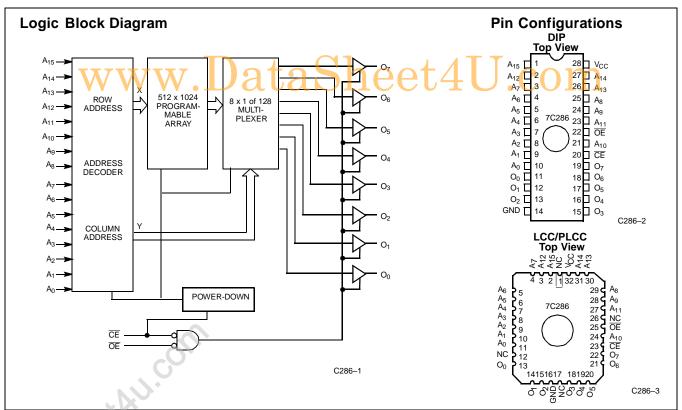


Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
 - —t_{AA} = 45 ns
- · Low power
 - 120 mA active
 - -40 mA standby
- EPROM technology, 100%programmable
- 5V ±10% V_{CC}, commercial and military
- TTL-compatible I/O
- Capable of withstanding >2001V static discharge

Functional Description

The CY7C286 is a high-performance 64K x 8 CMOS PROM. The CY7C286 is configured in the JEDEC-standard 512K EPROM pinout and is available in a 28-pin, 600-mil package and a 32-pin PLCC package. Power consumption is 120 mA


64K x 8 Reprogrammable PROM

in the active mode and 40 mA in the standby mode. Access time is 45 ns.

The CY7C286 is available in a cerDIP package equipped with an erasure window to provide reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C286 offers the advantage of low power, superior performance, and programming yield. The EPROM cell requires only 12.5V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested with each cell being programmed, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

Reading the CY7C286 is accomplished by placing active LOW signals on the OE and CE pins. The contents of the memory location addressed by the address lines (A₀ – A₁₅) will become available on the output lines $(O_0 - O_7)$.

For a 64K x 8 PROM with registered outputs, see the CY7C287.

Selection Guide

		7C286-45	7C286-50	7C286-60	7C286-70	7C286-80
Maximum Access Time (ns)		45	50	60	70	80
Maximum Operating Current (mA)	Com'l	120	120	120	90	
	Mil			150	120	120
Maximum Standby Current (mA)	Com'l	40	40	40	30	
	Mil			50	40	40

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C Ambient Temperature with

Power Applied–55°C to +125°C Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs

DC Program Voltage13.0V

UV Exposure	7258 Wsec/cm ²
Static Discharge Voltage(per MIL–STD–883, Method 3015.2)	>2001V
Latch-Up Current	>200 mA

Operating Range

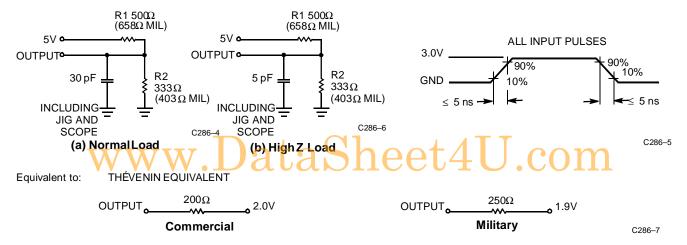
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial ^[1]	-40°C to +85°C	5V ± 10%
Military ^[2]	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3, 4]

				7C286-45, 5		50 7C286-60		7C286-70, 80		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -2.0 \text{ m}$	nΑ	2.4	4 -	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$ $V_{CC} = Min., I_{OL} = 6.0 \text{ mA}$		et	0.4	J.	0.4	m	0.4	V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logica Voltage for Inputs		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Input LOW Voltage	Guaranteed Input Logica Voltage for Inputs	al LOW		0.8		0.8		0.8	V
I _{IX}	Input Load Current	$GND \le V_{IN} \le V_{CC}$		-10	+10	-10	+10	-10	+10	μΑ
V_{CD}	Input Diode Clamp Voltage					No	te 4			
I _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$	-40	+40	-40	+40	-40	+40	μΑ	
I _{OS}	Output Short Circuit Current	$V_{CC} = Max., V_{OUT} = GND^{[1]}$	5]	-20	-90	-20	-90	-20	-90	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		120		120		90	mA
	Supply Current	$I_{OUT} = 0 \text{ mA}$	Mil				150		120	
I _{SB}	Standby Supply Current	$V_{CC} = Max., \overline{CE} = HIGH$	Com'l		40		40		30	mA
			Mil				50		40	
V _{PP}	Programming Supply Voltage			12	13	12	13	12	13	V
I _{PP}	Programming Supply Current				50		50		50	mA
V _{IHP}	Input HIGH Programming Voltage			3.0		3.0		3.0		V
V _{ILP}	Input LOW Programming Voltage				0.4		0.4		0.4	V

Electrical Characteristics Over the Operating Range $^{[3,\ 4]}$

			7C286–45, 50 7C		7C28	36–60	7C286-	7C286-70, 80	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit

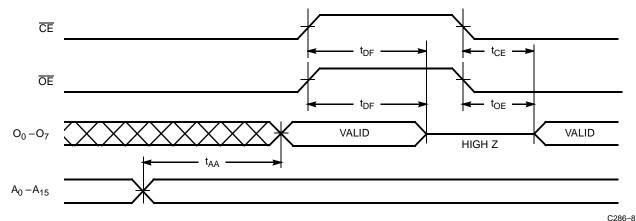

Notes:

- Contact a Cypress representative for industrial temperature range specifications. T_A is the "instant on" case temperature. See the last page of this specification for Group A subgroup testing information. See Introduction to CMOS PROMs for general information on testing. Short circuit test should not exceed 30 seconds.

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveform^[4]



Switching Characteristics Over the Operating Range^[3,4]

		7C28	86–45	7C28	6-50	7C28	36–60	7C28	36–70	7C28	86–80	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{AA}	Address Access Time		45		50		60		70		80	ns
t _{CE}	Output Valid from CE		45		50		60		70		80	ns
t _{OE}	Output Valid from OE		15		18		20		25		25	ns
t _{DF}	Output Three-State from CE/OE		15		18		20		25		25	ns
t _{PU}	Chip Enable to Power-Up	0		0		0		0		0		ns
t _{PD}	Chip Disable to Power-Down		40		40		50		60		60	ns

Switching Waveform

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C286 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes. The CY7C286 needs to

be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. CY7C286 Mode Selection.

	Pin ^[6]					
	PGM	LATCH	VFY	V _{PP}	D ₀ – D ₇	
Mode: Read or Output Disable	A ₁₀	A ₁₁	CE	ŌĒ	O ₇ - O ₀	
Read	A ₁₀	A ₁₁	V _{IL}	V _{IL}	O ₇ – O ₀	
Output Disable	A ₁₀	A ₁₁	Х	V _{IH}	High Z	
Output Disable & Power Down	A ₁₀	A ₁₁	V _{IH}	Х	High Z	
Mode: Other	PGM	LATCH	VFY	V _{PP}	D ₇ – D ₀	
Program	V _{ILP}	V _{ILP}	V _{IHP}	V _{PP}	$D_7 - D_0$	
Program Verify	V _{IHP}	V _{ILP}	V _{ILP}	V _{PP}	O ₇ – O ₀	
Program Inhibit	V _{IHP}	V _{ILP}	V _{IHP}	V _{PP}	High Z	
Blank Check	V _{IHP}	V _{ILP}	V_{ILP}	V _{PP}	Zeros	

Note:

6. X can be V_{IL} or V_{IH}.

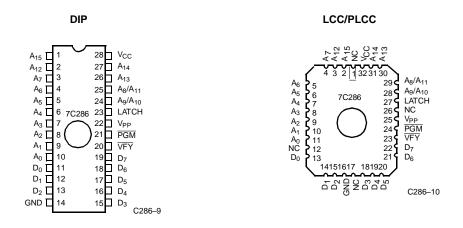


Figure 1. Programming Pinouts.

Ordering Information^[7]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY7C286-45JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C286-45PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C286-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
50	CY7C286-50JC	J65	32-Lead Plastic Leaded Chip Carrier -	Commercial
	CY7C286-50PC	P15	28-Lead (600-Mil) Molded DIP	nm (
	CY7C286-50WC	W16	28-Lead (600-Mil) Windowed CerDIP	
60	CY7C286-60JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C286-60PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C286-60WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C286-60DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C286-60LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C286-60QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C286-60WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
70	CY7C286-70JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C286-70PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C286-70WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C286-70DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C286-70LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C286-70QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C286-70WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
80	CY7C286-80WMB	W16	28-Lead (600-Mil) Windowed CerDIP Military	
	CY7C286-80QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	

Notes

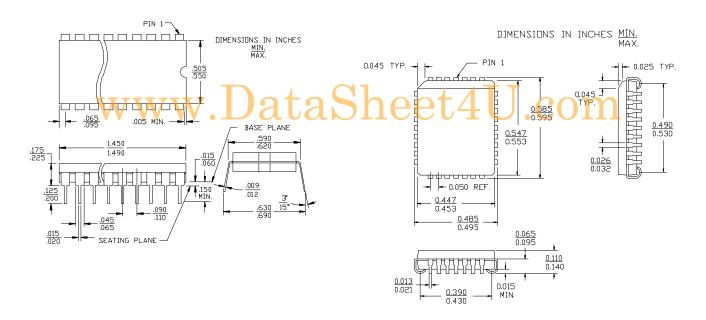
^{7.} Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB}	1, 2, 3

Package Diagrams

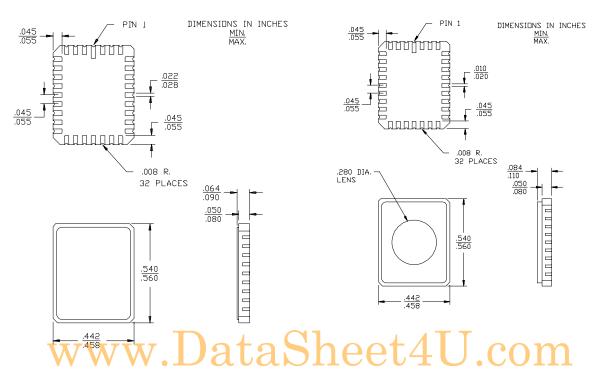

28-Lead (600-Mil) CerDIP D16MIL-STD-1835 D-10 Config.A

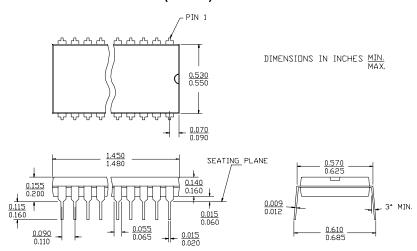
Switching Characteristics

Parameter	Subgroups
t _{AA}	7, 8, 9, 10, 11
t _{CE}	7, 8, 9, 10, 11
t _{OE}	7, 8, 9, 10, 11

Document #: 38-00103-H

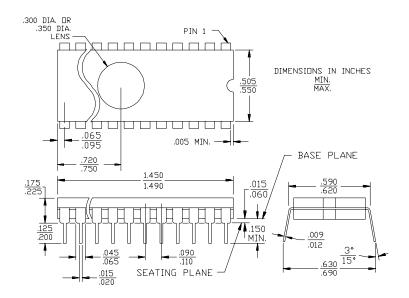
32-Lead Plastic Leaded Chip Carrier J65




Package Diagrams (Continued)

32-Pin Rectangular Leadless Chip Carrier L55 MIL-STD-1835 C-12

32-Pin Windowed Rectangular Leadless Chip Carrier Q55 MIL-STD-1835 C-12


28-Lead (600-Mil) Molded DIP P15

Package Diagrams (Continued)

28-Lead (600-Mil) Windowed CerDIP W16 MIL-STD-1835 D-10 Config.A

www.DataSheet4U.com