

$4K \times 16$ and $8K \times 16/18$ Dual-Port Static RAM with SEM, INT, BUSY

Features

- True dual-ported memory cells that allow simultaneous reads of the same memory location
- 4K x 16 organization (CY7C024E)
- 8K x 16 organization (CY7C025E)
- 8K × 18 organization (CY7C0251E)
- 0.35-µ complementary metal oxide semiconductor (CMOS) for optimum speed and power
- High-speed access: 15 ns
- Low operating power: I_{CC} = 180 mA (typ), I_{SB3} = 0.05 mA (typ)
- Fully asynchronous operation
- Automatic power-down
- Expandable data bus to 32/36 bits or more using master/slave chip select when using more than one device
- On-chip arbitration logic
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Separate upper-byte and lower-byte control
- Pin select for master or slave
- Available in Pb-free 100-pin thin guad flatpack (TQFP) package

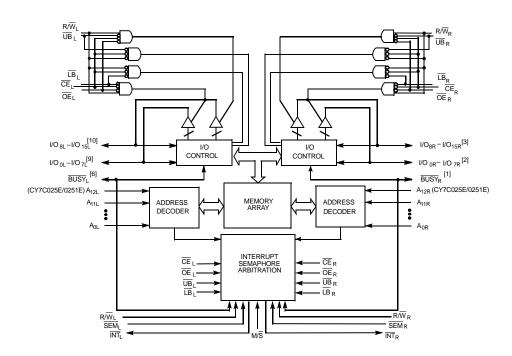
Functional Description

The CY7C024E and CY7C025E/CY7C0251E are low-power CMOS 4K × 16 and 8K × 16/18 dual-port static RAMs. Various arbitration schemes are included on the CY7C024E and CY7C025E/CY7C0251E to handle situations when multiple processors access the same piece of data. Two ports are provided, permitting independent, asynchronous access for reads and writes to any location in memory. The CY7C024E and CY7C025E/CY7C0251E can be used as standalone 16 or 18-bit dual-port static RAMs or multiple devices can be combined to function as a 32-/36-bit or wider master/ slave dual-port static RAM. An M/S pin is provided for implementing 32-/36-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Each port has independent control pins: Chip Enable (\overline{CE}) , Read or Write Enable (R/W), and Output Enable (\overline{OE}) . Two flags are provided on each port (BUSY) and (\overline{INT}) . BUSY signals that the port is trying to access the same location currently being accessed by the other port. The Interrupt Flag $((\overline{INT}))$ permits communication between ports or systems by means of a mail box. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a (\overline{CE}) pin.

The CY7C024E and CY7C025E/CY7C0251E are available in 100-pin Pb-free TQFP.

For a complete list of related documentation, click here.


Selection Guide

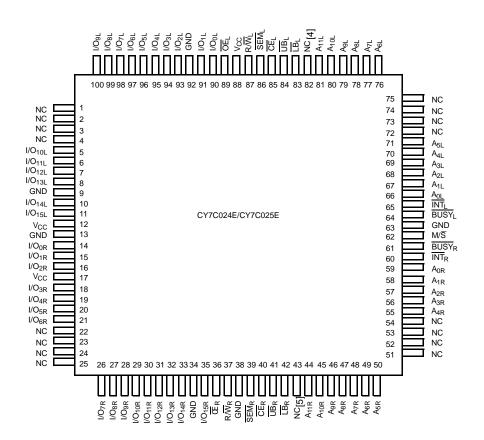
Parameter	-15	-25	-55
Maximum access time (ns)	15	25	55
Typical operating current (mA)	190	170	150
Typical standby current for I _{SB1} (mA)	50	40	20

Cypress Semiconductor Corporation
Document Number: 001-62932 Rev. *H

Logic Block Diagram

- BUSY is an output in master mode and an input in slave mode.
 I/O₀-I/O₈ on the CY7C0251E.
 I/O₉-I/O₁₇ on the CY7C0251E.

Contents


Pin Configurations	4
Pin Definitions	
Architecture	6
Functional Overview	6
Write Operation	6
Read Operation	
Interrupts	7
Busy	
Master/Slave	
Semaphore Operation	8
Maximum Ratings	9
Operating Range	
Electrical Characteristics	
Capacitance	10
AC Test Loads and Waveforms	
Data Retention Mode	10
Data Retention Timing	

Switching Characteristics	11
Switching Waveforms	13
Ordering Information	
4K × 16 Dual-Port SRAM	19
8K x 16 Dual-Port SRAM	19
Ordering Code Definitions	19
Package Diagrams	20
Acronyms	
Document Conventions	21
Units of Measure	
Document History Page	22
Sales, Solutions, and Legal Information	24
Worldwide Sales and Design Support	
Products	24
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

Pin Configurations

Figure 1. 100-pin TQFP pinout (Top View)

A_{12L} on the CY7C025E/CY7C0251E.
 A_{12R} on the CY7C025E/CY7C0251E.

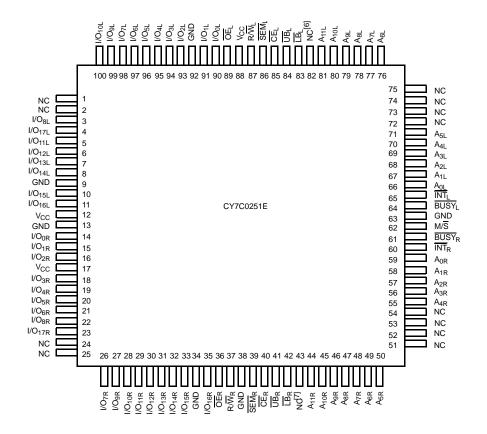


Figure 2. 100-pin TQFP pinout (Top View)

Pin Definitions

Left Port	Right Port	Description
CEL	CE _R	Chip enable
R/\overline{W}_L	R/W _R	Read/write enable
ŌĒL	OE _R	Output enable
A _{0L} -A _{11/12L}	A _{0R} -A _{11/12R}	Address
I/O _{0L} –I/O _{15/17L}	I/O _{0R} -I/O _{15/17R}	Data bus input/output
SEML	SEM _R	Semaphore enable
UBL	UB _R	Upper byte select
IB L	LB _R	Lower byte select
INT _L	INT _R	Interrupt flag
BUSY _L ^[8]	BUSY _R ^[8]	Busy flag
M/S		Master or slave select
V _{CC}		Power
GND		Ground

- 6. A_{12L} on the CY7C025E/CY7C0251E.
- 7. A_{12R} on the CY7C025E/CY7C0251E.
- 8. BUSY is an output in master mode and an input in slave mode.

Architecture

The CY7C024E and CY7C025E/CY7C0251E consist of an array of 4K words of 16 bits each and 8K words of 16/18 bits each of dual-port RAM cells, I/O and address lines, and control signals (CE, OE, R/W). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, a BUSY pin is provided on each port. Two interrupt (INT) pins can be used for port-to-port communication. Two semaphore (SEM) control pins are used for allocating shared resources. With the M/S pin, the CY7C024E and CY7C025E/CY7C0251E can function as a master (BUSY pins are outputs) or as a slave (BUSY pins are inputs). The CY7C024E and CY7C025E/CY7C0251E have an automatic power-down feature controlled by CE. Each port is provided with its own output enable control (OE), which allows data to be read from the device.

Functional Overview

Write Operation

Data must be set up for a duration of t_{SD} before the rising edge of R/W to guarantee a valid write. A write operation is controlled by either the R/W pin (see Figure 7) or the CE pin (see Figure 8). Required inputs for non-contention operations are summarized in Table 1.

If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must occur before the data is read on the output; otherwise the data read is not deterministic. Data is valid on the port t_{DDD} after the data is presented on the other port.

Table 1. Non-Contending Read/Write

	Inputs Outputs			ıtputs	Onevetien			
CE	R/W	OE	UB	LB	SEM	I/O ₀ -I/O ₇ ^[9]	I/O ₈ -I/O ₁₅ ^[10]	- Operation
Н	Х	Х	Х	Х	Н	High Z	High Z	Deselected: power-down
Х	Х	Х	Н	Н	Н	High Z	High Z	Deselected: power-down
L	L	Х	L	Н	Н	High Z	Data in	Write to upper byte only
L	L	Х	Н	L	Н	Data in	High Z	Write to lower byte only
L	L	Х	L	L	Н	Data in	Data in	Write to both bytes
L	Н	L	L	Н	Н	High Z	Data out	Read upper byte only
L	Н	L	Н	L	Н	Data out	High Z	Read lower byte only
L	Н	L	L	L	Н	Data out	Data out	Read both bytes
Х	Х	Н	Х	Х	Х	High Z	High Z	Outputs disabled
Н	Н	L	Х	Х	L	Data out	Data out	Read data in semaphore flag
Х	Н	L	Н	Н	L	Data out	Data out	Read data in semaphore flag
Н		Х	Х	Х	L	Data in	Data in	Write D _{INO} into semaphore flag
Х		Х	Н	Н	L	Data in	Data in	Write D _{INO} into semaphore flag
L	Х	Х	L	Х	L			Not allowed
L	Х	Х	Х	L	L			Not allowed

^{9.} $I/O_0-I/O_8$ on the CY7C0251E. 10. $I/O_9-I/O_{17}$ on the CY7C0251E.

Read Operation

Interrupts

The upper two memory locations may be used for message passing. The highest memory location (FFF for the CY7C024E, 1FFF for the CY7C025E/CY7C0251E) is the mailbox for the right port and the second-highest memory location (FFE for the CY7C024E, 1FFE for the CY7C025E/CY7C0251E) is the mailbox for the left port. When one port writes to the other port's

mailbox, an interrupt is generated to the owner. The interrupt is reset when the owner reads the contents of the mailbox. The message is user-defined.

Each port can read the other port's mailbox without resetting the interrupt. The active state of the BUSY signal (to a port) prevents the port from setting the interrupt to the winning port. Also, an active BUSY to a port prevents that port from reading its own mailbox and thus resetting the interrupt to it.

If your application does not require message passing, do not connect the interrupt pin to the processor's interrupt request input pin.

The operation of the interrupts and their interaction with Busy are summarized in Table 2.

Table 2. Interrupt Operation Example (Assumes BUSY_L=BUSY_R=HIGH)^[11]

Function	Left Port				Right Port					
Function	R/W _L	CEL	OEL	A _{0L-11L}	INT _L	R/W _R	CER	OER	A _{0R-11R}	INT _R
Set right INT _R flag	L	L	Х	(1)FFF	Х	Х	Х	Х	Х	L ^[12]
Reset right INT _R flag	Х	Х	Х	Х	Х	Х	L	L	(1)FFF	H ^[13]
Set left INT _L flag	Х	Х	Х	Х	L[13]	L	L	Х	(1)FFE	Х
Reset left INT _L flag	Х	L	L	(1)FFE	H ^[12]	Х	Х	Х	Х	Х

^{11.} A_{0L-12L} and A_{0R-12R} , 1FFF/1FFE for the CY7C025E/CY7C0251E.

^{12.} If $\overline{\text{BUSY}}_{L} = L$, then no change.

^{13.} If $\overline{BUSY}_{R} = L$, then no change.

Busy

The CY7C024E and CY7C025E/CY7C0251E provide on-chip arbitration to resolve simultaneous memory location access (contention). If both ports' $\overline{\text{CE}}$ s are asserted and an address match occurs within t_{PS} of each other, the busy logic determines which port has access. If t_{PS} is violated, one port definitely gains $\overline{\text{permission}}$ to the location, but which one is not predictable. BUSY is asserted t_{BLA} after an address match or t_{BLC} after $\overline{\text{CE}}$ is taken LOW.

Master/Slave

A M/S pin is provided to expand the word width by configuring the device as either a master or a slave. The BUSY output of the master is connected to the BUSY input of the slave. This allows the device to interface to a master device with no external components. Writing to slave devices must be delayed until after the BUSY input has settled (t_{BLC} or t_{BLA}). Otherwise, the slave chip may begin a write cycle during a contention situation. When tied HIGH, the M/S pin allows the device to be used as a master and, therefore, the BUSY line is an output. BUSY can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7C024E and CY7C025E/CY7C0251E provide eight semaphore latches, which are separate from the dual-port memory locations. Semaphores are used to reserve resources that are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, SEM or OE must be deasserted for t_{SOP} before attempting to read the semaphore. The semaphore value is

available $t_{SWRD} + t_{DOE}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control of the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side succeeds in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.

Semaphores are accessed by asserting $\overline{\text{SEM}}$ LOW. The $\overline{\text{SEM}}$ pin functions as a chip select for the semaphore latches ($\overline{\text{CE}}$ must remain HIGH during $\overline{\text{SEM}}$ LOW). A₀₋₂ represents the semaphore address. $\overline{\text{OE}}$ and R/W are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.

When writing to the semaphore, only I/O_0 is used. If a zero is written to the left port of an available semaphore, a one appears at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore is set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port immediately owns the semaphore as soon as the left port releases it. Table 3 shows sample semaphore operations.

When reading a semaphore, all 16/18 data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within $t_{\rm SPS}$ of each other, the semaphore is definitely obtained by one side or the other, but there is no guarantee which side controls the semaphore.

Table 3. Semaphore Operation Example

Function	I/O ₀ -I/O _{15/17} Left	I/O ₀ –I/O _{15/17} Right	Status	
No action	1	1	Semaphore-free	
Left port writes 0 to semaphore	0	1	Left port has semaphore token	
Right port writes 0 to semaphore	0	1	No change. Right side has no write access to semaphore.	
Left port writes 1 to semaphore	1	0	Right port obtains semaphore token	
Left port writes 0 to semaphore	1	0	No change. Left port has no write access to semaphore	
Right port writes 1 to semaphore	0	1	Left port obtains semaphore token	
Left port writes 1 to semaphore	1	1	Semaphore-free	
Right port writes 0 to semaphore	1	0	Right port has semaphore token	
Right port writes 1 to semaphore	1	1	Semaphore-free	
Left port writes 0 to semaphore	0	1	Left port has semaphore token	
Left port writes 1 to semaphore	1	1	Semaphore-free	

Maximum Ratings

Exceeding maximum ratings^[14] may shorten the useful life of the device. User guidelines are not tested. Storage temperature-65 °C to +150 °C Ambient temperature with power applied-55 °C to +125 °C Supply voltage to ground potential-0.3 V to +7.0 V DC voltage applied to outputs in high Z state-0.5 V to +7.0 V

DC input voltage ^[15]	0.5 V to +7.0 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0 °C to +70 °C	5 V ± 10%
Industrial	–40 °C to +85 °C	5 V ± 10%

Electrical Characteristics

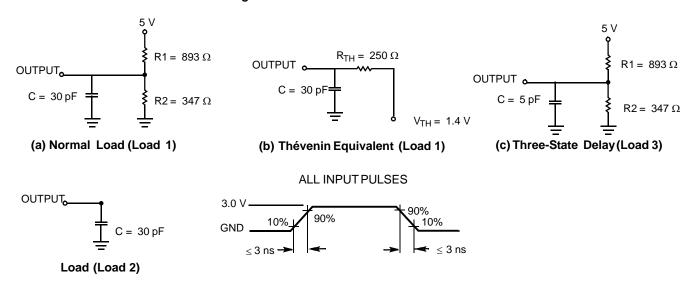
Over the Operating Range

Parameter	Description	Test Conditions			-15		-25			-55			Unit
Farameter	Description	rest Conditions			Тур	Max	Min	Тур	Max	Min	Тур	Max	Offic
V _{OH}	Output HIGH voltage	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	-	-	2.4	_	-	2.4	_	-	>
V _{OL}	Output LOW voltage	$V_{CC} = Min, I_{OL} = 4.0 \text{ mA}$		-	-	0.4	-	-	0.4	-	_	0.4	٧
V _{IH}	Input HIGH voltage			2.2	_	_	2.2	_	_	2.2	-	_	V
V _{IL}	Input LOW voltage			_	_	0.8	_	_	0.8	_	_	0.8	V
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$		-10	-	+10	-10	-	+10	-10	-	+10	μА
I _{OZ}	Output leakage current	Output disabled, $GND \le V_O \le V_{CC}$		-10	-	+10	-10	-	+10	-10	_	+10	μА
I _{CC}	Operating current	V _{CC} = Max, I _{OUT} = 0 mA,	Commercial	_	190	285	_	170	250	_	150	230	mA
		Outputs Disabled	Industrial	ı	215	305	ı	180	290	_	180	290	
I _{SB1}	Standby current	$\overline{\text{CE}}_{\text{L}}$ and $\overline{\text{CE}}_{\text{R}} \ge V_{\text{IH}}$, $f = f_{\text{MAX}}^{[16]}$	Commercial	ı	50	70	ı	40	60	_	20	50	mA
	(both ports TTL levels)	$f = f_{MAX}^{[10]}$	Industrial	-	65	95	-	55	80	_	55	80	
I _{SB2}	Standby current (one port TTL level)	\overline{CE}_L or $\overline{\overline{CE}}_R \ge V_{IH}$,	Commercial	_	120	180	_	100	150	_	75	135	mA
	(one port TTL level)	$f = f_{MAX}^{IIOJ}$	Industrial	_	135	205	_	120	175	_	120	175	
I _{SB3}	Standby current	Both Ports \overline{CE} and $\overline{CE}_R \ge$	Commercial	_	0.05	0.5	_	0.05	0.50	_	0.05	0.50	mA
	(both ports CMOS levels)	$V_{CC} - 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V}$ or $V_{IN} \le 0.2 \text{ V}, f = 0^{[16]}$	Industrial	_	0.05	0.5	_	0.05	0.50	-	0.05	0.50	
I _{SB4}	Standby current	One Port CE _L or	Commercial	_	110	160	_	90	130	_	70	120	mA
	(both ports CMOS levels)	$\begin{array}{l} CE_R \geq V_{CC} - \bar{0}.2 \text{ V,} \\ V_{IN} \geq V_{CC} - 0.2 \text{ V or } V_{IN} \leq 0.2 \text{ V,} \\ \text{Active Port Outputs, } f = f_{MAX}^{[16]} \end{array}$	Industrial	-	125	175	-	110	150	-	110	150	

^{14.} The voltage on any input or I/O pin cannot exceed the power pin during power-up.

^{15.} Pulse width < 20 ns.

^{16.} f_{MAX} = 1/t_{RC} = All inputs cycling at f = 1/t_{RC} (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3}.

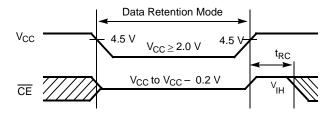


Capacitance

Parameter [17]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$	10	pF
C _{OUT}	Output capacitance	$V_{CC} = 5.0 \text{ V}$	10	pF

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms



Data Retention Mode

The CY7C024E is designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention:

- 1. Chip enable (\overline{CE}) must be held HIGH during data retention, within V_{CC} to $V_{CC} - 0.2$ V.
- 2. $\overline{\text{CE}}$ must be kept between V_{CC} 0.2 V and 70% of V_{CC} during the power up and power down transitions.
- 3. The RAM can begin operation $>t_{RC}$ after V_{CC} reaches the minimum operating voltage (4.5 V).

Data Retention Timing

Parameter	Test Conditions ^[18]	Max	Unit	
ICC _{DR1}	At VCC _{DR} = 2 V	1.5	mA	

17. Tested initially and after any design or process changes that may affect these parameters.

18. $\overline{CE} = V_{CC}$, $V_{in} = \text{GND}$ to V_{CC} , $T_A = 25^{\circ}\text{C}$. This parameter is guaranteed but not tested.

Switching Characteristics

Over the Operating Range

Parameter [19]	Description	-15		-25		-55		Unit
Parameter [19]	Description	Min	Max	Min	Max	Min	Max	Unit
Read Cycle			•	•		•	•	
t _{RC}	Read cycle time	15	_	25	_	55	_	ns
t _{AA}	Address to data valid	_	15	_	25	_	55	ns
t _{OHA}	Output hold from address change	3	_	3	_	3	_	ns
t _{ACE} ^[20]	CE LOW to data valid	_	15	_	25	_	55	ns
t _{DOE}	OE LOW to data valid	_	10	_	13	_	25	ns
t _{LZOE} [21, 22, 23]	OE low to low Z	3	_	3	_	3	_	ns
t _{HZOE} [21, 22, 23]	OE HIGH to high Z	_	10	_	15	_	25	ns
t _{LZCE} [21, 22, 23]	CE LOW to low Z	3	_	3	_	3	_	ns
t _{HZCE} ^[21, 22, 23]	CE HIGH to High Z	_	10	_	15	_	25	ns
t _{PU} ^[23]	CE LOW to power-up	0	_	0	_	0	_	ns
t _{PD} ^[23]	CE HIGH to power-down	_	15	_	25	_	55	ns
t _{ABE} ^[20]	Byte enable access time	_	15	_	25	_	55	ns
Write Cycle								
t _{WC}	Write cycle time	15	_	25	_	55	_	ns
t _{SCE} ^[20]	CE LOW to write end	12	_	20	_	35	_	ns
t _{AW}	Address setup to write end	12	_	20	_	35	_	ns
t _{HA}	Address hold from write end	0	_	0	_	0	_	ns
t _{SA} ^[24]	Address setup to write start	0	_	0	_	0	_	ns
t _{PWE}	Write pulse width	12	_	20	_	35	_	ns
t _{SD}	Data setup to write end	10	_	15	_	20	_	ns
t _{HD}	Data hold from write end	0	_	0	-	0	_	ns
t _{HZWE} [25, 26]	R/\overline{W} LOW to high Z	_	10	_	15	_	25	ns
t _{LZWE} [25, 26]	R/W HIGH to low Z	3	_	3	-	3	_	ns
t _{WDD} ^[27]	Write pulse to data delay	_	30	_	50	_	70	ns
t _{DDD} ^[27]	Write data valid to read data valid		25	-	35	_	45	ns

Notes

19. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OV}I_{OH} and 30 pF load capacitance.

20. To access RAM, CE=L, UB=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire t_{SCE} time.

21. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE}.

22. Test conditions used are Load 3.

23. This parameter is guaranteed but not tested.

24. To access RAM, CE=L, UB=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire t_{SCE} time.

25. Test conditions used are Load 3.

^{25.} Test conditions used are Load 3.

^{26.} This parameter is guaranteed but not tested.

27. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Figure 11 on page 16.

Switching Characteristics (continued)

Over the Operating Range

Parameter [19]	Description	-15		-25		-55		I Im!4
Parameter (**)	Description	Min	Min Max		Min Max		Max	unit V
Busy Timing ^{[2}	8]							
t _{BLA}	BUSY LOW from Address Match	_	15	_	20	_	45	ns
t _{BHA}	BUSY HIGH from Address Mismatch	_	15	_	20	_	40	ns
t _{BLC}	BUSY LOW from CE LOW	_	15	_	20	_	40	ns
t _{BHC}	BUSY HIGH from CE HIGH	_	15	_	20	_	35	ns
t _{PS}	Port Setup for Priority	5	_	5	_	5	-	ns
t _{WB}	R/W HIGH after BUSY (Slave)	0	_	0	_	0	-	ns
t _{WH}	R/W HIGH after BUSY HIGH (Slave)	13	_	20	_	40	-	ns
t _{BDD} ^[29]	BUSY HIGH to Data Valid	_	Note 29		Note 29		Note 29	ns
Interrupt Timi	ng ^[28]							
t _{INS}	INT Set Time	_	15	_	20	_	30	ns
t _{INR}	INT Reset Time	_	15	-	20	_	30	ns
Semaphore Ti	ming							
t _{SOP}	SEM Flag Update Pulse (OE or SEM)	10	_	12	_	20	_	ns
t _{SWRD}	SEM Flag Write to Read Time 5 - 10 - 15		15	-	ns			
t _{SPS}	SEM Flag Contention Window	w 5 – 10 – 15		-	ns			
t _{SAA}	SEM Address Access Time – 15 25		25	_	55	ns		

Notes28. Test conditions used are Load 2.
29. t_{BDD} is a calculated parameter and is the greater of $t_{WDD}-t_{PWE}$ (actual) or $t_{DDD}-t_{SD}$ (actual).

Switching Waveforms

Figure 4. Read Cycle No. 1 (Either Port Address Access) [30, 31, 32]

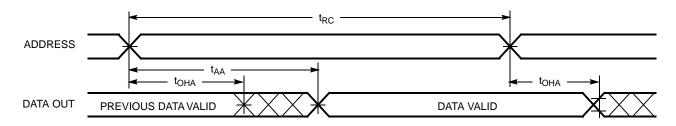


Figure 5. Read Cycle No. 2 (Either Port CE/OE Access) [30, 33, 34]

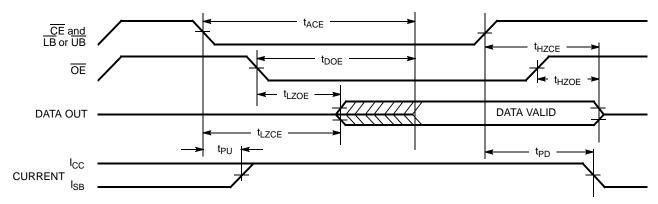
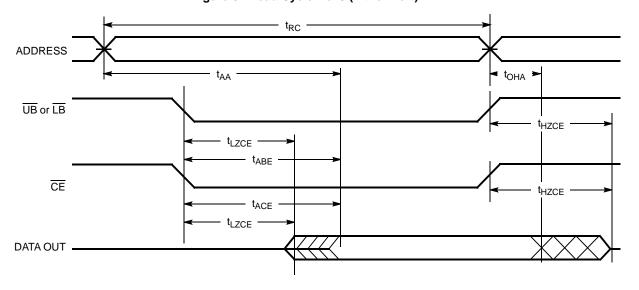



Figure 6. Read Cycle No. 3 (Either Port) $^{[30,\ 32,\ 33,\ 34]}$

- 30. R/W is HIGH for read cycles.
- 31. <u>Device</u> is continuously selected $\overline{CE} = V_{IL}$ and \overline{UB} or $\overline{LB} = V_{IL}$. This waveform cannot be used for semaphore reads.

- 31. Device is continuously selected of E = V_{IL} and S = S = E = V_{IL}

 32. OE = V_{IL}

 33. Address valid prior to or coincident with CE transition LOW.

 34. To access RAM, CE = V_{IL}, UB or LB = V_{IL}, SEM = V_{IH}. To access semaphore, CE = V_{IH}, SEM = V_{IL}.

Figure 7. Write Cycle No. 1 (R/W Controlled Timing) [35, 36, 37, 38]

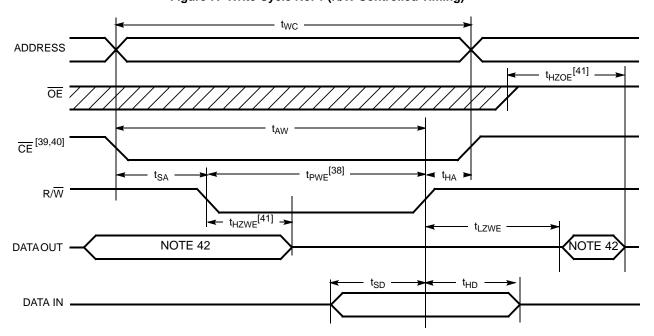
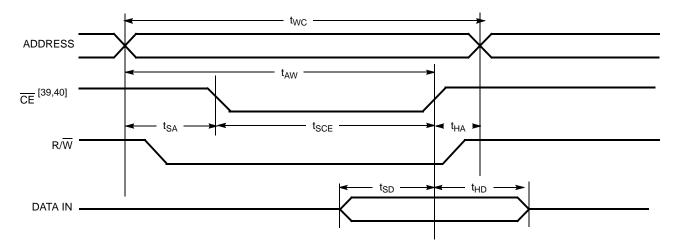



Figure 8. Write Cycle No. 2 (CE Controlled Timing) [35, 36, 37, 43]

- Notes
 35. R/W must be HIGH during all address transitions.
 36. A write occurs during the overlap (t_{SCE} or t_{PWE}) of a LOW CE or SEM and a LOW UB or LB.
 37. t_{HA} is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.
 38. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{PWE} or (t_{HZWE} + t_{SD}) to allow the I/O drivers to turn off and data to be placed on the bus for the required t_{SD}. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t_{PAME}. be placed on the bus for the required t_{SD}. If OE is HIGH during an K/W controlled write cycle, this requirement does not apply and the write pulse of as the specified t_{PWE}.

 39. To access RAM, CE = V_{II}, SEM = V_{IH}.

 40. To access upper byte, CE = V_{II}, UB = V_{II}, SEM = V_{IH}.

 To access lower byte, CE = V_{II}, LB = V_{II}, SEM = V_{IH}.

 41. Transition is measured ±500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100% tested.

 42. During this period, the I/O pins are in the output state, and input signals must not be applied.

 43. If the CE or SEM LOW transition occurs simultaneously with or after the RW LOW transition, the outputs remain in the high impedance state.

Figure 9. Semaphore Read After Write Timing, Either Side [44]

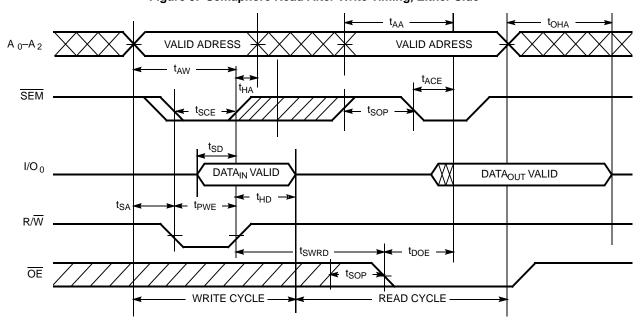
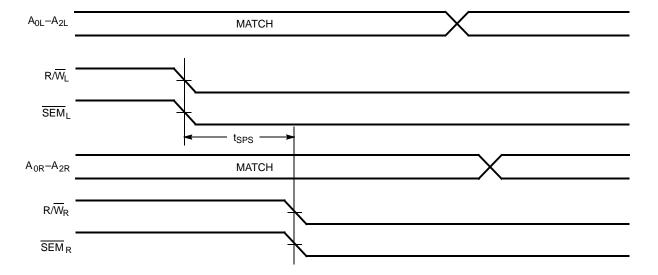



Figure 10. Timing Diagram of Semaphore Contention $^{[45,46,47]}$

- 44. CE = HIGH for the duration of the above timing (both write and read cycle).

 45. I/O_{QR} = I/O_{QL} = LOW (request semaphore); CE_R = CE_L = HIGH.

 46. Semaphores are reset (available to both ports) at cycle start.

 47. If t_{SPS} is violated, the semaphore is definitely obtained by one side or the other, but which side gets the semaphore is unpredictable.

Figure 11. Timing Diagram of Read with BUSY (M/S = HIGH) [48]

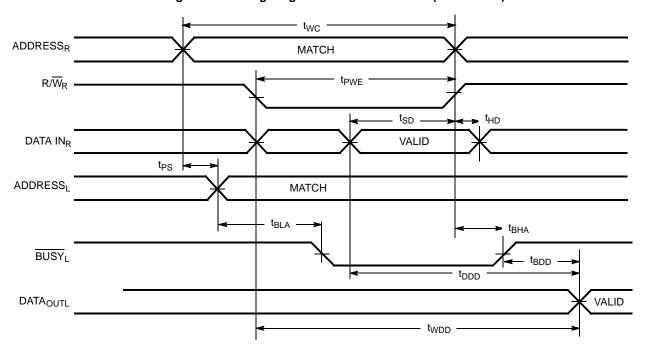


Figure 12. Write Timing with Busy Input ($M/\overline{S} = LOW$)

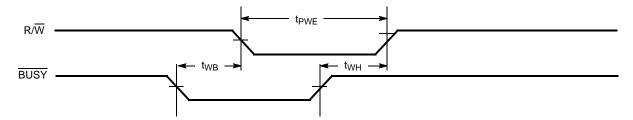


Figure 13. Busy Timing Diagram No. 1 ($\overline{\text{CE}}$ Arbitration) [49]

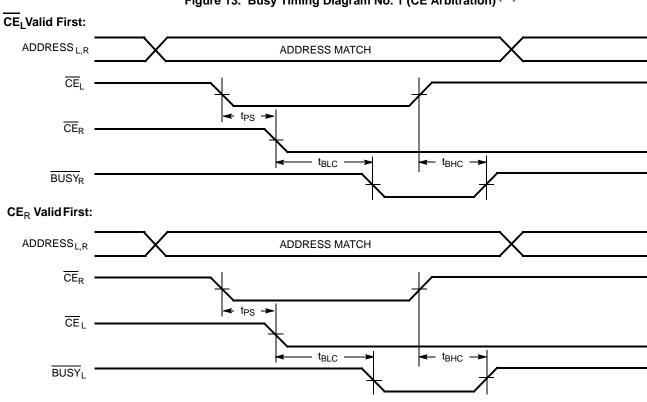
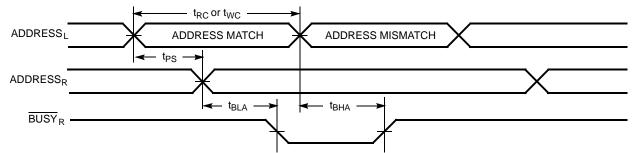
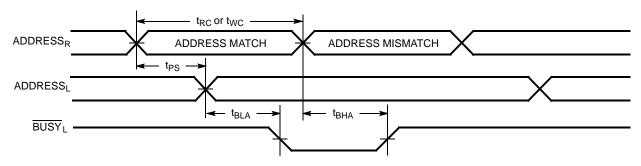
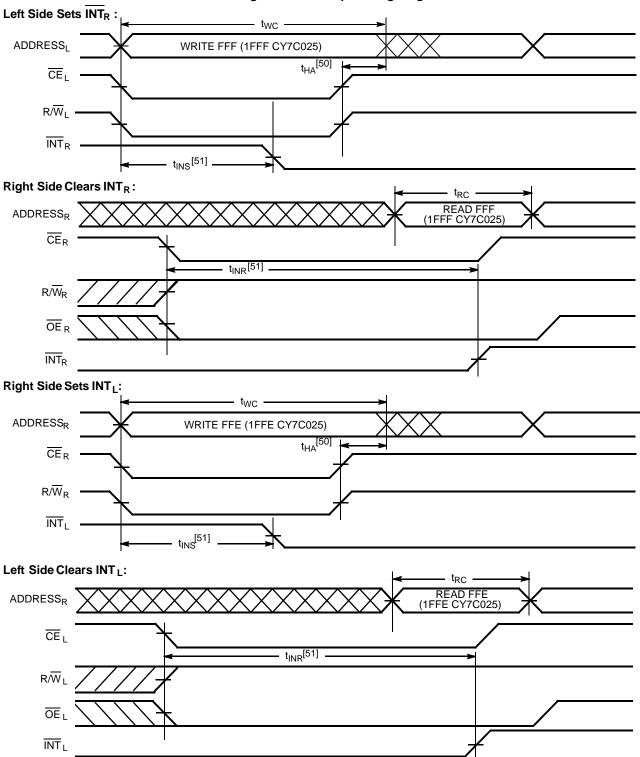




Figure 14. Busy Timing Diagram No. 2 (Address Arbitration) [49]

Left Address Valid First:

Right Address Valid First:



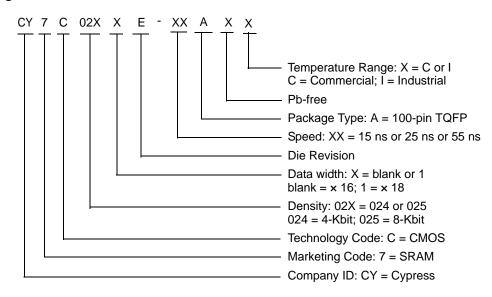
Note

49. If t_{PS} is violated, the busy signal is asserted on one side or the other, but there is no guarantee to which side BUSY is asserted.

Figure 15. Interrupt Timing Diagrams

^{50.} t_{HA} depends on which enable pin $(\overline{CE}_L \text{ or } \underline{RW}_L)$ is deasserted first. 51. t_{INS} or t_{INR} depends on which enable pin $(\overline{CE}_L \text{ or } RW_L)$ is asserted last.

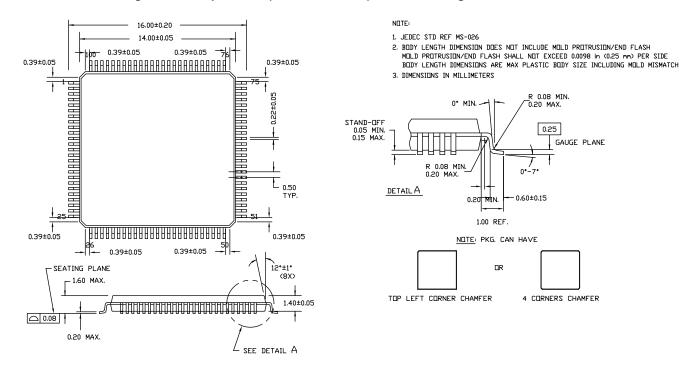
Ordering Information


4K × 16 Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C024E-15AXC	A100	100-pin TQFP (Pb-free)	Commercial
25	CY7C024E-25AXC	A100	100-pin TQFP (Pb-free)	Commercial
	CY7C024E-25AXI	A100	100-pin TQFP (Pb-free)	Industrial
55	CY7C024E-55AXC	A100	100-pin TQFP (Pb-free)	Commercial

8K × 16 Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range	
25	CY7C025E-25AXC	A100	100-pin TQFP (Pb-free)	Commercial	
	CY7C025E-25AXI	A100	100-pin TQFP (Pb-free)	Industrial	


Ordering Code Definitions

Package Diagrams

Figure 16. 100-pin TQFP (14 × 14 × 1.4 mm) A100SA Package Outline, 51-85048

51-85048 *J

Acronyms

Acronym Description			
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
TQFP	Thin Quad Flat Pack		

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
mA	milliampere
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	2975554	RAME	07/09/2010	New data sheet.
*A	3056347	ADMU	10/28/2010	Updated Selection Guide: Changed Typical Operating current (mA) from 180 mA to 170 mA (corresponding to speed bin -25). Changed Typical standby current for I _{SB1} (mA) from 45 mA to 40 mA (corresponding to speed bin -25). Changed Typical Operating current (mA) from 180 mA to 150 mA (corresponding to speed bin -55). Changed Typical Standby current for I _{SB1} (mA) from 45 mA to 20 mA (corresponding to speed bin -55). Updated Electrical Characteristics: Separated values corresponding to speed bins -25 and -55 into two separa columns. Changed typical value of I _{CC} parameter from 180 mA to 170 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed maximum value of I _{CC} parameter from 275 mA to 250 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed typical value of I _{CC} parameter from 180 mA to 150 mA (corresponding to speed bin -55 and test condition "Commercial"). Changed typical value of I _{CC} parameter from 275 mA to 230 mA (corresponding to speed bin -55 and test condition "Commercial"). Changed maximum value of I _{SB1} parameter from 45 mA to 40 mA (corresponding to speed bin -55 and test condition "Commercial"). Changed typical value of I _{SB1} parameter from 45 mA to 40 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed maximum value of I _{SB1} parameter from 65 mA to 50 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed typical value of I _{SB1} parameter from 65 mA to 50 mA (corresponding to speed bin -55 and test condition "Commercial"). Changed maximum value of I _{SB2} parameter from 65 mA to 50 mA (corresponding to speed bin -55 and test condition "Commercial"). Changed maximum value of I _{SB2} parameter from 10 mA to 100 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed typical value of I _{SB2} parameter from 100 mA to 70 mA (corresponding to speed bin -25 and test condition "Commercial"). Changed maximum value of I _{SB4} parameter from 100 mA to 90 mA (corresponding to speed bin -55
*B	3247559	ADMU	05/04/2011	Updated Electrical Characteristics: Removed minimum value of V _{IL} parameter (for all speed bins).

Document History Page (continued)

ocument	ocument Number: 001-62932					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
*C	3864478	ADMU	01/10/2013	Updated Ordering Information: Updated part numbers. Updated Package Diagrams: spec 51-85048 – Changed revision from *E to *G.		
*D	4075480	ADMU	07/24/2013	Updated Logic Block Diagram. Updated Pin Configurations. Updated to new template. Completing Sunset Review.		
*E	4093991	ADMU	08/13/2013	Updated Package Diagrams: spec 51-85048 – Changed revision from *G to *H. Added Units of Measure.		
*F	4447806	ADMU	07/18/2014	Removed CY7C0241E related information in all instances across the document. Updated Ordering Information: Updated part numbers. Updated Package Diagrams: spec 51-85048 – Changed revision from *H to *I.		
*G	4580426	ADMU	11/24/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.		
*H	5856565	VINI	08/17/2017	Updated Ordering Information: Updated part numbers. Updated Package Diagrams: spec 51-85048 – Changed revision from *I to *J. Updated to new template. Completing Sunset Review.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic **Touch Sensing** cypress.com/touch

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2010–2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended of or the operation of weapons, weapons systems, nuclear installations, life-support devices or systems of the medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-62932 Rev. *H Revised August 17, 2017 Page 24 of 24