

16-Mbit (2048K x 8) Static RAM

Features

Very high speed: 55 ns and 70 ns
 Wide voltage range: 2.20V – 3.60V

· Ultra-low active power

Typical active current: 2 mA @ f = 1 MHz
 Typical active current: 15 mA @ f = f_{max}

Ultra-low standby power

Easy memory expansion with CE₁, CE₂ and OE features

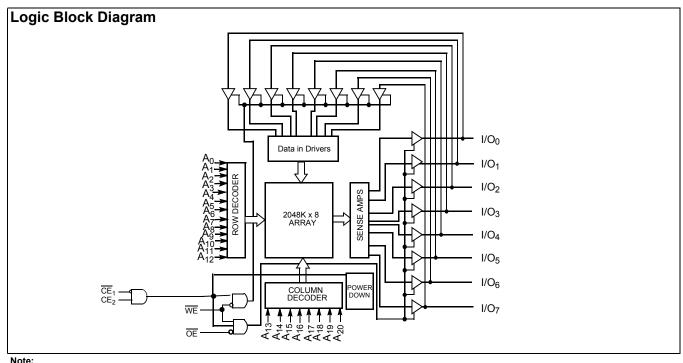
· Automatic power-down when deselected

· CMOS for optimum speed/power

Packages offered in a 48-ball FBGA

Functional Description[1]

The CY62168DV30 is a high-performance CMOS static RAMs organized as 2048Kbit words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption by 90% when


addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 (CE_1) HIGH or Chip Enable 2 (CE_2) LOW. The input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when: deselected Chip Enable 1 (CE_1) HIGH or Chip Enable 2 (CE_2) LOW, outputs are disabled (OE HIGH), or during a write operation (Chip Enable 1 (CE_1) LOW and Chip Enable 2 (CE_2) HIGH and WE LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable 1 ($\overline{\text{CE}}_1$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH and Write Enable (WE) input LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins(A_0 through A_{20}).

Reading from the device is accomplished by taking Chip Enable 1 (CE₁) and Output Enable (OE) LOW_and Chip Enable 2 (CE₂) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed <u>in a</u> high-impedance state when the device is des<u>elected (CE $_1$ LOW and CE $_2$ HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE $_1$ LOW and CE $_2$ HIGH and WE LOW). See the truth table for a complete description of read and write modes.</u>

DataShe

NOTE:1. For best practice recommendations, please refer to the Cypress application note entitled *System Design Guidelines*, available at http://www.cypress.com.

DataSheet4U.com www.DataSheet4U.com

Pin Configuration^[2]

FBGA Top View 1 2 3 4 5 6 (DNU ŌE CE₂ Α (DNU (DNU В A₅ 1/00 A_6 DNU С (DNU 1/O₅ A₁₇ V_{SS} D I/O₁ (DNU I/Q₆ (1/02 A₁₆ V_{SS} Ε Vcc F (I/O₃ DNU A_{14} A_{15} (DNU) 1/07 DNU A₁₃ WE DNU) G Н

Product Portfolio

et4U.com

							Power	Dissipatio	n	
						Operating	J I _{CC} (mA)			
	Vc	c Range ((V)	DataSh Speed	eet4⊌ = o	MHz	f = 1	max	Standby	I _{SB2} (μ A)
Product	Min.	Typ. ^[3]	Max.	(ns)	Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ . ^[3]	Max.
CY62168DV30L	2.2	3.0	3.6	55	2	4	15	30	2.5	30
				70			12	25		
CY62168DV30LL	2.2	3.0	3.6	55	2	4	15	30	2.5	22
				70			12	25		

www.DataSheet4U.com

DataShee

DataSheet4U.com

Notes:

2. DNU pins have to be left floating or tied to V_{SS} to ensure proper application.

3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C

Supply Voltage to Ground Potential -0.3V to $V_{CC(max)} + 0.3V$

DC Voltage Applied to Outputs in High-Z State $^{[4,\ 5]}$ -0.3V to $V_{CC(max)}$ + 0.3V

DC Input Voltage ^[4, 5]	$-0.3V$ to $V_{CC(max)} + 0.3V$
Output Current into Outputs (LOW))20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[6]	V cc ^[7]
Industrial	–40°C to +85°C	2.2V - 3.6V

DC Electrical Characteristics (Over the Operating Range)

				CY	CY62168DV30-55		CY62168DV30-70			
Parameter	Description	Test Cond	ditions	Min.	Typ . ^[3]	Max.	Min.	Typ . ^[3]	Max.	Unit
V _{OH}	0. 4 4 1 1 0 1 1 1/- 14	2.2 ≤ V _{CC} ≤ 2.7	$I_{OH} = -0.1 \text{ mA}$	2.0			2.0			V
VOH	Output HIGH Voltage	2.7 ≤ V _{CC} ≤ 3.6	$I_{OH} = -1.0 \text{ mA}$	2.4			2.4			
V	0.1.11000000	$2.2 \le V_{CC} \le 2.7$	I _{OL} = 0.1 mA			0.4			0.4	V
V_{OL}	Output LOW Voltage	$2.7 \le V_{CC} \le 3.6$	I _{OH} = 2.1 mA			0.4			0.4	'
V	least HOLLY (steeps	2.2 ≤ V _{CC} ≤ 2.7		1.8		V _{CC} + 0.3	1.8		V _{CC} + 0.3	,,
V _{IH}	Input HIGH Voltage	2.7 ≤ V _{CC} ≤ 3.6		2.2		V _{CC} + 0.3	2.2		V _{CC} + 0.3	V
V	I t I O M	2.2 ≤ V _{CC} ≤ 2.7		-0.3		0.6	-0.3		0.6	V
V_{IL}	Input LOW Voltage	2.7 ≤ V _{CC} ≤ 3.6		-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	GND ≤ V _I ≤ Vect	aSheet4U.co	m –1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$	Output disabled	-1		+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	Vcc = 3.6V,		15	30		12	25	mA
.00	Current	f = 1 MHz	I _{OUT} = 0mA, CMOS level		2	4		2	4	
	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$	/, CE ₂ ≤ L		2.5	30		2.5	30	μА
I _{SB1}	Power-down Current – CMOS Inputs	$\begin{array}{l} 0.2\dot{V},V_{\text{IN}}\!\geq\!V_{\text{CC}}-\\ \leq\!0.2V,f=f_{\text{MAX}}(A_{\text{MM}}),f\\ &\text{and Data Only},f\\ &\text{WE},) \end{array}$	Addr <u>ess</u> , ,		2.5	22		2.5	22	
1	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$	/, CE ₂ ≤ L		2.5	30		2.5	30	μΑ
I _{SB2}	Power-down Current – CMOS Inputs	$0.2V$, $V_{IN} \ge V_{CC} - V_{IN} \le 0.2V$, $f = 0$, $V_{IN} \le 0.2V$	0.2V or / _{CC} =3.6V LL		2.5	22		2.5	22	

Thermal Resistance

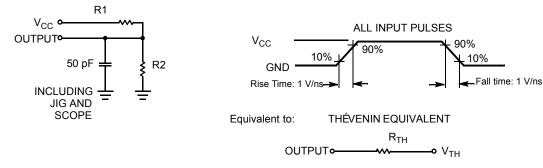
Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance ^[8] (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance ^[8] (Junction to Case)		16	°C/W

et4U.com

- $4.V_{IL(min)}$ = -0.2V for pulse durations less than 20 ns. $5.V_{IH(max)}$ = V_{CC} + 0.75V for pulse durations less than 20 ns. $6.T_A$ is the "Instant-On" case temperature. 7.Full device AC operation assumes a 100 μs ramp time from 0 to V_{cc} (min) and 100 μs wait time after V_{cc} stabilization..
- 8. Tested initially and after any design or process changes that may affect these parameters.

DataShe

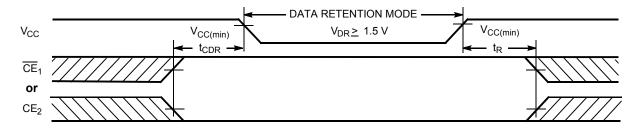
www.DataSheet4U.com DataSheet4U.com


Document #: 38-05329 Rev. *D Page 3 of 9

Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

AC Test Loads and Waveforms



Parameters	2.50V	3.0V	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R _{TH}	8000	645	Ω
V_{TH}	1.2	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Da Conditions l.com	Min.	Typ. ^[3]	Max.	Unit	
V_{DR}	V _{CC} for Data Retention			1.5		3.6	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V$	L			15	μА
			LL			10	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time			0			ns
t _R ^[9]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

Note:

9. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100~\mu s$ or stable at $V_{CC(min.)} \ge 100~\mu s$.

et4U.com

www.DataSheet4U.com

DataShee

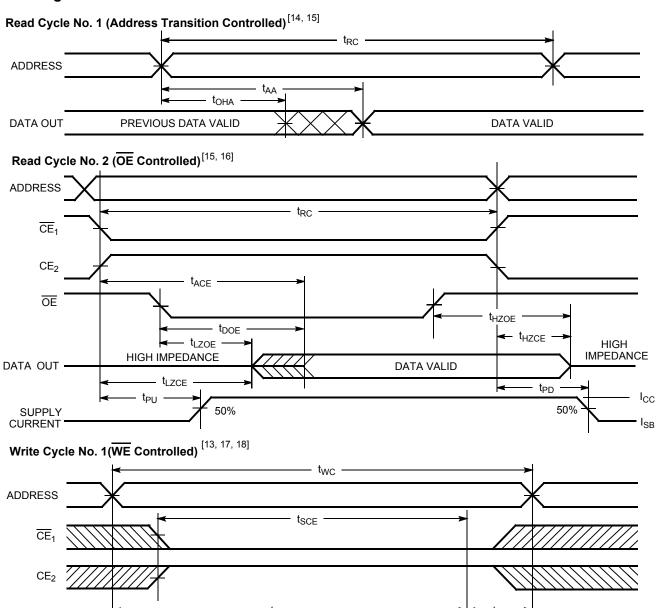
DataSheet4U.com

Switching Characteristics Over the Operating Range [10]

		55	ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			•	•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		20		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[11]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[11, 12]		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		55		70	ns
Write Cycle ^[13]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		60		ns
t _{AW}	Address Set-Up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns
t _{SD}	Data Set-Up to Write End DataSheet4U.co	m 25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[11, 12]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11]	10		10		ns

et4U.com

DataShe


Notes:

www.DataSheet4U.com

^{10.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
11. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
12. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

 t_{SD}

VALID DATA

Notes:

See Note [19]

WE

DATA I/O

tsa

Document #: 38-05329 Rev. *D

14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

15. \overline{WE} is HIGH for read cycle.

16. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

17. <u>Data I/O</u> is high impedance if $\overline{OE} = V_{IH}$.

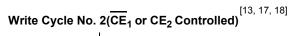
18. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.

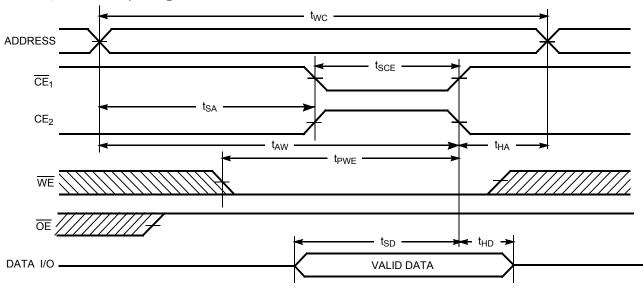
19. During this period, the I/Os are in output state and input signals should not be applied.

DataSheet4U.com

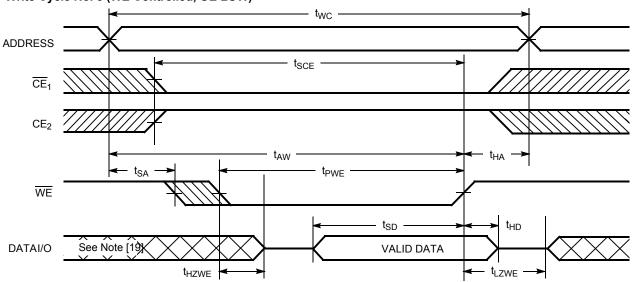
www.DataSheet4U.com

DataShe


 t_{HD}


et4U.com

DataShee



Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[19]}$

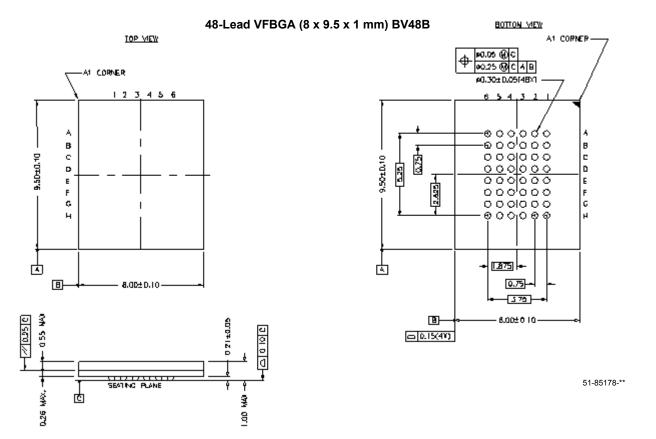
Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	X	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (Icc)
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

DataSheet4U.com www.DataSheet4U.com

Document #: 38-05329 Rev. *D Page 7 of 9

et4U.com



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62168DV30L-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62168DV30LL-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)]
70	CY62168DV30L-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62168DV30LL-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	1
55	CY62168DV30L-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62168DV30LL-55BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	
70	CY62168DV30L-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	Industrial
	CY62168DV30LL-70BVXI	BV48B	48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm)	

Package Diagrams

et4U.com

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

www.DataSheet4U.com DataSheet4<u>U.com</u>

DataShe

Page 9 of 9

Document History Page

	Document Title: CY62168DV30 MoBL [®] 16-Mbit (2048K x 8) Static RAM Document Number: 38-05329									
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change						
**	118409	09/30/02	GUG	New Data Sheet						
*A	123693	02/05/03	DPM	Changed Advance Information to Preliminary Added package diagram						
*B	126556	04/24/03	DPM	Minor change: Change sunset owner from DPM to HRT						
*C	132869	01/15/04	XRJ	Changed Preliminary to Final						
*D	272589	See ECN	PCI	Updated Final data sheet and added Pb-free package.						

et4U.com

DataSheet4U.com

DataSheet4U.com www.DataSheet4U.com

Document #: 38-05329 Rev. *D