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	40		60		ns
t _{AW}	Address Set-Up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE/BHE LOW to Write End	40		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		10		ns

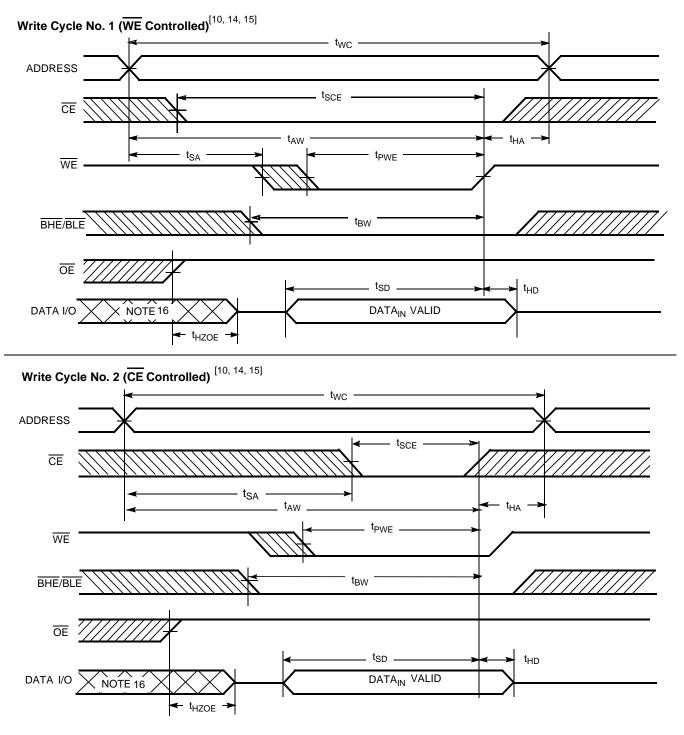
Notes:


7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZDE}, t_{HZDE}, and t_{HZWE} is less than t_{LZWE} for any given device.
9. t_{HZOE}, t_{HZEE} and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
10. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write. the write

Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[12, 13]

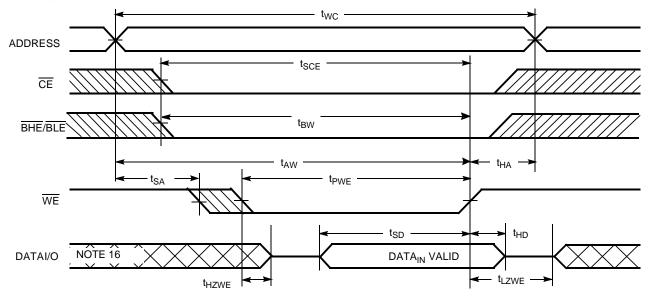
Notes:

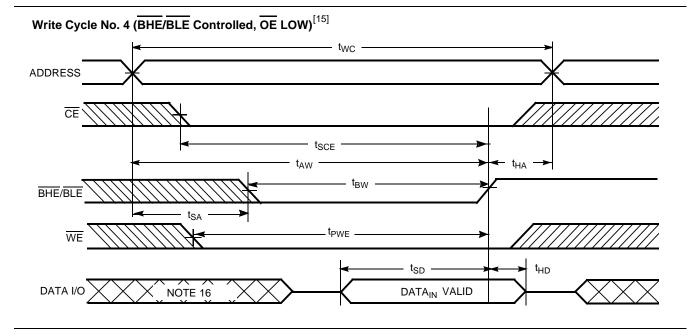

 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.

 12. WE is HIGH for read cycle.

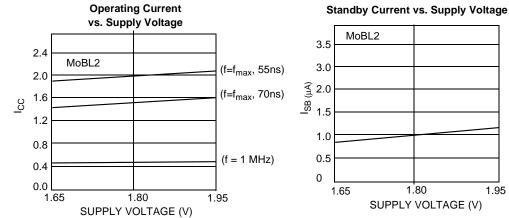
 13. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} , transition LOW.

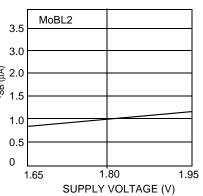
Switching Waveforms

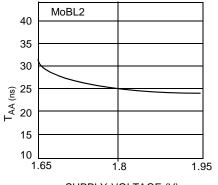

Notes:


- 14. Data I/O is high impedance if OE = V_{IB}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms






Typical DC and AC Characteristics

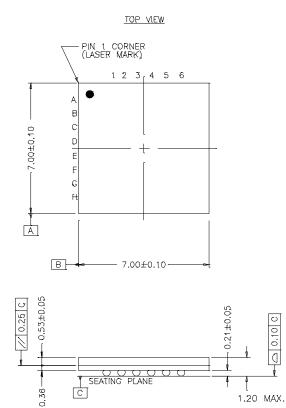
(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.)

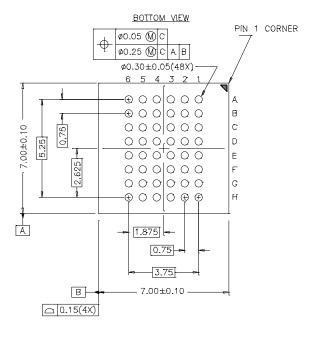
Access Time vs. Supply Voltage

SUPPLY VOLTAGE (V)

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); Write I/O_8 –I/O ₁₅ in High Z		Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); Write I/O ₀ –I/O ₇ in High Z		Active (I _{CC})

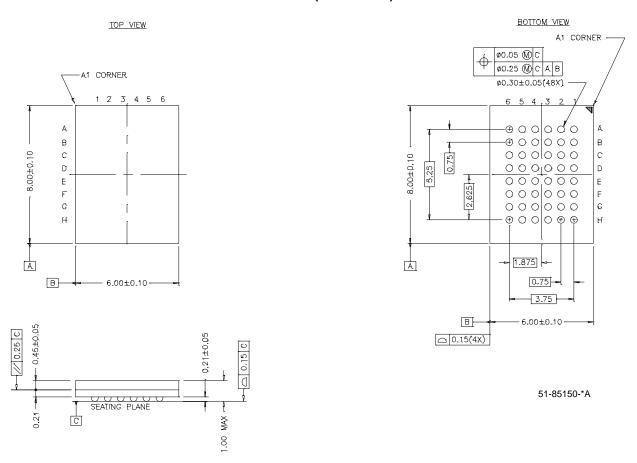



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62136CV18LL-70BAI	BA48A	48-Ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	Industrial
	CY62136CV18LL-70BVI	BV48A	48-Ball Fine Pitch BGA (6 mm x 8 mm x 1mm)	
55	CY62136CV18LL-55BAI	BA48A	48-Ball Fine Pitch BGA (7 mm x 7 mm x 1.2 mm)	
	CY62136CV18LL-55BVI	BV48A	48-Ball Fine Pitch BGA (6 mm x 8 mm x 1mm)	

Package Diagram

48-Ball (7.00 mm x 7.00 mm x 1.2 mm) FBGA BA48A



51-85096-*E

Package Diagram (continued)

48-Lead VFBGA (6 x 8 x 1 mm) BV48A

MoBL is a registered trademark and MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY62136CV18 MoBL2™, 128K x 16 Static RAM Document Number: 38-05016				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106264	05/07/01	HRT/MGN	New Data Sheet
*A	107701	06/15/01	MGN	Delete data sheet. Not offering device.
*В	111522	11/06/01	GAV	Reactivate spec. Final data sheet.
*C	115865	09/04/02	MGN	Add BV pkg