

Rectifiers

D2601 Series

1-A, 50-to-800-V Fast-Recovery Silicon Rectifiers

General-Purpose Types for Medium-Current Applications

Features:

- Fast reverse-recovery time (t_{rr}) 0.5 µs max. (I_{FM} = 20 A peak see test circuit Fig. 13)
 - 0.2 μ s max. (I_F = 1 A, I_{RM} = 2 A max., see test circuit Fig. 14)
- Low overshoot current
- Low forward-voltage drop
- Low-thermal-resistance hermetic package

Voltage	50 V	100 V	200 V	400 V	600 V	800 V
Package						
DO-26	D2601F	D2601A	D2601B	D2601D	D2601M	D2601N
	-	_	(TA7892)	(TA7893)	(TA7894)	(TA7895)

Numbers in parentheses (e.g. TA7892) are former RCA-Dev. Type numbers

RCA-D2601-series rectifiers are silicon diffused-junctiontypes in an axial-lead hermetic package. They differ only in their voltage ratings.

These devices feature fast recovery times (0.5 μ s max. from 20 A peak) without the "snap" type of turn-off which could result in the generation of transients.

Types D2601A, B, D, F, M, and N are intended for use in high-speed inverters, choppers, high-frequency rectifiers, "free-wheeling" diode circuits, and other high-frequency applications.

MAXIMUM RTAINGS, Absolute-Maximum Values:

		D2601F	D2601A	D2601B	D2601D	D2601M	D2601N	
REVERSE VOLTAGE:								
REPETITIVE PEAK	V _{BBM}	50	100	200	400	600	800	٧
NON-REPETITIVE PEAK	V _{RSM}	100	200	300	500	700	1000	٧
FORWARD CURRENT:								
Conduction angle = 180°, half-sine-wave								
RMS	IF(RMS)				1.5			Α
Average	l _o				1			Α
PEAK-SURGE (NON-REPETITIVE)								
CURRENT:								
At junction temperature (T _J) = 150°C								
For one-half cycle of applied voltage,					0=			
60 Hz (8.3 ms)					35			Α
PEAK (REPETITIVE) CURRENT		-		366 1	ig. 2 ———			
TEMPERATURE RANGE:		-			6			Δ
Storage	T _{sta}				to 165			°c
Operating (Junction)	T,			40	to 150			°c
LEAD TEMPERATURE (During Soldering): At a distance of 1/8 in. (3.17 mm) from	TL							
case for 10 s max					225			°c
								,

At lead temperature of 100°C (measured at point of anode lead 1/8 in. (3.17 mm) from the case).

ELECTRICAL CHARACTERISTICS

	SYMBOL	LIMITS		UNITS
CHARACTERISTIC		ALL TYPES		
		MIN.	15 250 Fig. 9 1.9 0.5 0.2	
Reverse Current:				
Static				1
For V _{RRM} = max. rated value, I _F = O, T _J = 25°C	IRM	-	15	μΑ
$T_J = 100^{\circ}C \dots$,	_	250	ı
Dynamic		See I	Fig. 9	
Instantaneous Forward Voltage Drop:				
At i _F = 4 A, T _J = 25°C (See Fig. 3)	٧F	-	1.9	V
Reverse Recovery Time:				
For circuit shown in Fig. 13, at I _{FM} = 20 A,				
$-\text{di}_F/\text{dt} = -20 \text{ A}/\mu\text{s}$, plus duration = 2.8 μ s,				Į.
T _C = 25°C	t _{rr}	-	0.5	μs
For circuit shown in Fig. 14, at I _F = 1 A,				
I _{RM} = 2 max., T _C = 25°C			0.2	
Thermal Resistance (Junction-to-Lead)	Rejl	_	45	°C/W

Measured at point on anode lead 1/8 in. (3.17 mm) from case

Fig. 1 - Average forward-power dissipation vs. lead temperature.

Fig. 3 - Forward-voltage drop vs. forward current.

Fig. 2 — Peak-surge (non-repetitive) forward current vs. surge-current duration.

Fig. 4 — Average forward power dissipation as a function of peak current and duty factor for units with typical forward voltage drop.

Fig. 5 — Average forward power dissipation as a function of peak current and duty factor for units with maximum forward voltage drop.

Fig. 7 — Average forward power dissipation as a function of peak current and duty factor for units with maximum forward voltage drop.

Fig. 9 - Reverse-recovery current vs. lead temperature.

Fig. 6 — Average forward power dissipation as a function of peak current and duty factor for units with typical forward voltage drop.

Fig. 8 — Typical variation of reverse-recovery time with lead temperature.

Fig. 10 — Peak reverse-recovery current vs. rate of descent of forward current.

Fig. 11 — Peak reverse-recovery current vs. rate of descent of forward current.

Fig. 12 — Reverse-recovered charge vs. rate of descent of forward current.

Fig. 13 - Test circuit (pulsed sine wave) for measurement of reverse-recovery time.

Fig. 14 - Test circuit (pulsed dc) for measurement of reverse-recovery time.