DATA SHEET

μ**PD78363A,78365A,78366A,78368A**

16/8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

EC

 μ PD78366A is provided with a high-speed, high-performance CPU and powerful operation functions. Unlike the existing μ PD78328, μ PD78366A is also provided with a high-resolution PWM signal output function which substantially contributes to improving the performance of the inverter control.

A PROM model, μ PD78P368A, is also available.

Detailed functions, etc. are described in the following user's manual. Be sure to read the manual to design systems.

 μ PD78366A User's Manual Hardware: U10205E

μPD78356 User's Manual : U12117E

FEATURES

- Internal 16-bit architecture, external 8-bit data bus
- High-speed processing by pipeline control method and high- speed operating clock
- Minimum instruction execution time: 125 ns (internal clock: at 16 MHz, external clock: 8 MHz)
- Real-time pulse unit for inverter control
- 10-bit resolution A/D converter: 8 channels
- 8-/9-/10-/12-bit resolution variable PWM signal output function: 2 channels
- Powerful serial interface: 2 channels
- Internal memory:
 - ROM: none (µPD78365A)

24K bytes (μPD78363A)

32K bytes (µPD78366A)

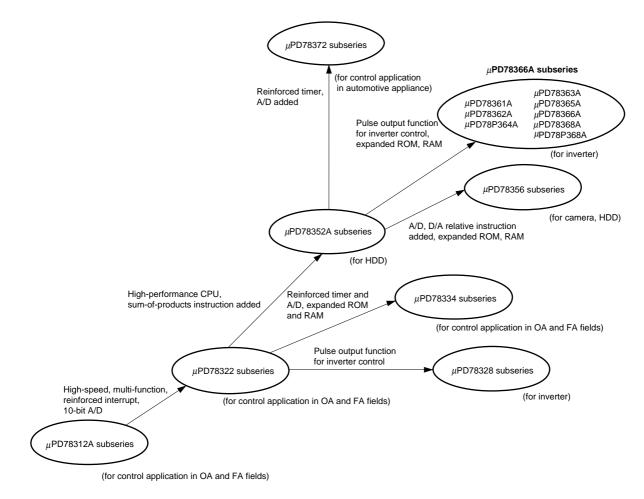
48K bytes (µPD78368A)

RAM: 768 bytes (μPD78363A) 2K bytes (μPD78365A, 78366A, 78368A)

APPLICATION EXAMPLES

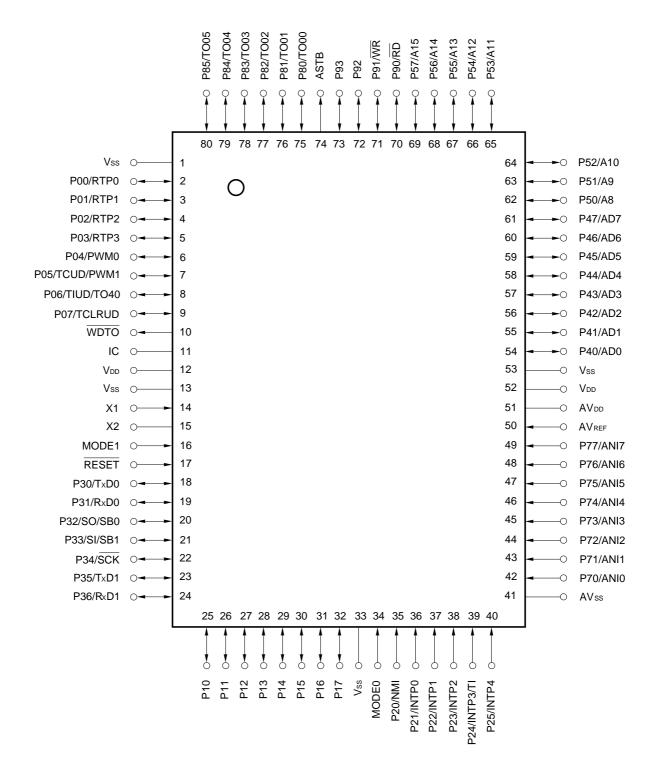
- Inverter air conditioner
- Factory automation fields, such as industrial robots and machine tools.

ORDERING INFORMATION


Part Number	Package	Internal ROM
μPD78363AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μ PD78365AGF-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	None
μ PD78366AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μPD78368AGF-×××-3B9	80-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM

Remark ××× indicates a ROM code suffix.

Unless otherwise specified, the functions and performances of the µPD78366 are described throughout this document.


The information in this document is subject to change without notice.

78K/III Series Product Development

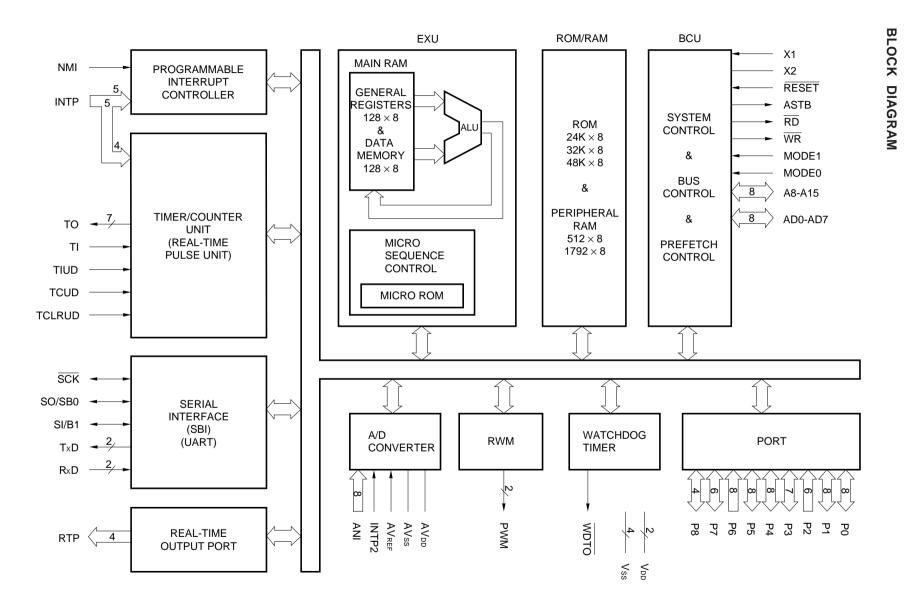
PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP (14 × 20 mm)
- μPD78363AGF-xxx-3B9, 78365AGF-3B9, 78366AGF-xxx-3B9, 78368AGF-xxx-3B9

Caution Connect the IC pin directly to Vss.

Remark ××× indicates a ROM code suffix

P00-P07	: Port0
P10-P17	: Port1
P20-P25	: Port2
P30-P36	: Port3
P40-P47	: Port4
P50-P57	: Port5
P70-P77	: Port7
P80-P85	: Port8
P90-P93	: Port9
RTP0-RTP3	: Real-time Port
NMI	: Nonmaskable Interrupt
INTP0-INTP4	: Interrupt From Peripherals
TO00-TO05, TO04	: Timer Output
ТІ	: Timer Input
TIUD	: Timer Input Up Down Counter
TCUD	: Timer Control Up Down Counter
TCLRUD	: Timer Clear Up Down Counter
ANIO-ANI7	: Analog Input
TxD0, TxD1	: Transmit Data
R×D0, R×D1	: Receive Data
SI	: Serial Input
SO	: Serial Output
SB0, SB1	: Serial Bus
SCK	: Serial Clock
PWM0, PWM1	: Pulse Width Modulation Output
WDTO	: Watchdog Timer Ouput
MODE0, MODE1	: Mode
AD0-AD7	: Address/Data Bus
A8-A15	: Address Bus
ASTB	: Address Strobe
RD	: Read Strobe
WR	: Write Strobe
RESET	: Reset
X1, X2	: Crystal
AVdd	: Analog VDD
AVss	: Analog Vss
AVREF	: Analog Reference Voltage
Vdd	: Power Supply
Vss	: Ground
IC	: Internally Connected


FUNCTIONAL OUTLINE

Item Prod	uct name	μPD78363A	μPD78365A	μPD78366A	μPD78368A		
Minimum instruction execution time	1	125 ns (internal cloci	k: 16 MHz, external clo	ock: 8 MHz)			
Internal memory	ROM	24K bytes	None	32K bytes 48K bytes			
	RAM	768 bytes	2K bytes	1	1		
Memory space		64K bytes (externally	/ expandable)				
General-purpose re	gisters	8 bits \times 16 \times 8 banks	3				
Number of basic ins	structions	115					
Instruction set		Bit manipulationString	ion (16 bits $ imes$ 16 bits, 3 peration (16 bits $ imes$ 16				
I/O lines	Input	14 (of which 8 are sh	nared with analog input	t)			
	I/O	49	31	49			
Real-time pulse unit		Mode 0, set-r Mode 1, buffe 16-bit timer × 1 16-bit compare 16-bit timer × 1 16-bit capture re 16-bit capture re 16-bit timer × 1 16-bit capture re 16-bit capture re 16-bit capture re 16-bit capture re 16-bit compare	register \times 4 at mode can be selecte eset output: 6 channels register \times 1 egister \times 1 ompare register \times 1 egister \times 2 ompare register \times 1	ls			
Real-time output po	ort	Pulse outputs associated with real-time pulse unit: 4 lines					
PWM unit		8-/9-/10-/12-bit resolution variable PWM output: 2 channels					
A/D converter		10-bit resolution, 8 channels					
Serial interface		Dedicated baud rate generator UART (w/pin selection function): 1 channel Clocked serial interface/SBI: 1 channel					
Interrupt function		 External: 6, internal: 14 (of which 2 are multiplexed with external) 4 priority levels can be specified through software 3 types of interrupt processing modes selectable (vectored interrupt, macro service, and context switching) 					
Package		80-pin plastic QFP (1	14 × 20 mm)				
Others		Watchdog timerStandby function (HALT and STOP mode	25)			

DIFFERENCES BETWEEN μ PD78363A, 78365A, 78366A, AND 78368A

Item	t name	μPD78363A	μPD78366A	μPD78368A	μPD78365A		
Internal ROM	ROM	24K bytes	32K bytes	48K bytes	None		
Internal ROM	RAM	786 bytes	2K bytes				
Input		14 (of which 8	are multiplexed	with analog inp	ut)		
I/O lines	I/O	49			31		
Port 4 (P40-P47)		of 8 bits. In ex mode, this por	nput or output n aternal memory t functions as m ous (AD0-AD7).	expansion	Always functions as multiplexed address/ data bus (AD0-AD7).		
Port 5 (P50-P57)		Can be set in input or output mode in 1-bit units. In external memory expansion mode, this port functions as address bus (A8-A15).			Always functions as address bus (A8-A15)		
Port 9 (P90-P9:	3)	Can be set in input or output mode in 1-bit units. In external memory expansion mode, P90 outputs RD strobe signal, and P91 outputs WR strobe signal.			P90 always functions as RD strobe signal output pin, and P91 always functions as WR strobe signal output pin. P92 and P93 function as I/O port lines.		
Memory expansion mode register (MM)		Sets port 4 in input or output mode in units of 8 bits. In external memory expansion mode, sets memory expansion width of ports 4 and 5.			Always fixed to external memory expansion mode.		
Port 5 mode register (PM5)		Sets port 5 in input or output mode in 1-bit units.			None		
Setting of MODE0, MODE1		MODE0, -	nary operation mode: DE0, 1 = LL		 Always set as follows: MODE0, 1 = HH 		

 μ PD78363A, 78365A, 78366A, 78368A

Remark The internal ROM and RAM capacities differ depending on the product.

CONTENTS

1.	PIN	FUNCTIONS	10
	1.1	PORT PINS	
	1.2	PINS OTHER THAN PORT PINS	
	1.3	PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS	13
2.	CPU	ARCHITECTURE	
	2.1	MEMORY SPACE	-
	2.2	DATA MEMORY ADDRESSING	
	2.3	PROCESSOR REGISTERS	20
		2.3.1 Control Registers	
		2.3.2 General-Purpose Registers	
		2.3.3 Special Function Registers (SFR)	.23
3.	FUN	CTIONAL BLOCKS	
	3.1	EXECUTION UNIT (EXU)	
	3.2	BUS CONTROL UNIT (BCU)	29
	3.3	ROM/RAM	
	3.4	PORT FUNCTIONS	
	3.5	CLOCK GENERATOR CIRCUIT	32
	3.6	REAL-TIME PULSE UNIT (RPU)	
	3.7	REAL-TIME OUTPUT PORT (RTP)	
	3.8	A/D CONVERTER	
	3.9	SERIAL INTERFACE	
		PWM UNIT	
	3.11	WATCHDOG TIMER (WDT)	47
4.	INTE	RRUPT FUNCTIONS	
	4.1	OUTLINE	
	4.2	MACRO SERVICE	-
	4.3	CONTEXT SWITCHING	52
		4.3.1 Context Switching Function by Interrupt Request	
		4.3.2 Context Switching Function by BRKCS Instruction	
		4.3.3 Restoration from Context Switching	.53
5.	EXT	ERNAL DEVICE EXPANSION FUNCTION	54
6.	STA	NDBY FUNCTIONS	55
7.	RES		56
	_		
8.	INST	RUCTION SET	57
9.	EXA	MPLE OF SYSTEM CONFIGURATION	71
10.	ELE	CTRICAL SPECIFICATIONS	72

11. PACK	AGE DRAWING	83
12. RECO	OMMENDED SOLDERING CONDITIONS	84
APPENDI	X A. DIFFERENCES BETWEEN μ PD78366A AND μ PD78328	85
APPENDI	X B. TOOLS	86
B.1 [DEVELOPMENT TOOLS	86
B.2 E	EMBEDDED SOFTWARE	91

1. PIN FUNCTIONS

1.1 PORT PINS

Pin name	I/O	Function	Shared by:
P00-P03		Port 0.	RTP0-RTP3
P04		8-bit I/O port.	PWM0
P05	I/O	Can be set in input or output mode in 1-bit units.	TCUD/PWM1
P06			TIUD/TO40
P07	_		TCLRUD
P10-P17	I/O	Port 1. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	_
P20		Port 2.	NMI
P21	-	6-bit input port.	INTP0
P22			INTP1
P23	Input		INTP2
P24			INTP3/TI
P25			INTP4
P30		Port 3.	TxD0
P31	_	7-bit I/O port. Can be set in input or output mode in 1-bit units.	R×D0
P32	I/O		SO/SB0
P33			SI/SB1
P34	-		SCK
P35	-		TxD1
P36	_		RxD1
P40-P47	I/O	Port 4. 8-bit I/O Port. Can be set in input or output mode in 8-bit units.	AD0-AD7
P50-P57	I/O	Port 5. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	A8-A15
P70-P77	Input	Port 7. 8-bit input port	ANIO-ANI7
P80-P85	I/O	Port 8. 6-bit I/O port. Can be set in input or output mode in 1-bit units.	TO00-TO05
P90			RD
P91	1/2	Port 9.	WR
P92	- I/O	4-bit I/O port.	_
P93	1	Can be set in input or output mode in 1-bit units.	_

Pin name	I/O	Function	Shared by:
RTP0-RTP3	Output	Real-time output port that outputs pulses in synchronization with trigger signal from real-time pulse unit.	P00-P03
NMI		Non-maskable interrupt request input.	P20
INTP0		External interrupt request input.	P21
INTP1	Input		P22
INTP2	mput		P23
INTP3			P24/TI
INTP4			P25
TI		External count clock input to timer 1.	P24/INTP3
TCUD	Input	Count operation selection control signal input to up/down counter (timer 4).	P05/PWM1
TIUD		External count clock input to up/down counter (timer 4).	P06/TO40
TCLRUD	1	Clear signal input to up/down counter (timer 4).	P07
TO00-TO05	Output		P80-P85
TO40		Pulse output from real-time pulse unit.	P06/TIUD
ANIO-ANI7	Input	Analog input to A/D converter.	P70-P77
TxD0	Output		P30
TxD1		Serial data output of asynchronous serial interface.	P35
R×D0	Input	Carial data input of asymphraneus asrial interface	P31
RxD1	Input	Serial data input of asynchronous serial interface.	P36
SCK	I/O	Serial clock input/output of clocked serial interface.	P34
SI	Input	Serial data input of clocked serial interface in 3-line mode.	P33/SB1
SO	Ouput	Serial data output of clocked serial interface in 3-line mode.	P32/SB0
SB0	1/0		P32/SO
SB1	I/O	Serial data input/output of clocked serial interface in SBI mode.	P33/SI
PWM0	Outrast		P04
PWM1	Output	PWM signal output.	P05/TCUD
WDTO	Output	Signal output indicating overflow of watchdog timer (generates non-maskable interrupt).	_
AD0-AD7	1/2	Multiplexed address/data bus when memory is externally expanded.	P40-P47
A8-A15	- I/O	Address bus when memory is externally expanded.	P50-P57
ASTB		Outputs timing signal at which address information output from AD0-AD7 and A8-A15 pins to access external memory is to be latched.	_
RD	Output	Read strobe signal output to external memory.	P90
WR	1	Write strobe signal output to external memory.	P91

1.2 PINS OTHER THAN PORT PINS (1/2)

Pin name	I/O	Function	Shared by:
MODE0		Control signal input to set operation mode. With μ PD78363A, 78366A, and	
MODE1	Input	78368A MODE0 and MODE1 are usually connected to Vss. With μ PD78365A, MODE0 and MODE1 are always connected to Vdd.	_
RESET	Input	System reset input	_
X1	Input	Crystal oscillator connecting pins for system clock. If a clock is externally	
X2	_	supplied, input it to pin X1. Leave pin X2 open.	_
AVREF	Input	A/D converter reference voltage input.	_
AVdd	-	A/D converter analog power supply.	_
AVss	-	A/D converter GND.	_
Vdd	_	Positive power supply	_
Vss	-	GND	_
IC	-	Internally connected. Connect this pin to Vss.	_

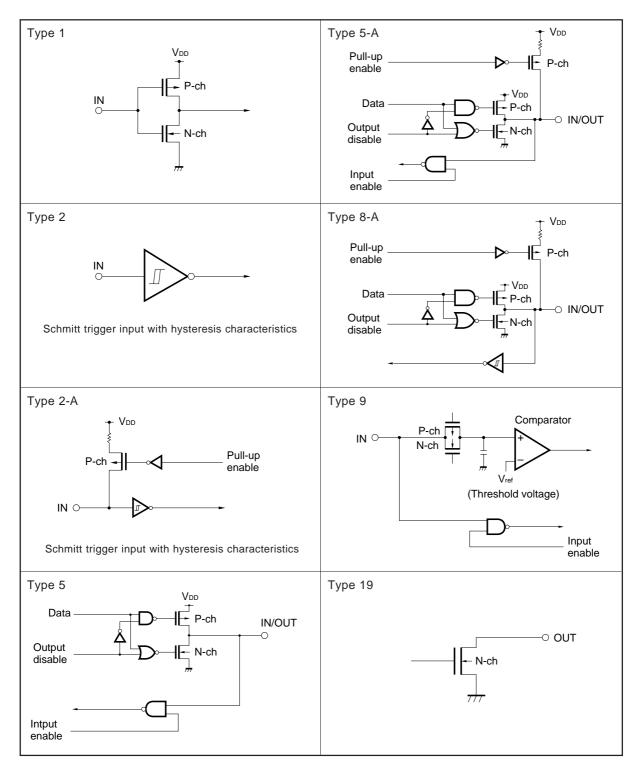
1.2 PINS OTHER THAN PORT PINS (2/2)

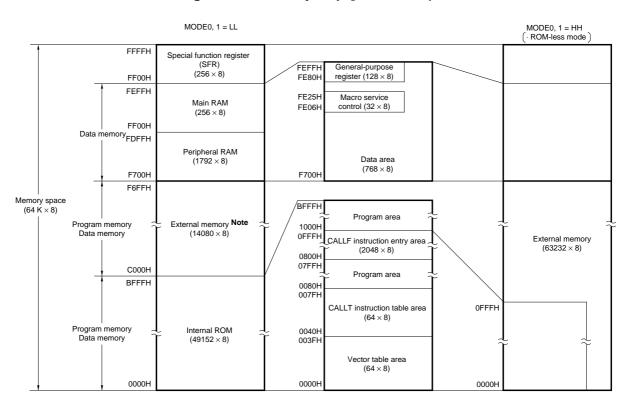
1.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS

Table 1-1 shows the I/O circuit types of the respective pins, and recommended connections of the unused pins. Figure 1-1 shows the circuits of the respective pins.

Pin	I/O circuit type	Recommended connections				
P00/RTP0-P03/RTP3						
P04/PWM0						
P05/TCUD/PWM1		Input : Independently connect to VDD or VSS through resistor Output : Leave unconnected				
P06/TIUD/TO40	5-A					
P07/TCLRUD						
P10-P17						
P20/NMI	2					
P21/INTP0		_				
P22/INTP1						
P23/INTP2	2-A	Connect to Vss				
P24/INTP3/TI						
P25/INTP4						
P30/TxD0	5.0					
P31/RxD0	5-A					
P32/SO/SB0		_				
P33/SI/SB1	8-A	Input : Independently connect to VDD or VSS through resistor				
P34/SCK		Output : Leave unconnected				
P35/TxD1						
P36/RxD1	5-A					
P40/AD0-P47/AD7	5-A					
P50/A8-P57/A15						
P70/ANI0-P77/ANI7	9	Connect to Vss				
P80/TO00-P85/TO05						
P90/RD	5-A					
P91/WR	077	Input : Independently connect to VDD or Vss through resistor Output : Leave unconnected				
P92, P93						
ASTB	5					
WDTO	19	Connect to Vss				
MODE0, MODE1	1	_				
RESET	2					
AVREF, AVSS		Connect to Vss				
AVdd		Connect to VDD				
IC		Connect to Vss				

Table 1-1. Pin I/O Circuit Type and Recommended Connections of Unused Pins




Figure 1-1. Pin I/O Circuits

٠

2. CPU ARCHITECTURE

2.1 MEMORY SPACE

The μ PD78366A can access a memory space of 64K bytes. Figures 2-1 through 2-3 show the memory map.

Figure 2-1. Memory Map (µPD78368A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

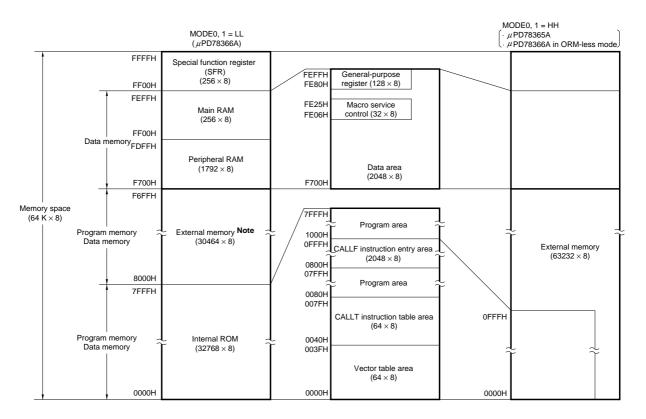
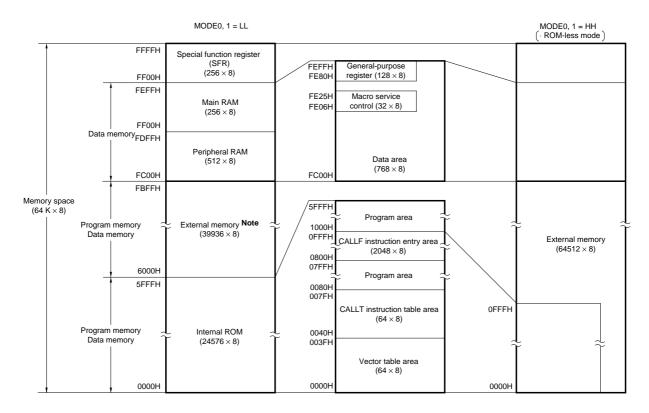



Figure 2-2. Memory Map (µPD78365A, 78366A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

Figure 2-3. Memory Map (µPD78363A)

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

2.2 DATA MEMORY ADDRESSING

The μ PD78366A is provided with many addressing modes that improve the operability of the memory and can be used with high-level languages. Especially, an area of addresses F700H-FFFFH (In the μ PD78363A, FC00H-FFFFH) to which the data memory is mapped can be addressed in a mode peculiar to the functions provided in this area, including special function registers (SFR) and general-purpose registers.

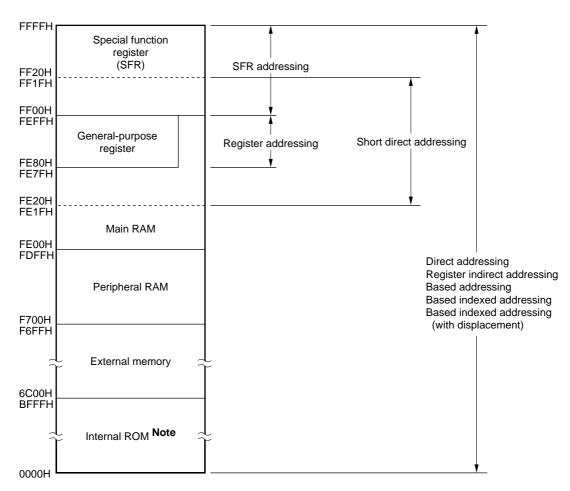
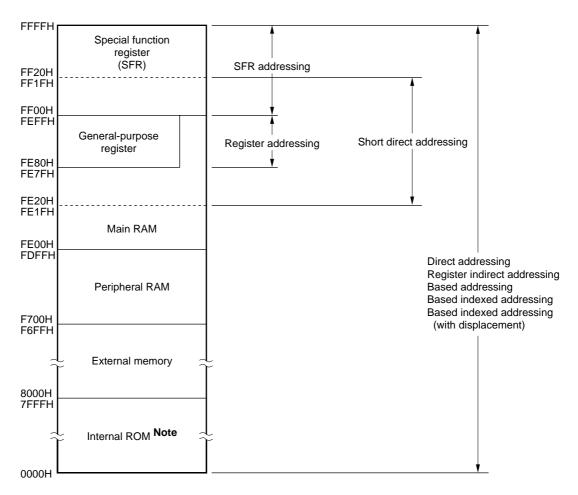
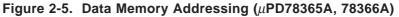




Figure 2-4. Data Memory Addressing (µPD78368A)

Note Is external memory in the ROMless mode.

Caution For word access (including stack oprations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

Caution For word access (including stack oprations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

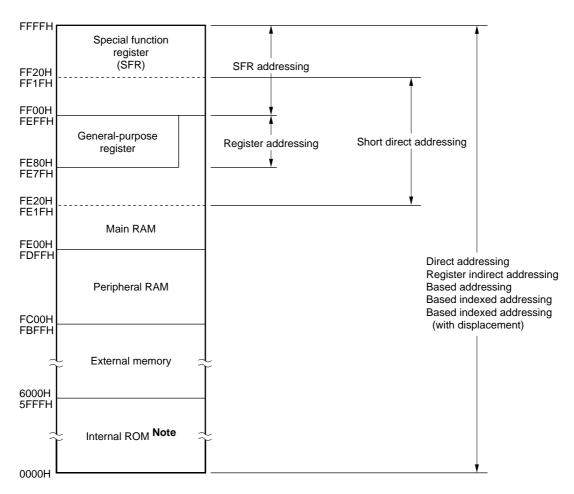
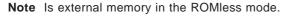



Figure 2-6. Data Memory Addressing (µPD78363A)

Caution For word access (including stack oprations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

2.3 PROCESSOR REGISTERS

The μ PD78366A is provided with the following three types of processor registers:

- Control registers
- General-purpose registers
- Special function registers (SFRs)

2.3.1 Control Registers

- (1) Program counter (PC)This is a 16-bit register that holds an address of the instruction to be executed next.
- (2) Program status word (PSW)This 16-bit register indicates the status of the CPU as a result of instruction execution.
- (3) Stack pointer (SP)This 16-bit register indicates the first address of the stack area (LIFO) of the memory.
- (4) CPU control word (CCW)This 8-bit register is used to control the CPU.

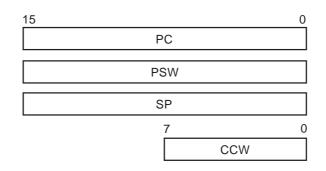


Figure 2-7. Configuration of Control Registers

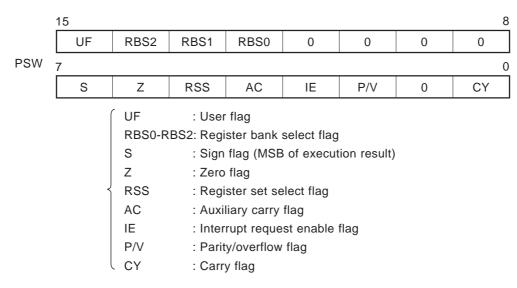


Figure 2-9. Configuration of CCW

2.3.2 General-Purpose Registers

The μ PD78366A is provided with eight banks of general-purpose registers with one bank consisting of 8 words \times 16 bits. Figure 2-10 shows the configuration of the general-purpose register banks. The general-purpose registers are mapped to an area of addresses FE80H-FEFFH. Each of these registers can be used as an 8-bit register. In addition, two registers can be used as one 16-bit register pair (refer to **Figure 2-11**). These general-purpose registers facilitate complicated multitask processing.

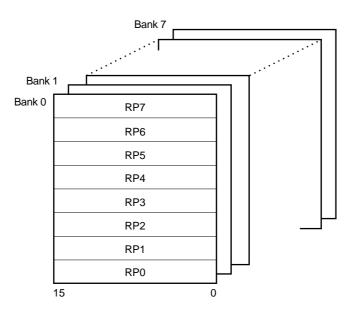


Figure 2-11. Processing Bits of General-Purpose Registers

			8-bit pr	ocessing		16-b	it proces	ssing
FEFFH	RBNK0		R15	R14		(FH)	RP7	(EH)
	RBNK1		R13	R12		(DH)	RP6	(CH)
	RBNK2		R11	R10		(BH)	RP5	(AH)
	RBNK3		R9	R8		(9H)	RP4	(8H)
	RBNK4		R7	R6		(7H)	RP3	(6H)
	RBNK5		R5	R4		(5H)	RP2	(4H)
	RBNK6		R3	R2		(3H)	RP1	(2H)
FE80H	RBNK7		R1	R0		(1H)	RP0	(0H)
		- <u> </u>	7 0	7 C)	15		0

2.3.3 Special Function Registers (SFR)

Special function registers (SFRs) are registers assigned special functions such as mode registers and control registers for internal peripheral hardware, and are mapped to a 256-byte address space at FF00H through FFFFH.

Table 2-1 lists the SFRs. The meanings of the symbols in this table are as follows:

- Symbol Indicates the mnemonic symbol for an SFR.
 - This mnemonic can be coded in the operand field of an instruction.
- R/W Indicates whether the SFR can be read or written.
 - R/W : Read/write
 - R : Read only
 - W : Write only
- Bit units for manipulation Indicates bit units in which the SFR can be manipulated. The SFRs that can be manipulated in 16-bit units can be coded as an sfrp operand. Specify an even address for these SFRs.
 - The SFRs that can be manipulated in 1-bit units can be coded as the operand of bit manipulation instructions.
- On reset Indicates the status of the register at RESET input.
- Cautions 1. Do not access the addresses in the range FF00H through FFFFH to which no special function register is allocated. If these addresses are accessed, malfunctioning may occur.
 - 2. Do not write data to the read-only registers. Otherwise, the internal circuit may not operate normally.
 - 3. When using read data as byte data, process undefined bit(s) first.
 - 4. TOUT and TXS are write-only registers. Do no read these registers.
 - 5. Bits 0, 1, and 4 of SBIC are write-only bits. When these bits are read, they are always "0".

Address	Special function register (SFR)	Symbol	R/W		it units f anipulati	On reset		
				1 bit	8 bits	16 bits		
FF00H	Port 0	P0	D AA	0	0	-		
FF01H	Port 1	P1	R/W	0	0	_		
FF02H	Port 2	P2	R	0	0	_		
FF03H	Port 3	P3		0	0	_		
FF04H	Port 4	P4Note	R/W	0	0	_		
FF05H	Port 5	P5Note		0	0	-		
FF07H	Port 7	P7	R	0	0	-		
FF08H	Port 8	P8		0	0	_		
FF09H	Port 9	P9		0	0	_		
FF10H		01100						
FF11H	Compare register 00	CM00		-	-	0		
FF12H							Undefined	
FF13H	Compare register 01	CM01		-	-	0	-	
FF14H			-		-	0		
FF15H	Compare register 02	CM02		-				
FF16H		CM03	R/W					
FF17H	Compare register 03			-				
FF18H		BFCM00	-			_		
FF19H	Buffer register CM00			-	-	0		
FF1AH						_		
FF1BH	Buffer register CM01	BFCM01	-	-	0			
FF1CH							1	
FF1DH	Buffer register CM02	BFCM02		-	-	0		
FF1EH			_					
FF1FH	Timer register 0	TM0	R	-	-	0	0000H	
FF20H	Port 0 mode register	PM0		0	0	_		
FF21H	Port 1 mode register	PM1		0	0	_	FFH	
FF23H	Port 3 mode register	PM3		0	0	_	×111 1111B	
FF25H	Port 5 mode register	PM5 ^{Note}	R/W	0	0	_	FFH	
FF28H	Port 8 mode register	PM8		0	0	_	××11 1111B	
FF29H	Port 9 mode register	PM9	1	0	0	_	xxxx 1111B	
FF2CH								
FF2DH	Reload register	DTIME		-	-	0	Undefined	
FF2EH	Timer unit mode register 0	TUM0	_	0	0	-	0.011	
FF2FH	Timer unit mode register 1	TUM1	R/W	0	0	-	00H	
FF30H	Compare register 10	01440	1				llodeficed	
FF31H	Compare register 10	CM10		-	-	0	Undefined	
FF32H	Timor register 1	TNAA	P				000011	
FF33H	Timer register 1	TM1	R	-	-	0	0000H	

Table 2-1. List of Special Function Registers (1/5)

Note Not provided for the μ PD78365A.

Address	Special function register (SFR)	Symbol R/W	R/W	1	it units f anipulati		On reset	
				1 bit	8 bits	16 bits		
FF34H	Capture/compare register 20	CC20	R/W	_	_	0		
FF35H			1\/ VV				Undefined	
FF36H	Capture register 20	CT20				0	Undenned	
FF37H		0120	R					
FF38H	- Timer register 2	TM2	n			0	0000H	
FF39H		1 1012		_	_		000011	
FF3AH	Duffer register CM02	BECM02					Underfined	
FF3BH	Buffer register CM03	BFCM03		_	-	0	Undernned	
FF3CH	External interrupt mode register 0	INTMO		0	0	-		
FF3DH	External interrupt mode register 1	INTM1		0	0	-	00H	
FF40H	Port 0 mode control register	PMC0		0	0	_		
FF43H	Port 3 mode control register	PMC3		0	0	-	×000 0000B	
FF44H	Pull-up resistor option register L	PUOL	R/W	0	0	-	0011	
FF45H	Pull-up resistor option register H	PUOH		0	0	-	00H	
FF48H	Port 8 mode control register	PMC8	-	0	0	-	××00 0000B	
FF4EH	Sampling control register 0	SMPC0	:0 0		0	-	0011	
FF4FH	Sampling control register 1	SMPC1		0	0	-	00H	
FF50H								
FF51H	Capture/compare register 30	CC30		-	-	0		
FF52H								
FF53H	- Capture register 30	CT30		_	_	0	Undefined	
FF54H		0701						
FF55H	- Capture register 31	CT31	R	-	-	0		
FF56H								
FF57H	- Timer register 3	TM3		-	-	0	0000H	
FF58H	0	0.1.10						
FF59H	- Compare register 40	CM40	DAA	-	-	0		
FF5AH		0.144	R/W				Undefined	
FF5BH	- Compare register 41	CM41		-	-	0		
FF5CH	Timer register 4		D				000011	
FF5DH	Timer register 4 TM4 R		ĸ	-	-	0	0000H	
FF5EH	Timer control register 4	TMC4	R/W	-	0	-	00H	
FF5FH	Timer out register	TOUT	W	-	0	-	××01 0101B	
FF60H	Real-time output port register	RTP		0	0	_	Undefined	
FF61H	Real-time output port mode register	RTPM	1	0	0	_		
FF62H	Port read control register	PRDC	R/W	0	0	_	00H	
FF68H	A/D converter mode register	ADM	1	0	0	_	1	

Table 2-1. L	_ist of Special	Function F	Registers	(2/5)
--------------	-----------------	-------------------	-----------	-------

Address	Special function register (SFR)	Symbol	R/W	Bit units for manipulation		On reset	
				1 bit	8 bits	16 bits	
FF70H	Slave buffer register 0	SBUF0		0	0	-	
FF71H	Slave buffer register 1	SBUF1		0	0	-	
FF72H	Slave buffer register 2	SBUF2		0	0	-	
FF73H	Slave buffer register 3	SBUF3		0	0	-	
FF74H	Slave buffer register 4	SBUF4		0	0	-	
FF75H	Slave buffer register 5	SBUF5		0	0	-	Undefined
FF76H	Master buffer register 0	MBUF0		0	0	-	Undenned
FF77H	Master buffer register 1	MBUF1		0	0	-	
FF78H	Master buffer register 2	MBUF2	R/W	0	0	-	
FF79H	Master buffer register 3	MBUF3	K/VV	0	0	-	
FF7AH	Master buffer register 4	MBUF4		0	0	-	
FF7BH	Master buffer register 5	MBUF5		0	0	-	
FF7CH	Timer control register 0	TMC0		0	0	-	
FF7DH	Timer control register 1	TMC1		0	0	-	
FF7EH	Timer control register 2	TMC2		0	0	-	00H
FF7FH	Timer control register 3	TMC3		0	0	-	
FF80H	Clocked serial interface mode register	CSIM		0	0	-	
FF82H	Serial bus interface control register	SBIC	R/W ^{Note}	0	0	-	
FF84H	Baud rate generator control register	BRGC		0	0	-	
FF85H	Baud rate generator compare register	BRG	DAA	-	0	-	Undefined
FF86H	Serial I/O shift register	SIO	R/W	0	0	-	Undefined
FF88H	Asynchronous serial interface mode register	ASIM		0	0	-	80H
FF8AH	Asynchronous serial interface status register	ASIS	R	0	0	-	00H
FF8CH	Serial receive buffer: UART	RXB	rt	_	0	-	Undefined
FF8EH	Serial transfer shift register: UART	TXS	W	-	0	-	Undenned
FFA0H	PWM control register 0	PWMC0		0	0	-	00H
FFA1H	PWM control register 1	PWMC1		0	0	-	001
FFA2H	PWM register 0L	PWM0L	R/W	0	0	-	
FFA2H	PWM register 0	PWM0		_	_	0	Undefined
FFA3H							

Table 2-1. List of Special Function Registers (3/5)

Note Bits 7 and 5 : read/write Bits 6, 3, and 2 : read-only Bits 4, 1, and 0 : write-only

Address	Special function register (SFR)	Symbol	R/W		it units f anipulati		On reset
				1 bit	8 bits	16 bits	
FFA4H	PWM register 1L	PWM1L		0	0	-	
FFA4H		DIAMAA	R/W				Undefined
FFA5H	PWM register 1	PWM1		_	-	0	
FFA8H	In-service priority register	ISPR	R	0	0	-	00H
FFAAH	Interrupt mode control register	IMC		0	0	-	80H
FFACH	Interrupt mask register 0L	MKOL		0	0	-	FFH
FFACH	Interrupt mask register 0	МКО	R/W			0	FFFFH
FFADH		IVIKU		_	_		ггггп
FFADH	Interrupt mask register 0H	МКОН		0	0	-	FFH
FFB0H		ADCR0				0	
FFB1H	A/D conversion result register 0	ADCRU		_	_		
FFB1H	A/D conversion result register 0H	ADCR0H		_	0	-	
FFB2H	A/D conversion requit register 1						
FFB3H	A/D conversion result register 1	onversion result register 1 ADCR1		_	_	- 0	
FFB3H	A/D conversion result register 1H	ADCR1H		_	0	-	
FFB4H	A/D conversion result register 2	ADCR2				0	
FFB5H	A/D conversion result register 2	ADORZ			_		
FFB5H	A/D conversion result register 2H	ADCR2H		_	0	-	
FFB6H	A/D conversion result register 3	ADCR3				0	
FFB7H		Aberto	R				Undefined
FFB7H	A/D conversion result register 3H	ADCR3H		_	0	-	Undenned
FFB8H	A/D conversion result register 4	ADCR4	24	_	_	0	
FFB9H							
FFB9H	A/D conversion result register 4H	ADCR4H		_	0	-	
FFBAH	A/D conversion result register 5	ADCR5		_	_	0	
FFBBH		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_				
FFBBH	A/D conversion result register 5H	ADCR5H	_		0		
FFBCH	A/D conversion result register 6	ADCR6		_	_	0	
FFBDH		1.0010					
FFBDH	A/D conversion result register 6H	ADCR6H		_	0	-	
FFBEH	A/D conversion result register 7	ADCR7		_	_	0	
FFBFH							
FFBFH	A/D conversion result register 7H	ADCR7H		_	0	-	
FFC0H	Standby control register	STBC ^{Note}			0	-	0000 ×000B
FFC1H	CPU control word	CCW	R/W	0	0	-	00H
FFC2H	Watchdog timer mode register	WDM ^{Note}		_	0	-	0011

Table 2-1. List of Special Function Registers (4/5)

Note Can be written when a special instruction is executed.

Address	Special function register (SFR)	Symbol	R/W		it units f anipulati	-	On reset
				1 bit	8 bits	16 bits	
FFC4H	Memory expansion mode register	MM		0	0	-	Note
FFC6H	Programmable wait control register	PWC				0	COAAH
FFC7H		FVVC		_	_		CUAAN
FFD0H							
	External SFR area	-		0	0	-	Undefined
FFDFH							
FFE0H	Interrupt control register (INTOV3)	OVIC3		0	0	-	
FFE1H	Interrupt control register (INTP0/INTCC30)	PIC0		0	0	-	
FFE2H	Interrupt control register (INTP1)	PIC1		0	0	-	
FFE3H	Interrupt control register (INTP2)	PIC2		0	0	-	
FFE4H	Interrupt control register (INTP3/INTCC20)	PIC3	R/W	0	0	-	
FFE5H	Interrupt control register (INTP4)	PIC4	K/ VV	0	0	-	
FFE6H	Interrupt control register (INTTM0)	TMIC0		0	0	-	
FFE7H	Interrupt control register (INTCM03)	CMIC03		0	0	-	43H
FFE8H	Interrupt control register (INTCM10)	CMIC10		0	0	-	43N
FFE9H	Interrupt control register (INTCM40)	CMIC40		0	0	-	
FFEAH	Interrupt control register (INTCM41)	CMIC41		0	0	_	
FFEBH	Interrupt control register (INTSER)	SERIC		0	0	_	
FFECH	Interrupt control register (INTSR)	SRIC		0	0	_	
FFEDH	Interrupt control register (INTST)	STIC		0	0	_	
FFEEH	Interrupt control register (INTCSI)	CSIIC		0	0	-	
FFEFH	Interrupt control register (INTAD)	ADIC		0	0	-	

Table 2-1.	List of Special	Function	Registers (5/5)
------------	-----------------	----------	-----------------

Note The value of the MW register at reset time differs depending on the product.

μPD78363A : 60H μPD78365A, 78366A : 20H μPD78368A : 00H

*

3. FUNCTIONAL BLOCKS

3.1 EXECUTION UNIT (EXU)

EXU controls address computation, arithmetic and logical operations, and data transfer through microprogram. EXU has an internal main RAM. This RAM can be accessed by instructions faster than the peripheral RAM.

3.2 BUS CONTROL UNIT (BCU)

BCU starts necessary bus cycles according to the physical address obtained by the execution unit (EXU). If EXU does not request start of the bus cycle, an address is generated to prefetch an instruction. The prefetched op code is stored in an instruction queue.

3.3 ROM/RAM

The internal ROM and RAM capacities differ depending on the product.

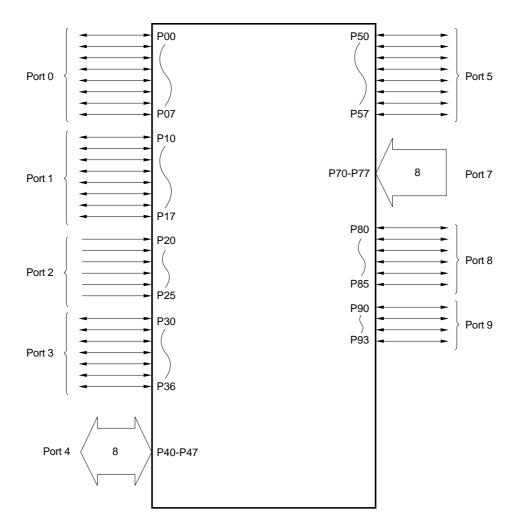
The μ PD78363A has a 24-KB ROM and a 512-B peripheral RAM. The μ PD78366A has a 32-KB ROM and a 1792-B peripheral RAM. The μ PD78368A has a 48-KB ROM and a 1792-B peripheral RAM. The μ PD78365A does not have a ROM and only has a 1792-B peripheral RAM.

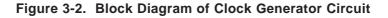
Access to the ROM can be disabled by using the MODE0 and MODE1 pins, in which case an external memory of 64 KB can be accessed.

3.4 PORT FUNCTIONS

The μ PD78366A is provided with the ports shown in Figure 3-1 for various control operations.

The functions of each port are listed in Table 3-1. These ports function not only as digital ports but also as input/output lines of the internal hardware.




Figure 3-1. Port Configuration

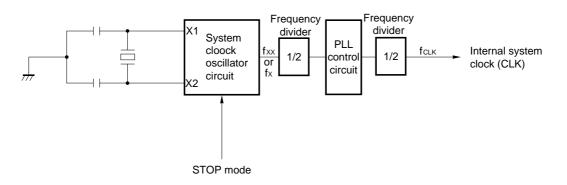

Port	Port function	Multiplexed function
Port 0	8-bit I/O port. Can be set in input or output mode in 1-bit units.	In control mode, serves as real-time output port (RTP), or input operation control signal of real-time pulse unit (RPU) and output PWM signal.
Port 1	8-bit I/O port. Can be set in input or output mode in 1-bit units.	_
Port 2	6-bit input port.	Inputs external interrupt and count pulse of real-time pulse unit (RPU) (fixed to the control mode).
Port 3	7-bit I/O port. Can be set in input or output in 1-bit units.	In control mode, inputs/outputs signals of serial interfaces (UART, CSI).
Port 4	8-bit I/O port. Can be set in input or output mode in 8-bit units.	Address data bus (AD0-AD7) when memory is externally expanded.
Port 5	8-bit I/O port. Can be set in input or output mode in 1-bit units.	Address bus (A8-A15) when memory is externally expanded.
Port 7	8-bit input port.	Input analog signals to A/D converter (fixed to the control mode).
Port 8	6-bit I/O port. Can be set in input or output mode in 1-bit units.	In control mode, outputs timer of real-time pulse unit (RPU).
Port 9	4-bit I/O port. Can be set in input or output mode in 1-bit units.	Outputs control signal when memory is externally expanded.

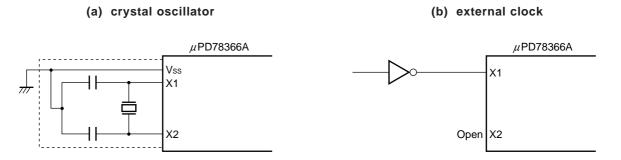
 Table 3-1. Functions of Each Port

3.5 CLOCK GENERATOR CIRCUIT

The clock generator circuit generates and controls the internal system clock (CLK) that is supplied to the CPU.

Remarks 1. fxx : crystal oscillation frequency

- 2. fx : external clock frequency
- 3. fcLK: internal system clock frequency


By connecting an 8-MHz crystal resonator across the X1 and X2 pins, an internal system clock of up to 16 MHz (fcLk) can be generated.

The system clock oscillation circuit oscillates by using the crystal resonator connected across the X1 and X2 pins. It stops oscillation in standby mode.

An external clock can also be input. To do so, input the clock signal to the X1 pin and leave the X2 pin open.

Caution Do not set STOP mode when the external clock is used.

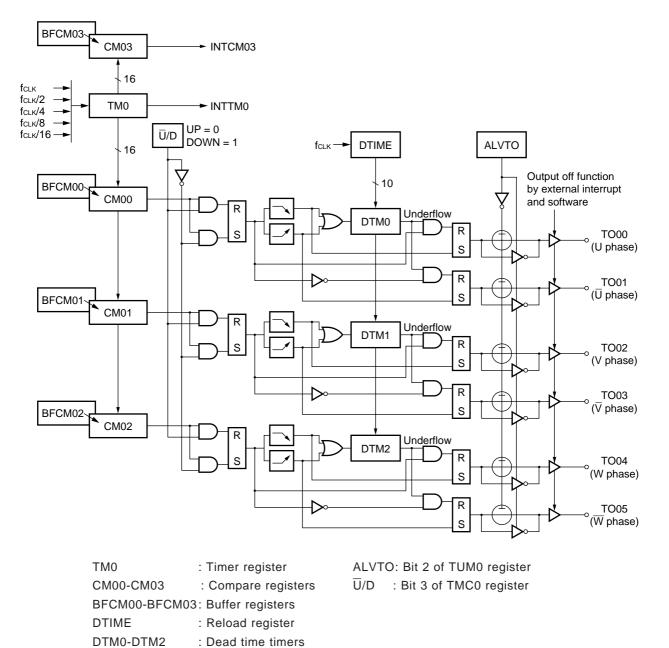
Figure 3-3. External Circuit of System Clock Oscillator Circuit

- Cautions 1. Wire the portion enclosed by dotted line in Figure 3-3 as follows to avoid adverse influences due to wiring capacity when using the system clock oscillation circuit.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal line. Make sure that the wiring is not close to lines through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss. Do not ground the circuit to a ground pattern through which a high current flows.
 - Do not extract signals from the oscillator circuit.
 - 2. To input an external clock, do not connect a load such as wiring capacitance to the X2 pin.

3.6 REAL-TIME PULSE UNIT (RPU)

The real-time pulse unit (RPU) can measure pulse intervals and frequencies, and output programmable pulses (six channels of PWM control signals).

The RPU consists of five 16-bit timers (timers 0 through 4), of which one is provided with a 10-bit dead time timer, which is ideal for inverter control. In addition, a function to turn off the output by the software or an external interrupt is also provided.


Each timer has the following features:

- Timer 0 : Controls the PWM period of the TO00 through TO05 pins. In addition, operates as a general-purpose interval timer. Timer 0 has the following five operation modes:
 - General-purpose interval timer mode
 - PWM mode 0 (symmetrical triangular wave)
 - PWM mode 0 (asymmetrical triangular wave)
 - PWM mode 0 (saw-tooth wave)
 - PWM mode 1
- Timer 1 : Operates as a general-purpose interval timer.
- Timers 2, 3 : Has a programmable input sampling circuit that rejects the noise of an input signal, and a capture function.
- Timer 4 : Operates as a general-purpose timer or an up-down counter. When operating as a generalpurpose timer, controls the PWM cycle of the TO40 output pin. Timer 4 has the following two operation modes:
 - General-purpose timer mode
 - Up/down counter mode (UDC mode)

The RPU consists of the hardware shown in Table 3-2. Figures 3-4 through 3-12 show the block diagrams of the respective timers.

	Timer register	Register	Compare register coincidence interrupt	Capture trigger	Timer output	Timer clear
		16-bit compare register (CM00)	_			
Timer 0	16-bit timer (TM0)	16-bit compare register (CM01)	-	_	6	INTCM03
		16-bit compare register (CM02)	-		0	
		16-bit compare register (CM03)	INTCM03			
Timer 1	16-bit timer (TM1)	16-bit compare register (CM10)	INTCM10	_	_	INTCM10
Timer 2	16-bit timer (TM2)	16-bit capture/compare register (CC20)	INTCC20			
		16-bit capture register (CT20)	-	INTP3	_	INTCC20
		16-bit capture/compare register (CC30)	INTCC30	INTP0		
Timer 3	16-bit timer (TM3)	16-bit capture register (CT30)	-	INTP1	-	INTCC30
		16-bit capture register (CT31)	-	INTP4		
Timer 4	16-bit timer (TM4)	16-bit compare register (CM40)	INTCM40	_	1	TCLRUD
Timer 4		16-bit compare register (CM41)	INTCM41	_		INTCM40

T	• •	(
Table 3-2.	Configuration	of Real-Lime	Pulse Unit	(RPU)

Figure 3-4. Block Diagram of Timer 0 (PWM mode 0 ... symmetrical triangular wave, asymmetrical triangular wave)

Remark fcLK: internal system clock

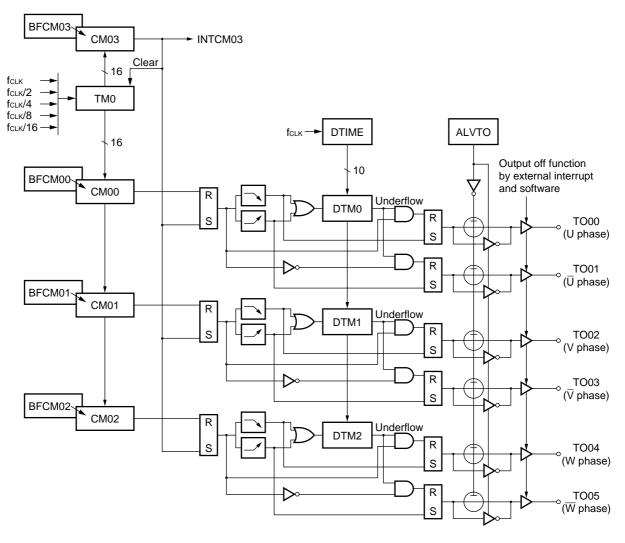
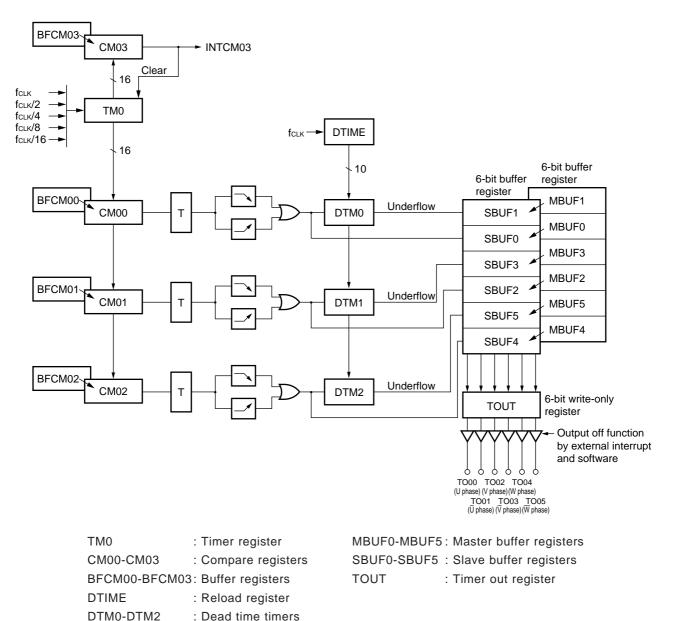




Figure 3-5. Block Diagram of Timer 0 (PWM mode 0 ... saw-tooth wave)

ТМО	:	Timer register
CM00-CM03	:	Compare registers
BFCM00-BFCM03	:	Buffer registers
DTIME	:	Reload register
DTM0-DTM2	:	Dead time timers
ALVTO	:	Bit 2 of TUM0 register

Remark fcLK: internal system clock

Remark fclk: internal system clock

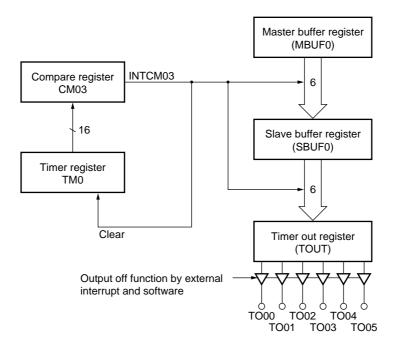
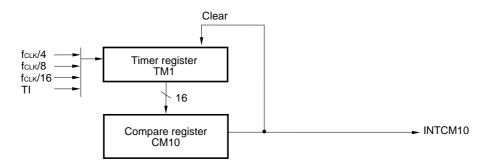



Figure 3-7. Block Diagram of Timer 0 (general-purpose interval timer mode)

Remark fclk: internal system clock

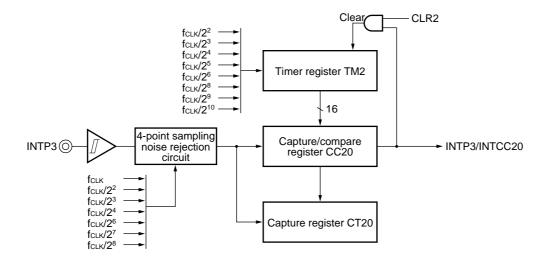
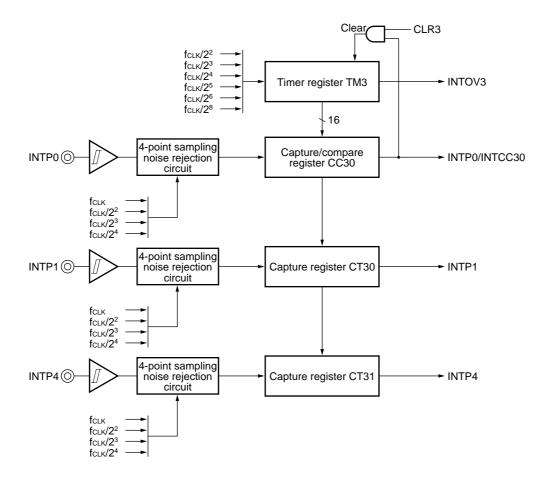
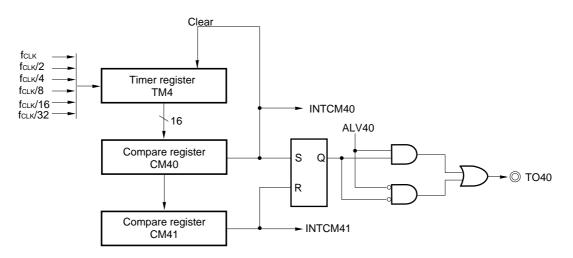



Figure 3-9. Block Diagram of Timer 2

Figure 3-10. Block Diagram of Timer 3

Remark fclk: internal system clock



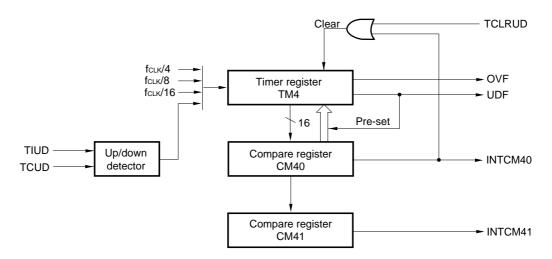
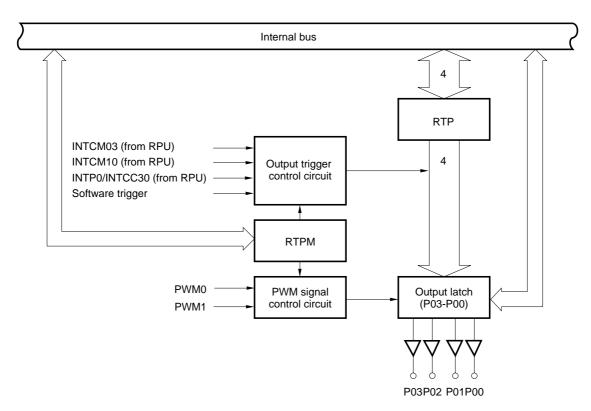


Figure 3-11. Block Diagram of Timer 4 (General-Purpose Timer Mode)


Remark fclk: internal system clock

3.7 REAL-TIME OUTPUT PORT (RTP)

The real-time output port is a 4-bit port that can output the contents of the real-time output port register (RTP) in synchronization with the trigger signal from the real-time pulse unit (RPU). It can output synchronization pulses of multiple channels.

Also, PWM modulation can be applied to P00-P03.

3.8 A/D CONVERTER

The μ PD78366A contains a high-speed, high-resolution 10-bit analog-to-digital (A/D) converter (conversion time 12.6 μ s at an internal clock frequency of 16 MHz). Successive approximation type is adopted. This converter is provided with eight analog input lines (ANI0-ANI7) and can perform various operations as the application requires, in select, scan, and mixed modes.

When A/D conversion ends, an internal interrupt (INTAD) occurs. This interrupt can start a macro service that executes automatic data transfer through hardware.

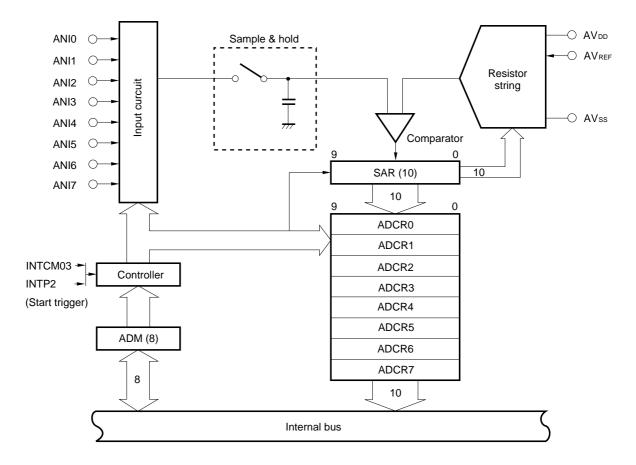


Figure 3-14. Block Diagram of A/D Converter

3.9 SERIAL INTERFACE

The μ PD78366A is provided with the following two independent serial interfaces:

- Asynchronous serial interface (UART) (with pin selection function)
- Clocked serial interface
 - 3-line serial I/O mode
 - Serial bus interface mode (SBI mode)

Since the μ PD78366A contains a baud rate generator (BRG), any serial transfer rate can be set regardless of the operating clock frequency. The baud rate generator is a block to generate the shift clock for the transmit/ receive serial interface, and is used commonly with the two channels of the serial interfaces.

The serial transfer rate can be selected in a range of 110 bps to 38.4 Kbps by the mode register.

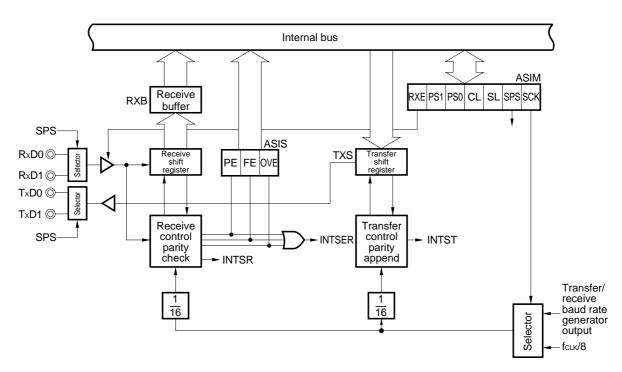


Figure 3-15. Block Diagram of Asynchronous Serial Interface

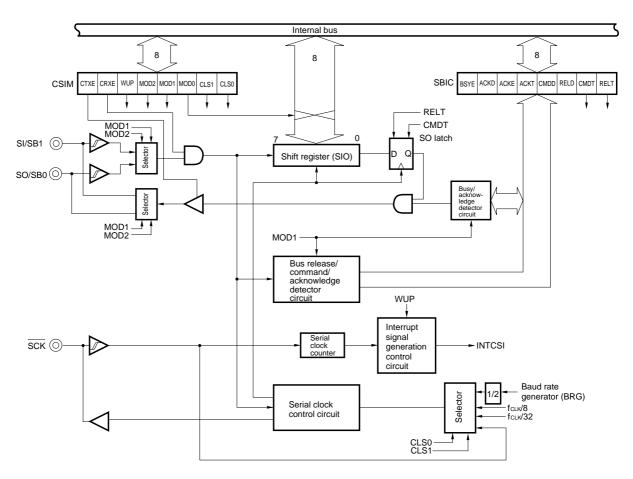
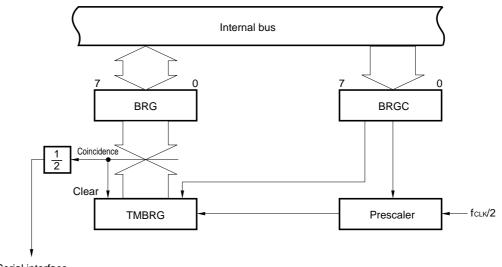



Figure 3-16. Block Diagram of Clocked Serial Interface

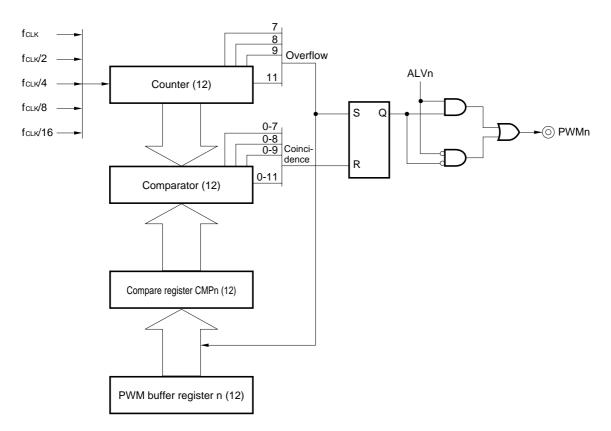
Figure 3-17. Block Diagram of Baud Rate Generator

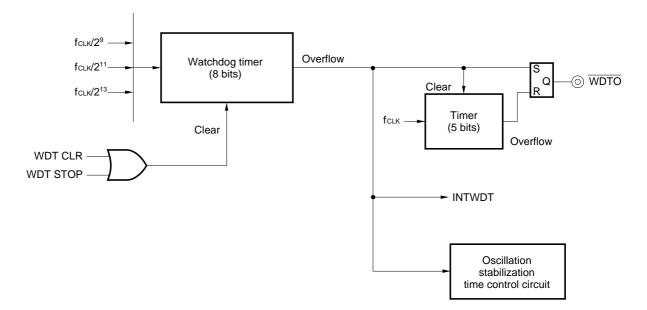
Serial interface

3.10 PWM UNIT

The μ PD78366A is provided with two lines that output 8-/9-/10-/12-bit resolution variable PWM signals. The PWM output can be used as a digital-to-analog conversion output by connecting an external lowpass filter, and ideal for controlling actuators such as motors.

An output of between 244 Hz and 62.5 kHz can be obtaind, depending on the combination of the count clock (62.5 ns to 1 μ s) and counter bit length (8, 9, 10, or 12) (at an internal clock frequency of 16 MHz).




Figure 3-18. Block Diagram of PWM Unit

Remark n = 0, 1

3.11 WATCHDOG TIMER (WDT)

The watchdog timer is a free running timer equipped with a non-maskable interrupt function to prevent program hang-up or deadlock. When an error of the program is detected, the overflow interrupt (INTWDT) of the watchdog timer occurs and the watchdog timer output pin (\overline{WDTO}) goes low. By connecting this output pin to the \overline{RESET} pin, any malfunctioning of the application system due to program error can be prevented.

4. INTERRUPT FUNCTIONS

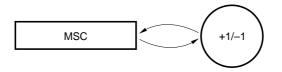
4.1 OUTLINE

The μ PD78366A is provided with powerful interrupt functions that can process interrupt requests from the internal hardware peripherals and external sources. In addition, the following three interrupt processing modes are available. In addition, four levels of interrupt priority can be specified.

- Vectored interrupt processing
- Macro service
- Context switching

Туре	Note		Interrupt source	Source unit	Vector table	Macro	Context		
туре	NOLE	Name	Trigger	Source unit	address	service	switching		
Non-	_	NMI	NMI pin input	External	0002H	None	None		
maskable	-	INTWDT	Watchdog timer	WDT	0004H	None	None		
	0	INTOV3	Overflow of timer 3	RPU	0006H				
	1	INTP0/INTCC30	INTP0 pin input/CC30 coincidence signal	External/RPU	0008H				
	2	INTP1	INTP1 pin input	Esternal	000AH				
	3	INTP2	INTP2 pin input	External	000CH				
	4	INTP3/INTCC20	INTP3 pin input/CC20 coincidence signal	External/RPU	000EH				
	5	INTP4	INTP4 pin input	External	0010H				
	6	INTTM0	Underflow of timer 0		0012H				
Maskable	7	INTCM03	CM03 coincidence signal		0014H	Provided	Provided		
	8	INTCM10	CM10 coincidence signal	RPU	0016H	Provided	FIOVIDED		
	9	INTCM40	CM40 coincidence signal		0018H				
	10	INTCM41	CM41 coincidence signal		001AH				
	11	INTSER	Receive error of UART		001CH				
	12	INTSR	End of UART reception	UART	001EH				
	13	INTST	End of UART transfer		0020H				
	14	INTCSI	End of CSI transfer/reception	CSI	0022H				
	15	INTAD	End of A/D conversion	A/D	0024H				
Software	-	BRK	BRK instruction	_	003EH		None		
Soltware	_	BRKCS	BRKCS instruction	_	-	Nono	Provided		
Exception	-	TRAP	Illegal op code trap	_	003CH None		– 003CH None		None
Reset	_	- RESET Reset input		– 0000H			none		

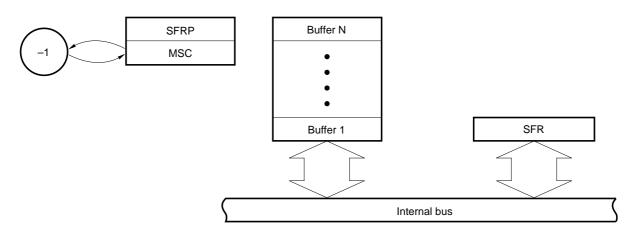
Table 4-1. Interrupt Sources


Note Default priority : Priority that takes precedence when two or more maskable interrupts occur at the same time. 0 is the highest priority, and 15 is the lowest.

4.2 MACRO SERVICE

The μ PD78366A has a total of five macro services. Each macro service is described below.

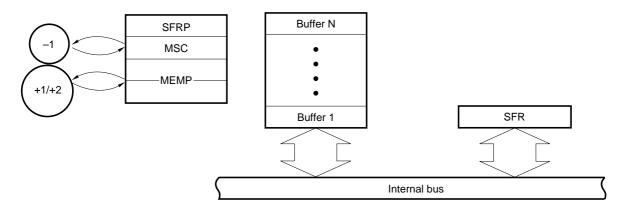
(1) Counter mode: EVTCNT


- Operation
 - (a) Increments or decrements an 8-bit macro service counter (MSC).
 - (b) A vector interrupt request is generated when MSC reaches 0.

• Application example: As event counter, or to measure number of times a value is captured

(2) Block transfer mode: BLKTRS

- Operation
 - (a) Transfers data block between a buffer and a SFR specified by SFR pointer (SFRP).
 - (b) The transfer source and destination can be in SFR or buffer area. The length of the transfer data can be specified to be byte or word.
 - (c) The number of times the data is to be transferred (block size) is specified by MSC.
 - (d) MSC is auto decremented by one each time the macro service has been executed.
 - (e) When MSC reaches 0, a vector interrupt request is generated.

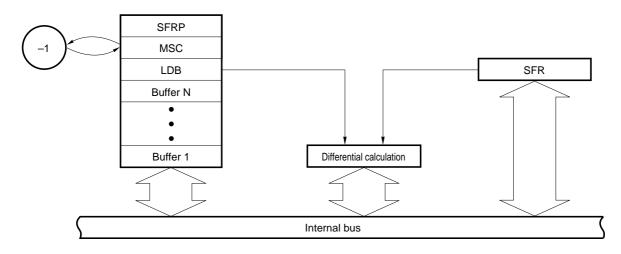

· Application example: To transfer/receive data through serial interface

(3) Block transfer mode (with memory pointer): BLKTRS-P

• Operation

This is the block transfer mode in (2) above with a memory pointer (MEMP). The appended buffer area of MEMP can be freely set on the memory space.

Remark Each time the macro service is executed, MEMP is auto incremented (by one for byte data transfer and by two for word data transfer).



• Application example: Same as (2)

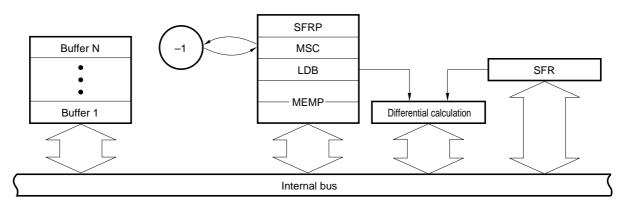
(4) Data differential mode: DTADIF

- Operation
 - (a) Calculates the difference between the contents of SFR (current value) specified by SFRP and the contents of SFR saved to the last data buffer (LDB).
 - (b) Stores the result of the calculation in a predetermined buffer area.
 - (c) Stores the contents of the current value of the SFR in LDB.
 - (d) The number of times the data is to be transferred (block size) is specified by MSC. Each time the macro service is executed, MSC is auto decremented by one.
 - (e) When MSC reaches 0, a vector interrupt request is generated.

Remark The differential calculation can be carried out only with 16-bit SFRs.

• Application example : To measure cycle and pulse width by the capture register of the real-time pulse unit (RPU)

(5) Data differential mode (with memory pointer): DTADIF-P


• Operation

This is the data differential mode in (4) above with memory pointer (MEMP). By appending MEMP, the buffer area in which the differential data is to be stored can be set freely on the memory space.

Remarks 1. The differential calculation can be carried out only with 16-bit SFRs.

2. The buffer is specified by the result of operation by MEMP and MSC^{Note}. MEMP is not updated after the data has been transferred.

Note MEMP – (MSC \times 2) + 2

• Application example: Same as (4)

4.3 CONTEXT SWITCHING

This function is to select a specific register bank through the hardware, and to branch execution to a vector address predetermined in the register bank. At the same time, it saves the present contents of the PC and PSW to the register bank when an interrupt occurs, or when the BRKCS instruction is executed.

4.3.1 Context Switching Function by Interrupt Request

When a context switching enable flag corresponding to each maskable interrupt request is set to 1 in the EI (interrupt enable) status, the context switching function can be started.

The context switching operation by an interrupt request is performed as follows:

- (1) When an interrupt request is generated, a register bank to which the context is to be switched is specified by the contents of the low-order 3 bits of the row address (even address) of the corresponding vector table.
- (2) A predetermined vector address is transferred to the PC in the register bank to which the context is to be switched, and the contents of the PC and PSW immediately before the switching takes place are saved to the register bank.
- (3) Execution branches to an address indicated by the contents of the PC newly set.

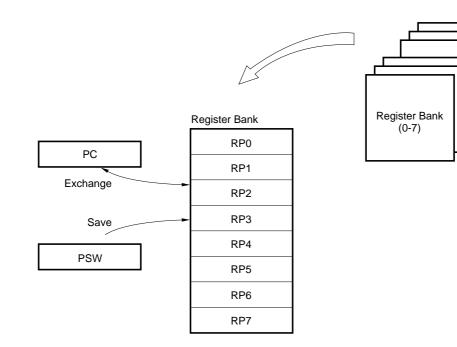


Figure 4-1. Operation of Context Switching

4.3.2 Context Switching Function by BRKCS Instruction

The context switching function can be started by the BRKCS instruction.

The operation of context switching by an interrupt request is as follows:

- (1) An 8-bit register is specified by the operand of the BRKCS instruction, and the register bank to which the context is to be switched is specified by the contents of this register (only the low-order 3 bits of 8 bits are valid).
- (2) The vector address predetermined in the register bank to which the context is to be switched is transferred to the PC, and at the same time, the contents of the PC and PSW immediately before the switching takes place are saved to the register bank.
- (3) Execution branches to the contents of the PC newly set.

4.3.3 Restoration from Context Switching

To restore from the switched context, one of the following two instructions are used. Which instruction is to be executed is determined by the source that has started the context switching.

Table 4-2. Instructions to Restore from Context Switching

Restore instruction	Context switching starting source
RETCS	Occurrence of interrupt
RETCSB	Execution of BRKCS instruction

5. EXTERNAL DEVICE EXPANSION FUNCTION

The μ PD78366A can connect external devices (data memory, program memory, and peripheral devices) in addition to the internal ROM and RAM areas. To connect an external device, the address/data bus and read/ write strobe signals are controlled by using ports 4, 5, and 9.

Pin	Pin function with external device connected						
	Function	Name					
P40-P47	Multiplexed address/data bus	AD0-AD7					
P50-P57	Address bus	A8-A15					
P90	Read strobe	RD					
P91	Write strobe	WR					
ASTB	Address strobe	ASTB					

Table 5-1. Pin Function with External Device Connected

6. STANDBY FUNCTIONS

The μ PD78366A is provided with standby functions to reduce the power consumption of the system. The standby functions can be effected in the following two modes:

- HALT mode In this mode, the operating clock of the CPU is stopped. By using this mode in combination with an ordinary operation mode, the μPD78366A operates intermittently to reduce the total power consumption of the system.
- STOP mode In this mode, the oscillator is stopped, and therefore the entire system is stopped. Therefore, power consumption can be minimized with only a leakage current flowing.

Each mode is set through software. Figure 6-1 shows the transition of the status in the standby modes (STOP and HALT modes).

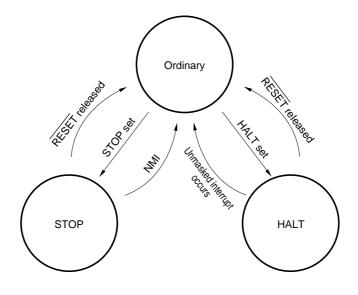


Figure 6-1. Transition of Standby Status

7. RESET FUNCTION

When a low level is input to the $\overline{\text{RESET}}$ pin, the system is reset, and each hardware enters the initial status (reset status). When the $\overline{\text{RESET}}$ pin goes high, the reset status is released, and program execution is started. Initialize the contents of each register through program as necessary.

Especially, change the number of cycles of the programmable wait control register as necessary.

The RESET pin is equipped with a noise rejecter circuit of analog delay to prevent malfunctioning due to noise.

- Cautions 1. While the RESET pin is active (low level), all the pins go into a high-impedance state (except WDTO, AVREF, AVDD, AVSS, VDD, VSS, X1, and X2 pins).
 - 2. When an external RAM is connected, do not connect a pull-up resistor to the P90/RD and P91/WR pins, because the P90/RD and P91/WR pins may go into a high-impedance state, resulting in destruction of the contents of the external RAM. In addition, signal contention occurs on the address/data bus, resulting in damage to the input/output circuit.

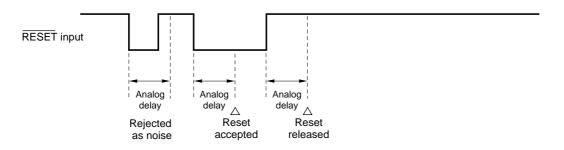
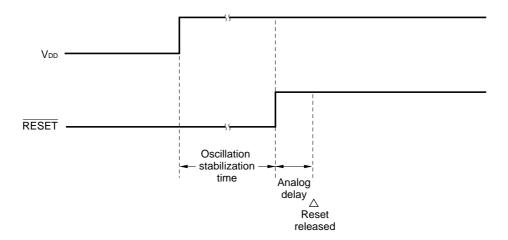



Figure 7-1. Accepting Reset Signal

To effect reset on when power is applied, make sure that sufficient time elapses to stabilize the oscillation after the power is applied until the reset signal is accepted, as shown in Figure 7-2.

8. INSTRUCTION SET

Write an operand in the operand field of each instruction according to the description of the instruction (for details, refer to the Assembler Specifications). Some instructions have two or more operands. Select one of them. Uppercase characters, +, -, #, , !, [, and] are keywords and must be written as is.

Write an appropriate numeric value or label as immediate data. To write a label, be sure to write #, \$, !, [, or].

Representation	Description
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
r1	R0, R1, R2, R3, R4, R5, R6, R7
r2	C, B
rp	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp1	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp2	DE, HL, VP, UP
sfr	Special function register symbol (Refer to Table 2-1 .)
sfrp	Special function register symbol (register that can be manipulated in 16-bit units. Refer to Table 2-1 .)
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 (More than one symbol can be written. However, RP5 can be written only for PUSH and POP instructions, and PSW can be written only for PUSHU and POPU instructions.)
mem	[DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]; register indirect mode[DE + A], [HL + A], [DE + B], [HL + B], [VP + DE], [VP + HL]; based indexed mode[DE + byte], [HL + byte], [VP + byte], [UP + byte], [SP + byte]; based modeword[A], word[B], word[DE], word[HL]; indexed mode
saddr	FE20H-FF1FH immediate data or label
saddrp	FE20H-FF1EH immediate data (however, bit0 = 0) or label (manipulated in 16-bit units)
\$ addr16 ! addr16 addr11 addr5	0000H-FDFFH immediate data or label; relative addressing 0000H-FDFFH immediate data or label; immediate addressing (However, up to FFFFH can be written for MOV instruction. Only FE00H-FEFFH can be written for MOVTBLW instruction.) 800H-FFFH immediate data or label 40H-7EH immediate data (however, bit0 = 0) ^{Note} or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
n	3-bit immediate data (0-7)

Table 8-1. Operand Representation and Description

Note Do not access bit0 = 1 (odd address) in word units.

- **Remarks 1.** rp and rp1 are the same in terms of register name that can be written but are different in code to be generated.
 - 2. r, r1, rp, rp1, and post can be written in absolute name (R0-R15, RP0-RP7) and function name (X, A, C, B, E, D, L, H, AX, BC, DE, HL, VP, and UP).
 - **3.** Immediate addressing can address the entire space. Relative addressing can address only a range of -128 to +127 from the first address of the next instruction.

Instructions	Mnemonic	Operand	Byte	Operation			Flag		
Instr					S	Ζ	AC	P/V	CY
		r1, #byte	2	r1 ← byte					
		saddr, #byte	3	$(saddr) \leftarrow byte$					
		sfr ^{Note} , #byte	3	$sfr \leftarrow byte$					
		r, r1	2	r ← r1					
		A, r1	1	$A \leftarrow r1$					
		A, saddr	2	$A \leftarrow (saddr)$					
		saddr, A	2	$(saddr) \leftarrow A$					
		saddr, saddr	3	$(saddr) \leftarrow (saddr)$					
		A, sfr	2	$A \leftarrow sfr$					
		sfr, A	2	$sfr \leftarrow A$					
	ΜΟΥ	A, mem	1-4	$A \leftarrow (mem)$					
		mem, A	1-4	$(mem) \gets A$					
sfer		A, [saddrp]	2	$A \leftarrow ((saddrp))$					
8-bit data transfer		[saddrp], A	2	$((saddrp)) \leftarrow A$					
data		A, !addr16	4	$A \leftarrow (addr16)$					
-bit		!addri16, A	4	$(addr16) \leftarrow A$					
∞ 		PSWL, #byte	3	PSW∟ ← byte	×	×	×	×	×
		PSWH, #byte	3	$PSW_{H} \leftarrow byte$					
		PSWL, A	2	$PSW_{L} \gets A$	×	×	×	×	×
		PSWH, A	2	$PSW_{H} \gets A$					
		A, PSWL	2	$A \leftarrow PSW_{L}$					
		A, PSWH	2	$A \leftarrow PSW_{H}$					
		A, r1	1	$A \leftrightarrow r1$					
		r, r1	2	$r \leftrightarrow r1$					
		A, mem	2-4	$A \leftrightarrow (mem)$					
	ХСН	A, saddr	2	$A \leftrightarrow (saddr)$					
		A, sfr	3	$A \leftrightarrow sfr$					
		A, [saddrp]	2	$A \leftrightarrow ((saddrp))$					
		saddr, saddr	3	$(saddr) \leftrightarrow (saddr)$					

Note When STBC or WDM is written as sfr, this instruction is treated as a dedicated instruction whose number of bytes is different from that of this instruction.

Symbol	Remarks
(Blank)	No change
0	Cleared to 0
1	Set to 1
×	Set/cleared according to result
Р	P/V flag functions as parity flag
V	P/V flag operates as overflow flag
R	Value previously saved is restored

Instructions	Mnemonic	Operand	Byte	Operation			Flag		
Inst					S	Ζ	AC	P/V	СҮ
		rp1, #word	3	$rp1 \leftarrow word$					
		saddrp, #word	4	$(saddrp) \leftarrow word$					
		sfrp, #word	4	$sfrp \leftarrow word$					
		rp, rp1	2	$rp \leftarrow rp1$					
		AX, saddrp	2	$AX \gets (saddrp)$					
		saddrp, AX	2	$(saddrp) \leftarrow AX$					
5	MOVW	saddrp, saddrp	3	$(saddrp) \leftarrow (saddrp)$					
unsfe		AX, sfrp	2	$AX \leftarrow sfrp$					
a tra		sfrp, AX	2	$sfrp \leftarrow AX$					
t dat		rp1, !addr16	4	$rp1 \leftarrow (addr16)$					
16-bit data transfer		!addr16, rp1	4	(addr16) ← rp1					
		AX, mem	2-4	$AX \gets (mem)$					
		mem, AX	2-4	$(mem) \gets AX$					
	хснw	AX, saddrp	2	$AX \leftrightarrow (saddrp)$					
		AX, sfrp	3	$AX \leftrightarrow sfrp$					
		saddrp, saddrp	3	$(saddrp) \leftrightarrow (saddrp)$					
		rp, rp1	2	$rp \leftrightarrow rp1$					
		AX, mem	2-4	$AX \leftrightarrow (mem)$					
		A, #byte	2	A, CY \leftarrow A + byte	×	×	×	V	×
		saddr, #byte	3	(saddr), CY \leftarrow (saddr) + byte	×	Х	×	V	×
		sfr, #byte	4	sfr, CY \leftarrow sfr + byte	×	×	×	V	×
		r, r1	2	$r, CY \leftarrow r + r1$	×	×	×	V	×
	ADD	A, saddr	2	A, CY \leftarrow A + (saddr)	×	×	×	V	×
		A, sfr	3	A, CY \leftarrow A + sfr	×	×	×	V	×
		saddr, saddr	3	(saddr), CY \leftarrow (saddr) + (saddr)	×	×	×	V	×
8-bit operation		A, mem	2-4	A, CY \leftarrow A + (mem)	×	×	×	V	×
ope		mem, A	2-4	(mem), CY \leftarrow (mem) + A	×	×	×	V	×
8-bit		A, #byte	2	A, CY \leftarrow A + byte + CY	×	×	×	V	×
		saddr, #byte	3	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×	V	×
		sfr, #byte	4	sfr, CY \leftarrow sfr + byte + CY	×	×	×	V	×
		r, r1	2	$r, CY \leftarrow r + r1 + CY$	×	×	×	V	×
	ADDC	A, saddr	2	A, CY \leftarrow A + (saddr) + CY	×	Х	×	V	×
		A, sfr	3	A, CY \leftarrow A + sfr + CY	×	×	×	V	×
		saddr, saddr	3	(saddr), CY \leftarrow (saddr) + (saddr) + CY	×	×	×	V	×
		A, mem	2-4	A, CY \leftarrow A + (mem) + CY	×	×	×	V	×
		mem, A	2-4	(mem), CY \leftarrow (mem) + A + CY	×	×	×	V	×

Instructions	Mnemonic	Operand	Byte	Operation			Flag	l	
Inst					S	Ζ	AC	P/V	CY
		A, #byte	2	A, CY \leftarrow A – byte	×	×	×	V	×
		saddr, #byte	3	(saddr), CY \leftarrow (saddr) – byte	×	×	×	V	×
		sfr, #byte	4	sfr, CY \leftarrow sfr – byte	×	×	×	V	×
		r, r1	2	$r,CY \leftarrow r-r1$	×	×	×	V	×
	SUB	A, saddr	2	A, CY \leftarrow A – (saddr)	×	×	×	V	×
		A, sfr	3	A, CY \leftarrow A – sfr	×	×	×	V	×
		saddr, saddr	3	(saddr), CY \leftarrow (saddr) – (saddr)	×	×	×	V	×
		A, mem	2-4	A, CY \leftarrow A – (mem)	×	×	×	V	×
		mem, A	2-4	(mem), CY \leftarrow (mem) – A	×	×	×	V	×
		A, #byte	2	A, CY \leftarrow A – byte – CY	×	×	×	V	×
		saddr, #byte	3	(saddr), CY \leftarrow (saddr) – byte – CY	×	×	×	V	×
		sfr, #byte	4	sfr, CY \leftarrow sfr – byte – CY	×	×	×	V	×
8-bit operation	SUBC	r, r1	2	$r, CY \leftarrow r - r1 - CY$	×	×	×	V	×
oper		A, saddr	2	A, CY \leftarrow A – (saddr) – CY	×	×	×	V	×
-bit		A, sfr	3	$A,CY \leftarrow A - sfr - CY$	×	×	×	V	×
ω		saddr, saddr	3	(saddr), CY \leftarrow (saddr) – (saddr) – CY	×	×	×	V	×
		A, mem	2-4	A, CY \leftarrow A – (mem) – CY	×	×	×	V	×
		mem, A	2-4	(mem), $CY \leftarrow (mem) - A - CY$	×	×	×	V	×
		A, #byte	2	$A \leftarrow A \land byte$	×	×		Ρ	
		saddr, #byte	3	$(saddr) \leftarrow (saddr) \land byte$	×	×		Ρ	
		sfr, #byte	4	$sfr \leftarrow sfr \land byte$	×	×		Ρ	
		r, r1	2	$r \leftarrow r \wedge r1$	×	×		Ρ	
	AND	A, saddr	2	$A \leftarrow A \land (saddr)$	×	×		Ρ	
		A, sfr	3	$A \leftarrow A \land sfr$	×	Х		Ρ	
		saddr, saddr	3	$(saddr) \leftarrow (saddr) \land (saddr)$	×	×		Ρ	
		A, mem	2-4	$A \leftarrow A \land (mem)$	×	×		Ρ	
		mem, A	2-4	$(mem) \gets (mem) \land A$	×	×		Ρ	

Instructions	Mnemonic	Operand	Byte	Operation	Flag				
Inst					S	Ζ	AC	P/V	СҮ
		A, #byte	2	$A \leftarrow A \lor byte$	×	×		Ρ	
		saddr, #byte	3	$(saddr) \leftarrow (saddr) \lor byte$	×	×		Ρ	
		sfr, #byte	4	$sfr \leftarrow sfr \lor byte$	×	×		Ρ	
		r, r1	2	$r, \leftarrow r \lor r1$	×	×		Ρ	
	OR	A, saddr	2	$A \leftarrow A \lor (saddr)$	×	×		Ρ	
		A, sfr	3	$A \leftarrow A \lor sfr$	×	×		Ρ	
		saddr, saddr	3	$(saddr) \gets (saddr) \lor (saddr)$	×	×		Ρ	
		A, mem	2-4	$A \leftarrow A \lor (mem)$	×	×		Ρ	
		mem, A	2-4	$(\texttt{mem}) \gets (\texttt{mem}) {\textstyle{/}} A$	×	×		Ρ	
	XOR	A, #byte	2	$A \leftarrow A \not { \forall } byte$	×	×		Ρ	
		saddr, #byte	3	$(saddr) \leftarrow (saddr) + byte$	×	×		Ρ	
_		sfr, #byte	4	$sfr \leftarrow sfr \neq byte$	×	×		Ρ	
8-bit operation		r, r1	2	$r \leftarrow r \neq r1$	×	×		Ρ	
oper		A, saddr	2	$A \leftarrow A \nleftrightarrow (saddr)$	×	×		Ρ	
3-bit		A, sfr	3	$A \leftarrow A \nleftrightarrow sfr$	×	×		Ρ	
		saddr, saddr	3	$(saddr) \gets (saddr) \nleftrightarrow (saddr)$	×	×		Ρ	
		A, mem	2-4	$A \leftarrow A \nleftrightarrow (mem)$	×	×		Ρ	
		mem, A	2-4	$(mem) \gets (mem) \nleftrightarrow A$	×	×		Ρ	
		A, #byte	2	A – byte	×	×	×	V	×
		saddr, #byte	3	(saddr) – byte	×	×	×	V	×
		sfr, #byte	4	sfr – byte	×	×	×	V	×
		r, r1	2	r – r1	×	×	×	V	×
	СМР	A, saddr	2	A – (saddr)	×	×	×	V	×
		A, sfr	3	A – sfr	×	×	×	V	×
		saddr, saddr	3	(saddr) – (saddr)	×	×	×	V	×
		A, mem	2-4	A – (mem)	×	×	×	V	×
		mem, A	2-4	(mem) – A	×	×	×	V	×

Instructions	Mnemonic	Operand	Byte	Operation	Flag				
Inst				S CY (AY) word		Ζ	AC	P/V	СҮ
		AX, #word	3	AX, CY \leftarrow AX + word	×	×	×	V	×
		saddrp, #word	4	(saddrp), CY \leftarrow (saddrp) + word	×	×	×	V	×
		sfrp, #word	5	$sfrp,CY \gets sfrp + word$	×	×	×	V	×
	ADDW	rp, rp1	2	$rp, CY \leftarrow rp + rp1$	×	×	×	V	×
		AX, saddrp	2	AX, CY \leftarrow AX + (saddrp)	×	×	×	V	×
		AX, sfrp	3	AX, CY \leftarrow AX + sfrp	×	×	×	V	×
		saddrp, saddrp	3	(saddrp), CY \leftarrow (saddrp) + (saddrp)	×	×	×	V	×
		AX, #word	3	AX, CY \leftarrow AX – word	×	×	×	V	×
L L		saddrp, #word	4	(saddrp), CY \leftarrow (saddrp) – word	×	×	×	V	×
ratic		sfrp, #word	5	sfrp, CY \leftarrow sfrp – word	×	×	×	V	×
ope	SUBW	rp, rp1	2	$rp, CY \leftarrow rp - rp1$	×	×	×	V	×
16-bit operation		AX, saddrp	2	AX, CY \leftarrow AX – (saddrp)	×	×	×	V	×
7		AX, sfrp	3	AX, CY \leftarrow AX – sfrp	×	×	×	V	×
		saddrp, saddrp	3	(saddrp), CY \leftarrow (saddrp) – (saddrp)	×	×	×	V	×
		AX, #word	3	AX – word	×	×	×	V	×
		saddrp, #word	4	(saddrp) – word	×	×	×	V	×
		sfrp, #word	5	sfrp – word	×	×	×	V	×
	CMPW	rp, rp1	2	rp – rp1	×	×	×	V	×
		AX, saddrp	2	AX – (saddrp)	×	×	×	V	×
		AX, sfrp	3	AX – sfrp	×	×	×	V	×
		saddrp, saddrp	3	(saddrp) – (saddrp)	×	×	×	V	×
5	MULU	r1	2	$AX \leftarrow AX \times r1$					
Multiplication /division	DIVUW	r1	2	AX (quotient), r1 (remainder) \leftarrow AX ÷ r1					
ultiplicati /division	MULUW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1					
Mu	DIVUX	rp1	2	AXDE (quotient), rp1 (remainder) \leftarrow AXDE \div rp1					
Signed multipli- cation	MULW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1					
Sum-of- products operation	MACW	n	3	$\begin{array}{l} AXDE \leftarrow (B) \times (C) + AXDE \\ B \leftarrow B + 2, C \leftarrow C + 2, n \leftarrow n - \ 1 \\ End \text{ if } n = 0 \text{ or } P/V = 1 \end{array}$	×	×	×	V	×
Sum-of-products operation with saturation	MACSW	n	3	$\begin{array}{l} AXDE \leftarrow (B) \times (C) + AXDE \\ B \leftarrow B + 2, C \leftarrow C + 2, n \leftarrow n - 1 \\ if \; overflow \; (P/V = 1) \; then \\ AXDE \leftarrow 7FFFFFFH \\ if \; underflow \; (P/V = 1) \; then \\ AXDE \leftarrow 80000000H \\ end \; if \; n = 0 \; or \; P/V = 1 \end{array}$	×	×	×	V	×
Relative operation	SACW	[DE +], [HL +]	4	$\begin{array}{l} AX \leftarrow AX + \mid (DE) - (HL) \mid \\ DE \leftarrow DE + 2 \; HL \leftarrow HL + 2 \; C \leftarrow C - 1 \\ end \; if \; C = 0 \; or \; cy = 1 \end{array}$	×	×	×	V	×

Instructions	Mnemonic	Operand	Byte	Operation			Flag		
Insti					S	Ζ	AC	P/V	CY
Table shift	MOVTBLW	!addr16, n	4	$(addr16 + 2) \leftarrow (addr16), n \leftarrow n - 1$					
sh	INOVI DEVI		4	addr16 \leftarrow addr16 - 2, End if n = 0					
	INC	r1	1	r1 ← r1 + 1	×	×	×	V	
t	INC	saddr	2	$(saddr) \leftarrow (saddr) + 1$	×	×	×	V	
eme	DEC	r1	1	r1 ← r1 − 1	×	×	×	V	
Increment/decrement	DEC	saddr	2	$(saddr) \leftarrow (saddr) - 1$	×	×	×	V	
ient/	INCW	rp2	1	$rp2 \leftarrow rp2 + 1$					
crem	INCIV	saddrp	3	$(saddrp) \leftarrow (saddrp) + 1$					
Ē	DECW	rp2	1	$rp2 \leftarrow rp2 - 1$					
	DECW	saddrp	3	$(saddrp) \leftarrow (saddrp) - 1$					
	ROR	r1, n	2	(CY, r17 \leftarrow r10, r1m-1 \leftarrow r1m) \times n times				Ρ	×
	ROL	r1, n	2	(CY, r1o \leftarrow r17, r1 _{m+1} \leftarrow r1 _m) \times n times				Ρ	×
	RORC	r1, n	2	$(CY \leftarrow r1_0, \ r1_7 \leftarrow CY, \ r1_{m-1} \leftarrow r1_m) \times n \ times$				Ρ	×
	ROLC	r1, n	2	$(CY \leftarrow r1_7, r1_0 \leftarrow CY, r1_{m+1} \leftarrow r1_m) \times n \text{ times}$				Ρ	×
	SHR	r1, n	2	$(CY \leftarrow r1_0, r1_7 \leftarrow 0, r1_{m-1} \leftarrow r1_m) \times n \text{ times}$	×	Х	0	Ρ	×
	SHL	r1, n	2	$(CY \leftarrow r1_7, \ r1_0 \ \leftarrow 0, \ r1_{m+1} \leftarrow r1_m) \times n \ times$	×	×	0	Ρ	×
Shift rotate	SHRW	rp1, n	2	$(CY \leftarrow rp1_0, rp1_{15} \leftarrow 0, rp1_{m-1} \leftarrow rp1_m) \times n \text{ times}$	×	×	0	Ρ	×
Shi	SHLW	rp1, n	2	$(CY \leftarrow rp1_{15}, rp1_0 \leftarrow 0, rp1_{m+1} \leftarrow rp1_m) \times n \text{ times}$	×	×	0	Ρ	×
	ROR4	[rp1]	2	$\begin{array}{l} A_{3-0} \leftarrow (rp1)_{3-0}, \\ (rp1)_{7-4} \leftarrow A_{3-0}, \\ (rp1)_{3-0} \leftarrow (rp1)_{7-4} \end{array}$					
	ROL4	[rp1]	2	$\begin{array}{l} A_{3-0} \leftarrow (rp1)_{7-4}, \\ (rp1)_{3-0} \leftarrow A_{3-0}, \\ (rp1)_{7-4} \leftarrow (rp1)_{3-0} \end{array}$					
BCD adjustment	ADJBA		2	Decimal Adjust Accumelator	×	×	0	Р	×
	ADJBS		2			^	U	I	^
Data conversion	CVTBW		1	When $A_7 = 0$, $X \leftarrow A$, $A \leftarrow 00H$ When $A_7 = 1$, $X \leftarrow A$, $A \leftarrow FFH$					

Remarks 1. n of the shift rotate instruction indicates the number of times the shift rotate instruction is executed.

2. The address of the table shift instruction ranges from FE00H to FEFFH.

Instructions	Mnemonic	Operand	Byte	Operation			Fla	ag		
Inst					S	Ζ	A	CF	₽/V	СҮ
		CY, saddr.bit	3	$CY \gets (saddr.bit)$						×
		CY, sfr.bit	3	$CY \leftarrow sfr.bit$						×
		CY, A.bit	2	$CY \leftarrow A.bit$						×
		CY, X.bit	2	$CY \gets X.bit$						×
		CY, PSWH.bit	2	$CY \gets PSW_{H}.bit$						×
	MOV1	CY, PSWL.bit	2	$CY \gets PSW_{L}.bit$						×
		saddr.bit, CY	3	$(saddr.bit) \gets CY$						
		sfr.bit, CY	3	$sfr.bit \gets CY$						
		A.bit, CY	2	$A.bit \gets CY$						
		X.bit, CY	2	$X.bit \gets CY$						
		PSWH.bit, CY	2	$PSW_{H}.bit \leftarrow CY$						
		PSWL.bit, CY	2	PSW∟.bit ← CY	×	×	×		×	
		CY, saddr.bit	3	$CY \leftarrow CY \land (saddr.bit)$						×
		CY, /saddr.bit	3	$CY \leftarrow CY \land (\overline{saddr.bit})$						×
		CY, sfr.bit	3	$CY \leftarrow CY \land sfr.bit$						×
		CY, /sfr.bit	3	$CY \leftarrow CY \land \overline{sfr.bit}$						×
tion		CY, A.bit	2	$CY \leftarrow CY \land A.bit$						×
Bit manipulation		CY, /A.bit	2	$CY \leftarrow CY \land \overline{A.bit}$						×
nani	AND1	CY, X.bit	2	$CY \leftarrow CY \land X.bit$						×
Bitr		CY, /X.bit	2	$CY \leftarrow CY \land \overline{X.bit}$						×
		CY, PSWH.bit	2	$CY \leftarrow CY \land \ PSW_{H}.bit$						×
		CY, /PSWH.bit	2	$CY \leftarrow CY \land \overline{PSW_{H.bit}}$						×
		CY, PSWL.bit	2	$CY \gets CY \land \ PSW_{L}.bit$						×
		CY, /PSWL.bit	2	$CY \leftarrow CY \land \overline{PSW_{L}.bit}$						×
		CY, saddr.bit	3	$CY \gets CY \lor (saddr.bit)$						×
		CY, /saddr.bit	3	$CY \leftarrow CY \lor (\overline{saddr.bit})$						×
		CY, sfr.bit	3	$CY \leftarrow CY \lor sfr.bit$						×
		CY, /sfr.bit	3	$CY \leftarrow CY \lor \overline{sfr.bit}$						×
		CY, A.bit	2	$CY \leftarrow CY \lor A.bit$						×
	0.01	CY, /A.bit	2	$CY \leftarrow CY \lor \overline{A.bit}$						×
	OR1	CY, X.bit	2	$CY \gets CY \lor X.bit$						×
		CY, /X.bit	2	$CY \leftarrow CY \vee \overline{X.bit}$						×
		CY, PSWH.bit	2	$CY \leftarrow CY \lor PSW_{H.bit}$						×
		CY, /PSWH.bit	2	$CY \leftarrow CY \lor \ \overline{PSW_{H}.bit}$						×
		CY, PSWL.bit	2	$CY \leftarrow CY \lor PSW_L.bit$						×
		CY, /PSWL.bit	2	$CY \leftarrow CY \lor \overline{PSW_L.bit}$						×

Instructions	Mnemonic	Operand	Byte	Operation			Fla	ag		
Inst					S	Ζ	A	CF	P/V	СҮ
		CY, saddr.bit	3	$CY \leftarrow CY \nleftrightarrow (saddr.bit)$						×
		CY, sfr.bit	3	$CY \leftarrow CY + sfr.bit$						×
	XOR1	CY, A.bit	2	$CY \leftarrow CY + A.bit$						×
	Xolti	CY, X.bit	2	$CY \leftarrow CY \nleftrightarrow X.bit$						×
		CY, PSWH.bit	2	$CY \leftarrow CY \nleftrightarrow PSW_{H}.bit$						×
		CY, PSWL.bit	2	$CY \gets CY \nleftrightarrow PSW_{L}.bit$						×
		saddr.bit	2	$(saddr.bit) \leftarrow 1$						
		sfr.bit	3	$sfr.bit \leftarrow 1$						
	SET1	A.bit	2	A.bit $\leftarrow 1$						
	SEIT	X.bit	2	X.bit $\leftarrow 1$						
		PSWH.bit	2	PSW⊦.bit ← 1						
		PSWL.bit	2	PSW∟.bit ← 1	×	×	×		×	×
Bit manipulation		saddr.bit	2	$(saddr.bit) \leftarrow 0$						
nipu		sfr.bit	3	$sfr.bit \leftarrow 0$						
t ma	CLR1	A.bit	2	A.bit $\leftarrow 0$						
B	GLRI	X.bit	2	X.bit $\leftarrow 0$						
		PSWH.bit	2	PSW⊦.bit ← 0						
		PSWL.bit	2	PSW∟.bit ← 0	×	×	×		×	×
		saddr.bit	3	$(saddr.bit) \leftarrow (\overline{saddr.bit})$						
		sfr.bit	3	$sfr.bit \leftarrow \overline{sfr.bit}$						
	NOT1	A.bit	2	A.bit $\leftarrow \overline{A.bit}$						
	NOTT	X.bit	2	$X.bit \leftarrow \overline{X.bit}$						
		PSWH.bit	2	PSW⊦.bit ← PSW⊦.bit						
		PSWL.bit	2	$PSW_{L}.bit \leftarrow \overline{PSW_{L}.bit}$	×	×	×		×	×
	SET1	CY	1	CY ← 1						1
	CLR1	CY	1	$CY \leftarrow 0$						0
	NOT1	CY	1	$CY \leftarrow \overline{CY}$						×

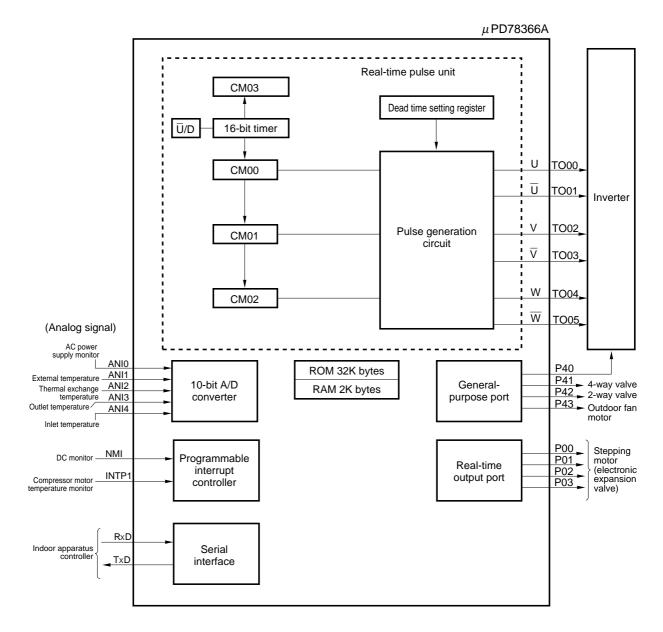
Instructions	Mnemonic	Operand	Byte	Operation	S		Flag AC		CY
	CALL	!addr16	3	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ PC \leftarrow addr16, SP \leftarrow SP - 2			70	170	
	CALLF	!addr11	2	$(SP - 1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L},$ $PC_{15-11} \leftarrow 00001, PC_{10-0} \leftarrow addr11, SP \leftarrow SP - 2$					
	CALLT	[addr5]	1	$\begin{split} (SP-1) \leftarrow (PC+1) {\scriptscriptstyle H}, \ (SP-2) \leftarrow (PC+1) {\scriptscriptstyle L}, \\ PC {\scriptscriptstyle H} \leftarrow (TPF, \ 00000000, \ addr5+1), \\ PC {\scriptscriptstyle L} \leftarrow (TPF, \ 00000000, \ addr5), \ SP \leftarrow SP-2 \end{split}$					
		rp1	2	$(SP - 1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L},$ $PC_{H} \leftarrow rp1_{H}, PC_{L} \leftarrow rp1_{L}, SP \leftarrow SP - 2$					
Call/return	CALL	[rp1]	2	$\begin{array}{l} (SP-1) \leftarrow (PC+2) \shortparallel, \ (SP-2) \leftarrow (PC+2) \llcorner, \\ PC \shortparallel \leftarrow (rp1+1), \ PC \llcorner \leftarrow (rp1), \ SP \leftarrow SP-2 \end{array}$					
Call	BRK		1	$\begin{array}{l} (SP-1) \leftarrow PSW_{H}, (SP-2) \leftarrow PSW_{L} \\ (SP-3) \leftarrow (PC+1)_{H}, (SP-4) \leftarrow (PC+1)_{L}, \\ PC_{L} \leftarrow (003EH), PC_{H} \leftarrow (003FH), \\ SP \leftarrow SP-4, IE \leftarrow 0 \end{array}$					
	RET		1	$PC_L \leftarrow (SP), PC_H \leftarrow (SP+1), SP \leftarrow SP+2$					
	RETB		1	$\begin{array}{l} PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP + 1) \\ PSW_{L} \leftarrow (SP + 2), PSW_{H} \leftarrow (SP + 3) \\ SP \leftarrow SP + 4 \end{array}$	R	R	R	R	R
	RETI		1	$\begin{array}{l} PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1) \\ PSW_{L} \leftarrow (SP+2), PSW_{H} \leftarrow (SP+3) \\ SP \leftarrow SP+4 \end{array}$	R	R	R	R	R
	sfrp		3	$(SP - 1) \leftarrow sfr_H$ $(SP - 2) \leftarrow sfr_L$ $SP \leftarrow SP - 2$					
	PUSH	post	2	$\{(SP - 1) \leftarrow \text{post}_H, (SP - 2) \leftarrow \text{post}_L, SP \leftarrow SP - 2\} \times n \text{ times}$					
		PSW	1	$(SP-1) \gets PSW_{H},(SP-2) \gets PSW_{L},SP \gets SP-2$					
	PUSHU	post	2	{(UP - 1) \leftarrow post _H , (UP - 2) \leftarrow post _L , UP \leftarrow UP - 2} × n times					
Stack manipulation		sfrp	3	$sfr_{L} \leftarrow (SP)$ $sfr_{H} \leftarrow (SP + 1)$ $SP \leftarrow SP + 2$					
ack mai	POP	post	2	{postL \leftarrow (SP), postH \leftarrow (SP + 1), SP \leftarrow SP + 2} × n times					
St.		PSW	1	$PSW_{L} \gets (SP), PSW_{H} \gets (SP+1), SP \gets SP+2$	R	R	R	R	R
	POPU	post	2	{postL \leftarrow (UP),postH \leftarrow (UP + 1), UP \leftarrow UP + 2} × n times					
		SP, #word	4	$SP \gets word$					
	MOVW	SP, AX	2	$SP \leftarrow AX$					
		AX, SP	2	$AX \leftarrow SP$					
	INCW	SP	2	$SP \leftarrow SP + 1$					
	DECW	SP	2	$SP \leftarrow SP - 1$					

Remark n of the stack manipulation instruction is the number of registers written as post.

Instructions	Mnemonic	Operand	Byte	Operation			Flag	
					S	Ζ	AC	P/V CY
Special	CHKL	sfr	3	pin level) \forall (signal level before output buffer) $\times \times P$ A \leftarrow (pin level) \forall (signal level before output buffer) $\times \times P$				
Spe	CHKLA	sfr	3	$A \leftarrow (pin level) \forall (signal level before output buffer)$	×	×		Р
nal		!addr16	3	$PC \leftarrow addr16$				
Unconditional branch	BR	rp1	2	РСн ← rp1н, PC∟← rp1∟				
bra		[rp1]	2	$PC_{H} \leftarrow (rp1 + 1), PC_{L} \leftarrow (rp1)$				
5		\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$				
	BC	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$				
	BL							
	BNC	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$				
	BNL							
	BZ	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if Z = 1				
	BE							
	BNZ	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$				
	BNE							
BV \$addr16 2 PC ← PC ↔		$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 1$						
	BNV	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$				
	BPO	•						
	BN	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 1$				
-S	BP	\$addr16	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$				
oran	BGT	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $(P/V \neq S)/Z = 0$				
Conditional branch	BGE	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $P/V \neq S= 0$				
ditio	BLT	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \neq S = 1$				
Con	BLE	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \neq S) / Z = 1$				
	BH	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$				
	BNH	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$				
		saddr.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (saddr.bit) = 1$				
		sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1				
	вт	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } A.bit = 1$				
		X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 1$				
		PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } PSW_{H.bit} = 1$				
		PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_L.bit = 1$				
		saddr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8 \text{ if } (saddr.bit) = 0$				
		sfr.bit, \$addr16	4	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$				
	BF	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 0				
		X.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 0$				
		PSWH.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $PSW_{H}.bit = 0$				
		PSWL.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if PSW_L .bit = 0				

Instructions	Mnemonic	Operand	Byte	Operation			Flag		
Inst					S	Ζ	AC	P/V	CY
		saddr.bit, \$addr16	4	PC ← PC + 4 + jdisp8 if (saddr.bit) = 1 then reset (saddr.bit)					
		sfr.bit, \$addr16	4	PC ← PC + 4 + jdisp8 if sfr.bit = 1 then reset sfr.bit					
	BTCLR	A.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if A.bit = 1 then reset A.bit					
	BICLK	X.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if X.bit = 1 then reset X.bit					
		PSWH.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if PSW⊦.bit = 1 then reset PSW⊦.bit					
5		PSWL.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if PSW∟.bit = 1 then reset PSW∟.bit	×	×	×	×	×
Conditional branch		saddr.bit, \$addr16	4	PC ← PC + 4 + jdisp8 if (saddr.bit) = 0 then set (saddr.bit)					
nditiona		sfr.bit, \$addr16	4	PC ← PC + 4 + jdisp8 if sfr.bit = 0 then set sfr.bit					
ပိ	BFSET	A.bit, \$addr16	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } A.bit = 0$ then set A.bit					
		X.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if X.bit = 0 then set X.bit					
		PSWH.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if PSW⊦.bit = 0 then set PSW⊦.bit					
		PSWL.bit, \$addr16	3	PC ← PC + 3 + jdisp8 if PSW∟.bit = 0 then set PSW∟.bit	×	×	×	×	×
	DBNZ	r2, \$addr16	2	$ \begin{array}{l} r2 \leftarrow r2 - 1, \\ then \ PC \leftarrow PC + 2 + jdisp8 \ if \ 2 \neq 0 \end{array} $					
	DDNZ	saddr, \$addr16	3	$(saddr) \leftarrow (saddr) - 1,$ then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$					
ching	BRKCS	RBn	2	$\begin{array}{l} PC_{H} \leftrightarrow R5, PC_{L} \leftrightarrow R4, R7 \leftarrow PSW_{H}, \\ R6 \leftarrow PSW_{L}, \leftarrow RBS2 - 0 \leftarrow n, RSS \leftarrow 0, IE \leftarrow 0 \end{array}$					
Context switching	RETCS	!addr16	3	$PCH \leftarrow R5, PCL \leftarrow R4, R5, R4 \leftarrow addr16$ $PSWH \leftarrow R7, PSWL \leftarrow R6$	R	R	R	R	R
Conte	RETCSB	!addr16	4	$PC_{H} \leftarrow R5, PC_{L} \leftarrow R4, R5, R4 \leftarrow addr16$ $PSW_{H} \leftarrow R7, PSW_{L} \leftarrow R6$	R	R	R	R	R

Instructions	Mnemonic	Operand	Byte	Operation			Flag		
Insti					s	Ζ	AC	P/V	CY
	MOVM	[DE+], A	2	$(DE+) \leftarrow A, C \leftarrow C - 1$ End if C = 0					
	MOVM	[DE–], A	2	$(DE-) \leftarrow A, C \leftarrow C - 1$ End if C = 0					
	MOVEK	[DE+], [HL+]	2	$(DE+) \leftarrow (HL+), C \leftarrow C - 1$ End if C = 0					
	МОУВК	[DE–], [HL–]	2	$(DE-) \leftarrow (HL-), C \leftarrow C - 1$ End if C = 0					
	хснм	[DE+], A	2	$(DE+) \leftrightarrow A, C \leftarrow C - 1$ End if C = 0					
		[DE–], A	2	$(DE-) \leftrightarrow A, C \leftarrow C - 1$ End if C = 0					
	YOUSK	[DE+], [HL+]	2	$(DE+) \leftrightarrow (HL+), C \leftarrow C - 1$ End if C = 0					
	ХСНВК	[DE–], [HL–]	2	$(DE-) \leftrightarrow (HL-), C \leftarrow C - 1$ End if C = 0					
	СМРМЕ	[DE+], A	2	$(DE+) - A, C \leftarrow C - 1$ End if C = 0 or Z = 0	×	×	×	V	×
String		[DE–], A	2	$(DE-) - A, C \leftarrow C - 1$ End if C = 0 or Z = 0	×	×	×	V	×
Str	СМРВКЕ	[DE+], [HL+]	2	$(DE+) - (HL+), C \leftarrow C - 1$ End if C = 0 or Z = 0	×	×	×	V	×
		[DE–], [HL–]	2	$(DE-) - (HL-), C \leftarrow C - 1$ End if C = 0 or Z = 0	×	×	×	V	×
	ONDARIE	[DE+], A	2	$(DE+) - A, C \leftarrow C - 1$ End if C = 0 or Z = 1	×	×	×	V	×
	CMPMNE	[DE–], A	2	$(DE-) - A, C \leftarrow C - 1$ End if C = 0 or Z = 1	×	×	×	V	×
	CMDBIANE	[DE+], [HL+]	2	$(DE+) - (HL+), C \leftarrow C - 1$ End if C = 0 or Z = 1	×	×	×	V	×
	CMPBKNE	[DE–], [HL–]	2	$(DE-) - (HL-), C \leftarrow C - 1$ End if C = 0 or Z = 1	×	×	×	V	×
	0115110	[DE+], A	2	$(DE+) - A, C \leftarrow C - 1$ End if C = 0 or CY = 0	×	×	×	V	×
	СМРМС	[DE–], A	2	$(DE-) - A, C \leftarrow C - 1$ End if C = 0 or CY = 0	×	×	×	V	×
		[DE+], [HL+]	2	$(DE+) - (HL+), C \leftarrow C - 1$ End if C = 0 or CY = 0	×	×	×	V	×
	СМРВКС	[DE–], [HL–]	2	$(DE-) - (HL-), C \leftarrow C - 1$ End if C = 0 or CY = 0	×	×	×	V	×


Instructions	Mnemonic	Operand B	Byte	Byte Operation		Flag							
<u>Ľ</u>					S	Ζ	AC	P/V	CY				
		[DE+], A	2	$(DE+) - A, C \leftarrow C - 1$ End if C = 0 or CY = 1	×	×	×	V	×				
String	CMPMNC	[DE–], A	2	$(DE-) - A, C \leftarrow C - 1$ End if C = 0 or CY = 1	×	×	×	V	×				
Str	СМРВКИС	[DE+], [HL+]	2	$(DE+) - (HL+), C \leftarrow C - 1$ End if C = 0 or CY = 1	×	×	×	V	×				
		[DE–], [HL–]	2	$(DE-) - (HL-), C \leftarrow C - 1$ End if C = 0 or CY = 1	×	×	×	V	×				
	MOV	STBC, #byte	4	$STBC \gets byte^{Note}$									
		WDM, #byte	4	$WDM \gets byte^{Note}$									
- -	SWRS		1	$RSS \leftarrow \overline{RSS}$									
contr	051	RBn	2	$RBS2 - 0 \leftarrow n, RSS \leftarrow 0$									
CPU control	SEL	RBn, ALT	2	$RBS2 - 0 \leftarrow n, RSS \leftarrow 1$									
Ū	NOP		1	No Operation									
	EI		1	$IE \leftarrow 1$ (Enable Interruptt)									
	DI		1	$IE \leftarrow 0$ (Disable Interrupt)									

Note If the op code of the STBC register and WDM register manipulation instructions is wrong, an op code trap interrupt occurs.

 $\begin{array}{l} \text{Operation on trap:} \\ (\text{SP}-1) \leftarrow \text{PSW}_{\text{H}}, (\text{SP}-2) \leftarrow \text{PSW}_{\text{L}}, \\ (\text{SP}-3) \leftarrow (\text{PC}-4)_{\text{H}}, (\text{SP}-4) \leftarrow (\text{PC}-4)_{\text{L}}, \\ \text{PC}_{\text{L}} \leftarrow (003\text{CH}), \text{PC}_{\text{H}} \leftarrow (003\text{DH}), \\ \text{SP} \leftarrow \text{SP}-4, \text{IE} \leftarrow 0 \end{array}$

9. EXAMPLE OF SYSTEM CONFIGURATION

Controlling outdoor apparatus of inverter air conditioner

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Test conditions	Rating	Unit
Power supply voltage	Vdd		-0.5 to +7.0	V
	AVDD		-0.5 to Vod + 0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vı	Pins other than P70/ANI0-P77/ANI7	-0.5 to VDD + 0.5	V
Output voltage	Vo		-0.5 to VDD + 0.5	V
Low-level output current	lol	Note	20	mA
		Output pins other than those in the note	4.0	mA
		Total of all output pins	200	mA
High-level output current	Іон	All output pins	-3.0	mA
		Total of all output pins	-25	mA
Analog input voltage	VIAN	P70/ANI0-P77/ANI7 pins	AVss - 0.5 to AVDD + 0.5	V
A/D converter reference input voltage	AVREF		AVss - 0.5 to AVDD + 0.5	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-60 to +150	°C

Note P00/RTP0-P03/RTP3, P04/PWM0, P05/TCUD/PWM1, P06/TIUD/TO40, P07/TCLRUD, P10-P17, and P80/TO00-P85/TO05 pins.

Caution Product quality may suffer if the absolute rating is exceeded for any parameter, even momentarily. In other words, an absolute maxumum rating is a value at which the possibility of psysical damage to the product cannnot be ruled out. Care must therefore be taken to ensure that the these ratings are not exceeded during use of the product.

Recommended Operating Conditions

Oscillation frequency	TA	Vdd
3 MHz ≤ fxx ≤ 8 MHz	−40 to +85 °C	+5.0 V ± 10 %

Capacitance (TA = 25 °C, Vss = VDD = 0 V)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			20	pF
Output capacitance	Co	0 V except measured pins			20	pF
I/O capacitance	Сю				20	pF

Resonator	Recommended circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	$V_{SS} X1 X2$ $C1 - C2 - C2$	Oscillation frequency (fxx)	3	8	MHz
External clock		X1 input frequency (fx)	3	8	MHz
	Leave unconnected	X1 rise/fall time (txr, txr)	0	30	ns
	inverter	X1 input high-/low-level width (twxн, twxL)	40	170	ns

Caution When using system clock oscillation circuits, to reduce the effect of the wiring capacitouce, etc, wire the area indicated by dotted-line as follows:

- Make the wiring as short as possible.
- Do not allow the wiring to intersect other signal lines. Keep it away from other lines in which varying high currents flow.
- Make sure that the ground point of the oscillation circuit capacitor is always at the same electric potential as Vss. Do not allow the wiring to be grounded to a ground pattern in which very high currents are flowing.
- Do not extract signals from the oscillation circuit.

Parameter	Symbol	Te	est conditions	MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL1	Note 1		0		0.8	V
	VIL2	Note 2		0		0.2Vdd	V
High-level input voltage	VIH1	Note 1		2.2			V
	VIH2	Note 2		0.8Vdd			V
Low-level output voltage	Vol1	Note 3	IoL = 2.0 mA			0.45	V
	Vol2	Note 4	lo∟ = 15 mA			1.5	V
	Vol3	Note 5	Iol = 10 mA			1.5	V
High-level output voltage	Vон	Іон = -400 μА		Vdd - 1.0			V
Input leakage current	L	$0 V \le V_I \le V_{DD}$, AVdd = Vdd			±10	μA
Output leakage current	Ilo	$0 V \le V_0 \le V_D$	d, AVdd = Vdd			±10	μΑ
VDD supply current	DD1	Operating mo	de		70	120	mA
	DD2	HALT mode			45	70	mA
Data retention voltage	Vdddr	STOP mode	STOP mode				V
Data retention current	IDDDR	STOP mode VDDDR = 2.5 V			2	10	μΑ
			VDDDR = $5.0 \text{ V} \pm 10 \%$		10	50	μΑ
Pull-up resistance	R∟	V1 = 0 V	·	15	60	150	kΩ

DC Characteristics (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V)

Notes 1. Pins other than those specified in Note 2.

- RESET, X1, X2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2, P24/INTP3/TI, P25/INTP4, P32/ SO/SB0, P33/SI/SB1 and P34/SCK pins.
- 3. Pins other than those specified in Notes 4 and 5.
- **4.** P80/TO00-P85/TO05 pins (When Io_L = 15 mA is in operation, up to three pins can be ON simultaneously.)
- P00/RTP0-P03/RTP3, P04/PWM0, P05/TCUD/PWM1, P06/TIUD/TO40 and P07/TCLRUD pins (When lo_L = 10 mA is in operation, up to four pins can be ON simultaneously.) as well as P10-P17 pins (When lo_L = 10 mA is in operation, up to four pins can be ON simultaneously.).
- Caution When the P80-P85, P00-P07, and P10-P17 pins are not used under the conditions specified in Notes 4 and 5, they have the same characteristics as in Note 3.

AC Characteristics (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V, CL = 100 pF, fxx = 8 MHz)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
System clock cycle time	tсүк		62.5	166.7	ns
Address setup time (vs. ASTB \downarrow)	t sast		7		ns
Address hold time (vs. ASTB \downarrow)	t HSTA		11		ns
$\overline{RD}\downarrow \to address$ float time	t fra			24	ns
Address \rightarrow data input time	tdaid			100	ns
$\overline{RD}\downarrow ightarrow$ data input time	tdrid			49	ns
$ASTB \downarrow \to \overline{RD} \downarrow delay time$	t dstr		15		ns
Data hold time (vs. RD ↑)	thrid		0		ns
$\overline{RD} \uparrow \rightarrow address active time$	t dra		17		ns
RD low-level width	twrl		63		ns
ASTB high-level width	twsтн		14		ns
$\overline{WR} \downarrow \rightarrow$ data output time	towod			21	ns
$ASTB \downarrow \to \overline{WR} \downarrow delay time$	tdstw		15		ns
$\overline{WR} \uparrow \rightarrow ASTB \uparrow delay time$	towst		78		ns
Data setup time (vs. WR ↑)	tsodw		57		ns
Data hold time (vs. WR ↑)	tнwod		8		ns
WR low-level width	tww∟		63		ns

Read/Write Operation (when general-purpose memory is connected)

tсүк-dependent Bus Timing Definition

Parameter	Arithmetic expression	MIN./MAX.	Unit
t sast	(0.5 + a) T – 24	MIN.	ns
t hsta	0.5T – 20	MIN.	ns
twsтн	(0.5 + a) T – 17	MIN.	ns
t dstr	0.5T – 16	MIN.	ns
twrl	(1.5 + n) T – 30	MIN.	ns
t daid	(2.5 + a + n) T – 56	MAX.	ns
tdrid	(1.5 + n) T – 44	MAX.	ns
t dra	0.5T – 14	MIN.	ns
t dstw	0.5T – 16	MIN.	ns
towsт	1.5T – 15	MIN.	ns
tww∟	(1.5 + n) T – 30	MIN.	ns
towod	0.5T – 10	MAX.	ns
tsodw	(1 + n) T – 5	MIN.	ns

Remarks 1. $T = t_{CYK} = 1/f_{CLK}$ (fcLK refers to the internal system clock frequency.)

- 2. a becomes 1 when the address wait is inserted. Otherwise, it becomes 0.
- 3. n refers to the number of wait cycles that is inserted by specifying the PWC register.
- 4. Only the bus timings indicated in this table depend on tCYK.

Parameter	Symbol	Test co	onditions	MIN.	MAX.	Unit
Serial clock cycle time	tсүзк	SCK output	Internal 8 dividing	500		ns
		SCK input	External clock	500		ns
Serial clock low-level	twskl	SCK output	Internal 8 dividing	210		ns
width		SCK input	External clock	210		ns
Serial clock high-level	twsкн	SCK output	Internal 8 dividing	210		ns
width		SCK input	External clock	210		ns
SI setup time (vs. $\overline{\mathrm{SCK}}$ \uparrow)	t srxsk			80		ns
SI hold time (vs. $\overline{\text{SCK}} \uparrow$)	thskrx			80		ns
$\overline{SCK} \downarrow \to SO$ delay time	t dsktx	$R = 1 k\Omega, C = 100 pF$			210	ns

Serial Operation (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V)

Up/Down Counter Operation (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V)

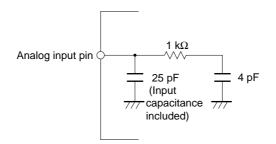
Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
TIUD high-/low-level	twтiuн, twтiuL	Other than mode 4	2T		ns
width		Mode 4	4T		ns
TCUD high-/low-level	twrcuн, twrcul	Other than mode 4	2T		ns
width		Mode 4	4T		ns
TCLRUD high-/low-level width	twcluh, twclul		2T		ns
TCUD setup time (vs. TIUD \uparrow)	t stcu	Mode 3	Т		ns
TCUD hold time (vs. TIUD ↑)	tнтсu	Mode 3	Т		ns
TIUD setup time (vs. TCUD)	ts4TIU	Mode 4	2T		ns
TIUD hold time (vs. TCUD)	t H4TIU	Mode 4	2T		ns
TIUD & TCUD cycle time	tcyc	Other than mode 4		4	MHz
	tcyc4	Mode 4		2	MHz

Remark $T = t_{CYK} = 1/f_{CLK}$ (f_{CLK} refers to the internal system clock frequency.)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
NMI high-/low-level width	twnih, twnil		2		μs
RESET high-/low-level width	twrsh, twrsl		1.5		μs
INTP0 high-/low-level	twioн, twioL	Ts = T	250		ns
width		Ts = 4T	1.0		μs
		Ts = 8T	2.0		μs
		Ts = 16T	4.0		μs
INTP1 high-/low-level	twiih, twiil	Ts = T	250		ns
width		Ts = 4T	1.0		μs
		Ts = 8T	2.0		μs
		Ts = 16T	4.0		μs
INTP2 high-/low-level width	twizh, twizl	Ts = T	250		ns
		Ts = 4T	1.0		μs
INTP3(TI) high-/low-	twi3H, twi3L	Ts = T	250		ns
level width		Ts = 4T	1.0		μs
		Ts = 8T	2.0		μs
		Ts = 16T	4.0		μs
		Ts = 64T	16.0		μs
		Ts = 128T	32.0		μs
		Ts = 256T	64.0		μs
INTP4 high-/low-level	twi4H, twi4L	Ts = T	250		ns
width		Ts = 4T	1.0		μs
		Ts = 8T	2.0		μs
		Ts = 16T	4.0		μs

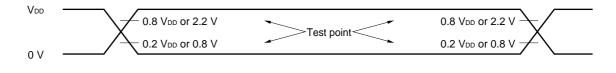
Other Operations (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V)

Remarks 1. $T = t_{CYK} = 1/f_{CLK}$ (fcLK refers to the internal system clock frequency.)

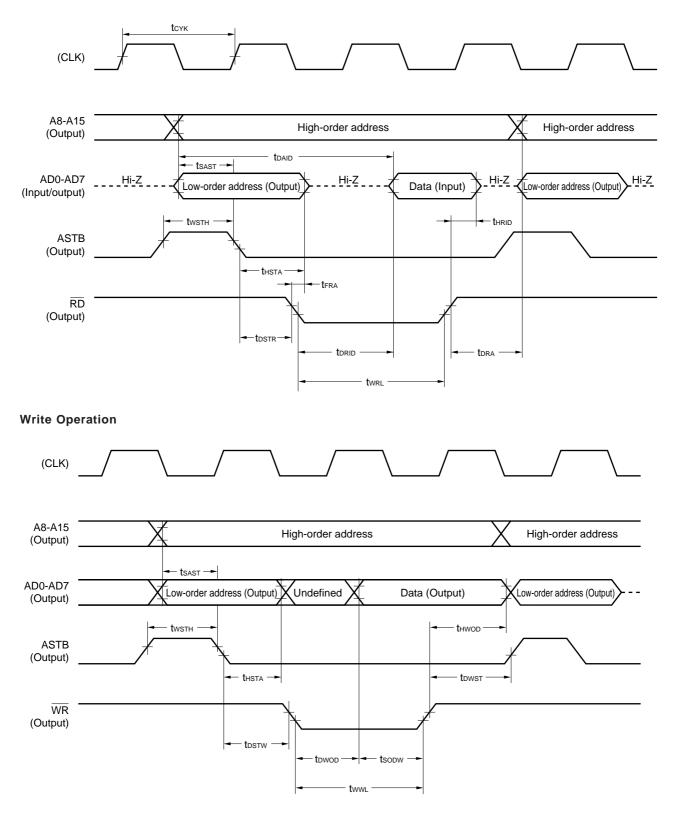

2. Ts refers to the input sampling frequency. INTPO-INTP4 can be selected to programmable.

A/D Converter Characteristics (Ta = -40 to +85 °C, Vdd = +5 V \pm 10 %, Vss = AVss = 0 V, Vdd - 0.5 V \leq AVdd \leq Vdd)

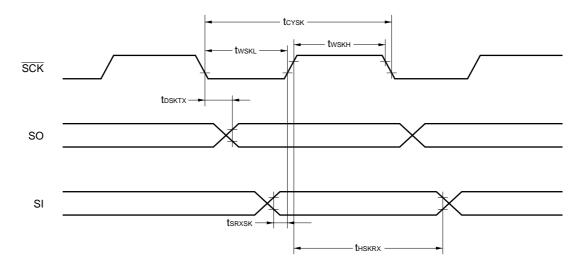
Parameter	Symbol	Т	est conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note 1}		$4.5 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$			±0.4	%FS
		$3.4 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$			±0.7	%FS
Quantization error						±1/2	LSE
Conversion time	tconv	62.5 ns ≤ tсүк	< 80 ns	208			tсүк
		80 ns ≤ tсүк ≤	166.6 ns	169			tсүк
Sampling time	t samp	62.5 ns ≤ tсүк	< 80 ns	24			tсүк
		80 ns ≤ tсүк ≤	166.6 ns	20			tcyk
Zero-scale errorNote 1		$4.5 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±2.5	LSE
		$3.4 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±4.5	LSE
Full-scale errorNote 1		$4.5 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±2.5	LSE
		$3.4 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±4.5	LSE
Nonlinearity error ^{Note 1}		$4.5 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±2.5	LSE
		$3.4 \text{ V} \leq \text{AV}_{\text{REF}}$	$\leq AV_{DD}$		±1.5	±4.5	LSE
Analog input voltageNote 2	Vian			-0.3		AV _{REF} + 0.3	V
Analog input impedance	Ran	When not sam	npling		10		MΩ
		When samplin	ng		Note 3		
Reference voltage	AVREF			3.4		AVdd	V
AVREF1 current	AIREF				1.0	3.0	mA
AVDD supply current	Aldd	Operating mo	de		2.0	6.0	mA
A/D converter data	Aldddr	STOP mode	AVDDDR = 2.5 V		2	10	μA
retention current			$AV_{DDDR} = 5 V \pm 10 \%$		10	50	μA

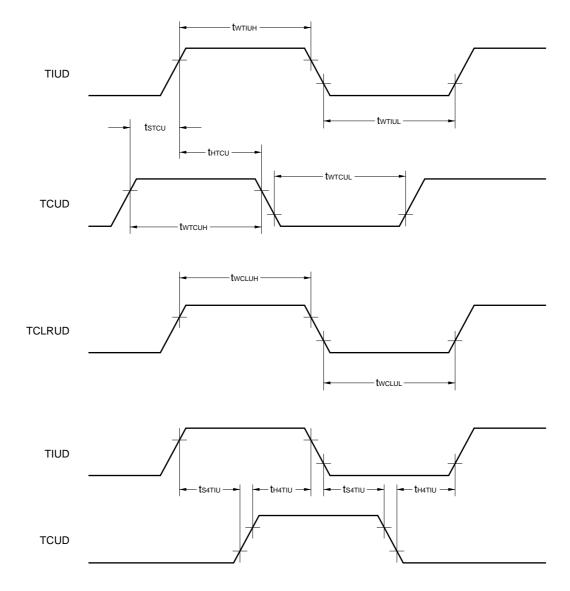

Notes 1. The quantization error is excluded.

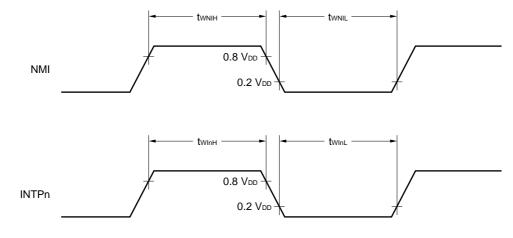
- 2. When -0.3 V \leq VIAN \leq 0 V, the conversion result becomes 000H. When 0 V < VIAN < AVREF, the conversion is performed with the 10-bit resolution. When AVREF \leq VIAN \leq +0.3 V, the conversion result becomes 3FFH.
- **3.** The analog input impedance at the time of sampling is the same as the equivalent circuit shown below. (The values in the diagram are TYP. values; they are not guaranteed values)



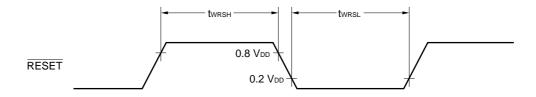
- Cautions1. When using the P70/ANI0-P77/ANI7 pins for both digital and analog inputs, the previously described characteristics are not guaranteed. Therefore, ensure that all of the eight P70/ANI0-P77/ANI7 pins are used either for analog input or digital input.
 - 2. When using the P70/ANI0-P77/ANI7 pins as digital input, make sure to set that AVDD = VDD, and AVss = Vss.


AC Timing Test Point

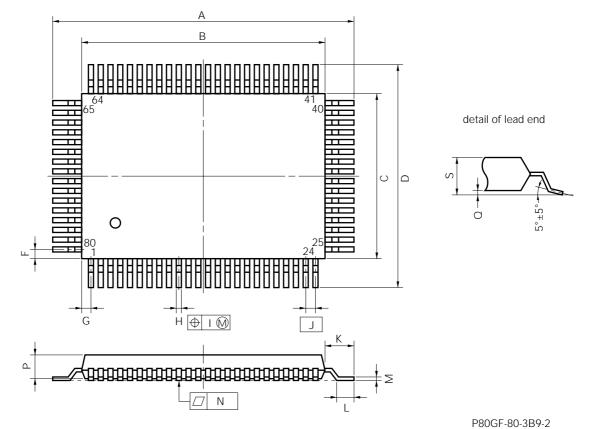

Read Operation


Serial Operation

Up/Down Counter (Timer 4) Input Timing



Interrupt Input Timing


Remark n = 0 to 4

Reset Input Timing

11. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×20)

ΝΟΤΕ

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	0.35±0.10	$0.014\substack{+0.004\\-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15\substack{+0.10 \\ -0.05}$	$0.006\substack{+0.004\\-0.003}$
Ν	0.15	0.006
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

12. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended below.

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

*

Table 12-1. Surface Mount Type Soldering Conditions

```
μPD78363AGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)

μPD78365AGF-3B9 : 80-Pin Plastic QFP (14 × 20 mm)

μPD78366AGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)

μPD78368AGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)
```

Soldering method	Soldering conditions	Recommended condition symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (210 °C or above) Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (200 °C or above) Number of times: 3 max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C or less, Time: 10 sec. max., Number of times: 1, Pre-heating temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C or less Duration: 3 sec. max. (per side of device)	_

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DIFFERENCES BETWEEN $\mu\text{PD78366A}$ and $\mu\text{PD78328}$

Item			μPD78366A	μPD78328				
Minimum instruce execution time	ction	125 ns external clock : 16 MHz external clock : 8 MHz		250 ns	[internal clock: 8 MHz, [external clock: 16 MHz]			
Internal	ROM	32K bytes	i	16K bytes				
memory	RAM	2K bytes		512 bytes				
Memory space		64K bytes	64K bytes (can be externally expanded)					
General-purpos registers	e	8 bits × 16	5×8 banks					
Number of basion instructions	C	115		111				
Instruction set		 Multiplica Bit mani String Sum-of-p 	ansfer/operation ation/division (16 bits × 16 bits, 32 b pulation products operation × 16 bits + 32 bits)	bits ÷ 16 bits)				
I/O lines	Input	Relative 14 (of whi input)	operation ich 8 are multiplexed with analog	-				
	I/O	49		input) 41				
		• 16-bit tin	ner v 5	• 16-bit timer × 3				
Real-time pulse unit		 16-bit ca 16-bit ca Two out Mode Mode 	ompare register × 7 apture register × 3 apture/compare register × 2 put modes selectable 0, set-reset output : 6 channels 1, buffer output : 6 channels solution PWM output: 1 channel	 16-bit compare register × 14 16-bit capture/compare register × 1 Two output modes selectable Mode 0, set-reset output : 6 channels toggle output : 1 channel Mode 1, buffer output : 8 channels 				
Real-time outpu	it port	4 (buffer c	output in 4-bit units)	4/8 (buffer	output in 4-/8-bit units)			
PWM unit		8-/9-/10-/1 output: 2 (2-bit resolution variable PWM channels	8-bit resolution PWM output: 1 channel				
A/D converter		10-bit reso	olution, 8 channels					
Serial interface		UART (baud rate generator with pin selection function) : 1 channel serial interface/SBI : 1 channel	UART	baud rate generator : 1 channel serial interface/SBI : 1 channel			
Interrupt function		with exte	: 6, internal: 14 (2 multiplexed ernal) mmable priority levels	d • External: 4, internal: 17 • 3 programmable priority levels				
			rocessing selectable d interrupt/macro service/context sv	witching)				
Test source		None		Internal: 1				
PLL control circ	uit	Provided ((external 8 MHz \rightarrow internal: 16 MHz)	None				
Package		• 80-pin plastic QFP (14 × 20 mm)		 64-pin plastic shrink DIP 64-pin plastic QFP (14 × 20 mm) 				
Others		WatchdoStandby	og timer functions (HALT mode, STOP mod	e)				

APPENDIX B. TOOLS

B.1 DEVELOPMENT TOOLS

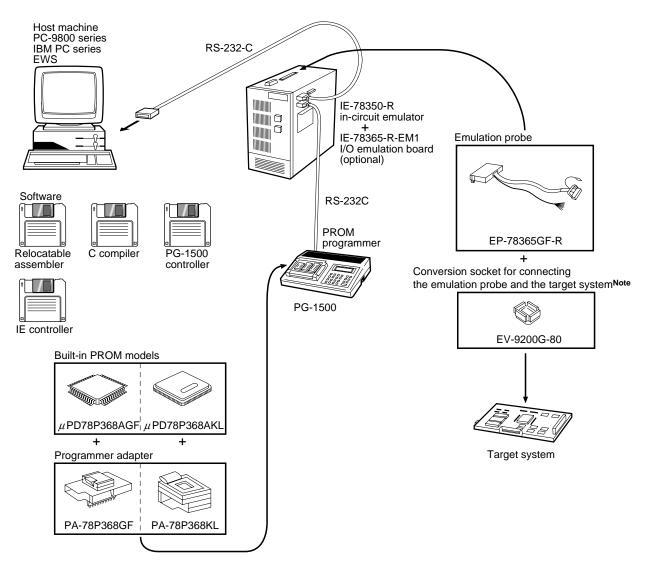
The following development tools are available to support the system development using μ PD78366A :

Language Processor

78K/III series relocatable assembler (RA78K3)	A relocatable assembler, that can be used commonly for the 78K/III series products. Since this assembler is provided with macro functions, it enhances the developmnt efficency. A structured assembler, that can explicitly describe the program control structure, is also supplied, so that the program productivity and maintainability can be improved.				
	Host machine	OS	Supply media	Order code (product name)	
	DO 00000		3.5" 2HD	μS5A13RA78K3	
	PC-9800 series	MS-DOS™	5" 2HD	μS5A10RA78K3	
	IBM PC/AT [™] and its	PC DOS™	3.5" 2HC	μS7B13RA78K3	
	compatible model		5" 2HC	μS7B10RA78K3	
	HP9000 series 700™	HP-UX™	DAT	μS3P16RA78K3	
	SPARC station [™]	SunOS™	Cartridge tape	μS3K15RA78K3	
	NEWS™	NEWS-OS™	(QIC-24)	μS3R15RA78K3	
78K/III series C compiler (CC78K3)	This is a C compiler that can be commonly used for 78K/III series. This program converts the program written in C language to object codes microcomputer can execute. When using this compiler, the 78K/III series relocatable assembler (RA78K3) is necessary.				
	Host machine			Order code (product name)	
		OS	Supply media		
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13CC78K3	
	T C-9000 series	1010-000	5" 2HD	μS5A10CC78K3	
	IBM PC/AT and its	PC DOS	3.5" 2HC	μS7B13CC78K3	
	compatible model		5" 2HC	μS7B10CC78K3	
	HP9000 series 700	HP-UX	DAT	μS3P16CC78K3	
	SPARC station	SunOS	Cartridge tape	μS3K15CC78K3	
	NEWS	NEWS-OS	(QIC-24)	μS3R15CC78K3	

Remark The operations of the relocatable assembler and C compiler are guaranteed only on the specified host machine and OS described above.

PROM Writing Tools


Hardware	PG-1500	in standalone mode or und	er control of	f a host machine when	ed single-chip microcontrollers n the accessory board and an im representative PROMs from
Hard	PA-78P368GF PA-78P368KL	PROM programmer adapter PROM programmer such as PA-78P368GF: for μPE PA-78P368KL: for μPE	s the PG-150 078P368AGF)0. =	78P368A on a general-purpose
	PG-1500 controller	Connects the PG-1500 and a the PG-1500 from the host		e with a serial intrface a	nd a parallel interface to control
a		Host machine	OS	Supply media	Order code (part number)
Software				3.5" 2HD	μS5A13PG1500
Sc		PC-9800 series	MS-DOS	5" 2HD	μS5A10PG1500
		IBM PC/AT and	PC DOS	3.5" 2HC	μS7B13PG1500
		compatible machines		3.5" 2HC	μS7B10PG1500

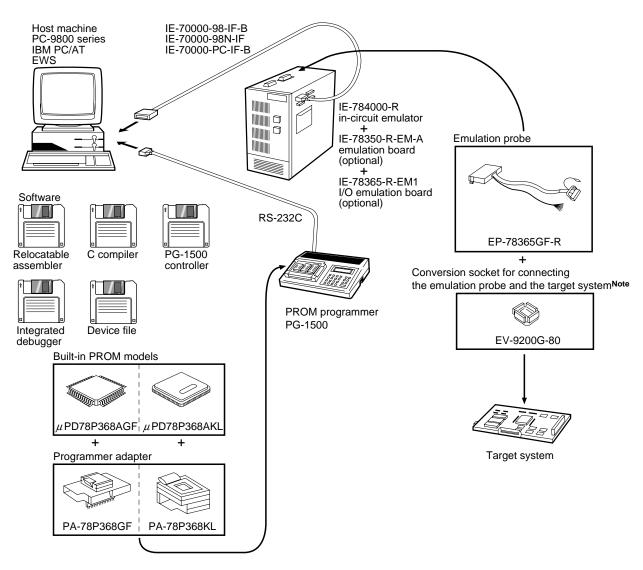
Remark The operation of the PG-1500 controller is guaranteed only on the above host machine and OS.

Debugging Tools (When IE Controller Is Used)

	IE-78350-R	In-circuit emulator that can a host machine for debuggi		evelop and debug appl	ication systems. Connected to	
Hardware	IE-78365-R-EM1	I/O emulation board that emu	ulates the pe	ripheral functions of the	target device such as I/O ports.	
	EP-78365GF-R	Emulation probe that conne	cts the IE-78	3350-R to the target sy	stem. One conversion socket,	
	EV-9200G-80	EV-9200G-80, used to connect the target system is supplied a			s an accessory.	
	IE-78350-R control program	Program that controls the commands, enhancing debu			It can automatically execute	
	(IE controller)					
ø		Host machine	OS	Supply media	Order code (part number)	
Software		PC-9800 series	MS-DOS	3.5" 2HD	μS5A13IE78365A	
Ň		FC-9000 series	M3-D03	5" 2HD	μS5A10IE78365A	
		IBM PC/AT and	PC DOS	3.5" 2HC	μS7B13IE78365A	
		compatible machines		3.5" 2HC	μS7B10IE78365A	

Remark The operation of the IE controller is guaranteed only on the above host machine and OS.

Development Tool Configuration (When Using IE Controller)


Note A socket is provided with the emulation probe.

- Remarks 1. Host machine and PG-1500 can be directly connected by RS-232-C.
 - 2. 3.5-inch FD represents the supply media of software in this figure.

Debugging	Tools (When	Integrated	Debugger	ls Used)
-----------	-------------	------------	----------	----------

IE-78350-R-EM-A Emulation board that emulates the peripheral functions of the target device such as I/O [IE-78365-R-EM1] IE-78365-R-EM1 I/O emulation board that emulates the peripheral functions of the target device such as I/O [IE-78365GF-R] Emulation probe connecting the IE-784000-R to the target system. One conversion socke 9200G-80 9200G-80 9200G-80, used to connect the target system is supplied as an accessory. IE-70000-98-IF-B Interface adapter to connect PC-9800 series (except notebook type personal computer) a host machine. IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. IIE-78000-R-SV3 Interface board to connect EWS as the host machine. IIE-78000-R-SV3 Interface board to connect EWS as the host machine. IIE-78000-R-SV3 Interface ontrolling the in-circuit emulator for the 78K/III series. Used in combination we device file (DF78365). Can debug a program coded in the C language, structured associal language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debuger into windows on each of which information is displayed, enhancing debugefficiency. </th <th></th> <th>IE-784000-R</th> <th></th> <th></th> <th>evelop and debug the a</th> <th>application system. Connected</th>		IE-784000-R			evelop and debug the a	application system. Connected	
Perform IE-78365-R-EM1 I/O emulation board that emulates the peripheral functions of the target device such as I/O EP-78365GF-R Emulation probe connecting the IE-784000-R to the target system. One conversion socket EV-9200G-80 9200G-80, used to connect the target system is supplied as an accessory. IE-70000-98-IF-B Interface adapter to connect PC-9800 series (except notebook type personal computer a host machine. IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. IRE-78000-R-SV3 Interface board to connect EWS as the host machine. IRE-78000-R-SV3 Interface board to connect EWS as the host machine. IRE-78000-R-SV3 Interface board to connect EWS as the host machine. IRE-78000-R-SV3 Interface board to connect EWS as the host machine. IRE-78000-R-SV3 Interface adapter and cable to connect IBM PC as the host machine. IBM PC/R-S00 Can debug a program coded in the C language, structured asset language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing d			to a host machine for debugging.				
Provide EP-78365GF-R Emulation probe connecting the IE-784000-R to the target system. One conversion socket EV-9200G-80 9200G-80, used to connect the target system is supplied as an accessory. IE-70000-98-IF-B Interface adapter to connect PC-9800 series (except notebook type personal computer) a host machine. IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger (ID78K3) Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination were device file (DF78365). Can debug a program coded in the C language, structured asset language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the target set of	I -						
Image: Property EV-9200G-80 9200G-80, used to connect the target system is supplied as an accessory. IE-70000-98-IF-B Interface adapter to connect PC-9800 series (except notebook type personal computer) a host machine. IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination we device file (DF78365). Can debug a program coded in the C language, structured asset language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the Code (p		IE-78365-R-EM1	I/O emulation board that emulates the peripheral functions of the target device such as I/O ports.				
IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination were device file (DF78365). Can debug a program coded in the C language, structured assert language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the term of term of the term of the term of the term of the term of	<u>e</u>	EP-78365GF-R	Emulation probe connecting the IE-784000-R to the target system. One conversion socket, EV-				
IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination were device file (DF78365). Can debug a program coded in the C language, structured assert language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the term of term of the term of the term of the term of the term of	Ma	EV-9200G-80					
IE-70000-98N-IF Interface adapter and cable to connect PC-9800 series notebook type personal computer a host machine. IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination were device file (DF78365). Can debug a program coded in the C language, structured assert language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the the time of tim	ard	IE-70000-98-IF-B	F-B Interface adapter to connect PC-9800 series (except notebook type personal computer) as				
IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination were device file (DF78365). Can debug a program coded in the C language, structured asserved language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the 7800 series) PC-9800 series MS-DOS Undows™ 5" 2HD µSAA13ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC pOS Windows 5" 2HC µSAB10ID78K3			host machine.				
IE-70000-PC-IF-B Interface adapter and cable to connect IBM PC as the host machine. IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination we device file (DF78365). Can debug a program coded in the C language, structured asset language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number 100 models) PC-9800 series MS-DOS 3.5" 2HD µSAA13ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC POS 3.5" 2HC µSAB13ID78K3		IE-70000-98N-IF	Interface adapter and cable	to connect P	C-9800 series notebook	type personal computer as the	
IE-78000-R-SV3 Interface board to connect EWS as the host machine. Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination we device file (DF78365). Can debug a program coded in the C language, structured asset language, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debut efficiency. Host machine Order code (part number of the 78 Supply media PC-9800 series MS-DOS 3.5" 2HD μSAA13ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC POS 3.5" 2HC μSAB13ID78K3			host machine.				
Integrated debugger Program controlling the in-circuit emulator for the 78K/III series. Used in combination we device file (DF78365). Can debug a program coded in the C language, structured association and the comparison of the machine into windows on each of which information is displayed, enhancing debut efficiency. Host machine Order code (part number of the 78K) PC-9800 series MS-DOS 3.5" 2HD μSAA13ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC POS 3.5" 2HC μSAB13ID78K3 Windows 5" 2HC μSAB10ID78K3		IE-70000-PC-IF-B	Interface adapter and cable	to connect	BM PC as the host ma	achine.	
(ID78K3) device file (DF78365). Can debug a program coded in the C language, structured asselianguage, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debue efficiency. Host machine Order code (part number of the screen of the machine) PC-9800 series MS-DOS Windows™ 5" 2HD μSAA13ID78K3 IBM PC/AT and compatible PC DOS machines (Japanese Windows) 5" 2HC Windows 5" 2HC μSAB10ID78K3		IE-78000-R-SV3	Interface board to connect	EWS as the	host machine.		
Ianguage, or assembly language at source program level. Can also split the screen of the machine into windows on each of which information is displayed, enhancing debu efficiency. Host machine Order code (part number of the machine) PC-9800 series MS-DOS 3.5" 2HD µSAA13ID78K3 Windows™ 5" 2HD µSAA10ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC POS 3.5" 2HC µSAB13ID78K3		Integrated debugger	Program controlling the in-circuit emulator for the 78K/III series. Used in combination with a				
machine into windows on each of which information is displayed, enhancing debut efficiency. Host machine Order code (part number of the second s					anguage, structured assembly		
efficiency. Host machine PC-9800 series IBM PC/AT and compatible machines (Japanese Windows) PC -9800 series MS-DOS Windows™ 5" 2HD μSAA13ID78K3 Windows™ 5" 2HC μSAB13ID78K3 Windows 5" 2HC μSAB10ID78K3			language, or assembly language at source program level. Can also split the screen of the host				
Host machine Order code (part number of the second sec							
OS Supply media PC-9800 series MS-DOS Windows™ 3.5" 2HD μSAA13ID78K3 IBM PC/AT and compatible machines (Japanese Windows) PC DOS Windows 3.5" 2HC μSAB13ID78K3							
PC-9800 seriesMS-DOS Windows™3.5" 2HDµSAA13ID78K3IBM PC/AT and compatible machines (Japanese Windows)PC DOS Windows3.5" 2HCµSAA10ID78K3WindowsPC DOS Windows3.5" 2HCµSAB13ID78K3			Host machine			Order code (part number)	
PC-9800 seriesMS-DOS Windows™3.5" 2HDμSAA13ID78K3IBM PC/AT and compatible machines (Japanese Windows)PC DOS Windows3.5" 2HCμSAA10ID78K3WindowsPC DOS Windows3.5" 2HCμSAB13ID78K3				OS	Supply media		
PerformS" 2HDμSAA10ID78K3IBM PC/AT and compatible machines (Japanese Windows)PC DOS Windows3.5" 2HCμSAB13ID78K3WindowsS" 2HCμSAB10ID78K3			PC-9800 series	MS-DOS		μSAA13ID78K3	
Φ TermIBM PC/AT and compatible machines (Japanese Windows)PC DOS Windows3.5" 2HCμSAB13ID78K3Windows05" 2HCμSAB10ID78K3IBM PC/AT and compatible3.5" 2HCμSBB13ID78K3				I T [5" 2HD	μSAA10ID78K3	
machines (Japanese Windows)Windows5" 2HCμSAB10ID78K3IBM PC/AT and compatible3.5" 2HCμSBB13ID78K3	e		IBM PC/AT and compatible	PC DOS	3.5" 2HC	μSAB13ID78K3	
δ IBM PC/AT and compatible 3.5" 2HC μSBB13ID78K3	twa		machines (Japanese Windows)		5" 2HC	μSAB10ID78K3	
	Sof		IBM PC/AT and compatible		3.5" 2HC	μSBB13ID78K3	
machines (English Windows) 5" 2HC µSBB10ID78K3			machines (English Windows)		5" 2HC	μSBB10ID78K3	
Device File File containing information peculiar to device. Use in combination with an assembler (Device File	File containing information	peculiar to d	evice. Use in combina		
(DF78365) K3), C compiler (CC78K3), and integrated debugger (ID78K3).		(DF78365)					
			, , , ,	0		Order code (part number)	
OS Supply media				OS	Supply media	· · · · · ·	
PC-9800 series MS-DOS 3.5" 2HD μS5A13DF78365			PC-9800 series			μS5A13DF78365	
5" 2HD μS5A10DF78365							
IBM PC/AT and compatible PC DOS 3.5" 2HC µS7B13DF78365			IBM PC/AT and compatible	PC DOS	3.5" 2HC		
machines 5" 2HC µS7B10DF78365							

Remark The operation of the integrated debugger and device file is guaranteed only on the above host machine and OS.

Development Tool Configuration (When Using Integrated Debugger)

Note A socket is provided with the emulation probe.

Remarks 1. Desk top-type PC represents host machine in this figure.

2. 3.5-inch FD represents the supply media of software in this figure.

B.2 EMBEDDED SOFTWARE

The following embedded software is available for enhancing the efficiency of program development and maintenance.

REAL-TIME OS

Real-time OS (RX78K/III) ^{Note}	real-time capability is a must improve the overall perform RX78K/III provides system	st. It can all ance of the calls conforr	ocate the idle time of t system. ning to the μ ITRON sp	for use in the control field where he CPU to other processing to ecification. e the nucleus of RX78K/III and
	Host machine	08	Cupply modia	Order code (part number)
		OS	Supply media	
	PC-9800 series	MS-DOS	3.5" 2HD	Pending
			5" 2HD	Pending
	IBM PC/AT and compatible	PC DOS	3.5" 2HC	Pending
	machines		5" 2HC	Pending

Note Under development

Caution Before purchasing this product, you are requested to conclude a contract licensing use by filling out a specified form.

Remark When using the RX78K/III real-time OS, the RA78K3 assembler package (optional) is necessary.

Fuzzy Inference Development Support System

Fuzzy knowledge data	Program that supports input/editing and evaluation (simulation) of fuzzy knowledge (fuzzy rules				
creation tool	and membership functions).				
(FE9000, FE9200)	Host machine			Order code (part number)	
		OS	Supply media		
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13FE9000	
			5" 2HD	μS5A10FE9000	
	IBM PC/AT and compatible	PC DOS	3.5" 2HC	μS7B13FE9200	
	machines	Windows	5" 2HC	μS7B10FE9200	
Translator	Program that converts the f	uzzy knowle	dge data obtained by u	using the fuzzy knowledge data	
(FT78K3) ^{Note}	creation tool into assemble	r source prog	gram for the RA78K/III		
	Host machine			Order code (part number)	
		OS	Supply media		
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13FT78K3	
			5" 2HD	μS5A10FT78K3	
	IBM PC/AT and compatible	PC DOS	3.5" 2HC	μS7B13FT78K3	
	machines		5" 2HC	μS7B10FT78K3	
Fuzzy inference module	Program that executes fuzzy inference when linked with the fuzzy knowledge data converted				
(FI78K/III) ^{Note}	by the translator.				
	Host machine		Order code (part number)		
		OS	Supply media		
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13FI78K3	
			5" 2HD	μS5A10FI78K3	
	IBM PC/AT and compatible	PC DOS	3.5" 2HC	μS7B13FI78K3	
	machines		5" 2HC	μS7B10FI78K3	
Fuzzy inference debugger	Support software that evaluates and adjusts the fuzzy knowledge data at the hardware level by				
(FD78K/III)	using an in-circuit emulator				
	Host machine			Order code (part number)	
		OS	Supply media		
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13FD78K3	
			5" 2HD	μS5A10FD78K3	
	IBM PC/AT and compatible	PC DOS	3.5" 2HC	μS7B13FD78K3	
	machines		5" 2HC	μS7B10FD78K3	

Note Under development

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689 MS-DOS and windows are either registered trademarks or trademarks of Microsoft Corporation in the United states and/or other countries. PC/AT and PC DOS are trademarks of IBM Corporation. HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation. TRON is an abbreviation of The Realtime Operating system Nucleus. ITRON is an abbreviation of Industrial TRON.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

Lisence not needed	: μPD78365A
The customer must judge the need for license	: μPD78363A, 78366A, 78368A

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades:

"Standard" "Special" and "Specific". The Specific quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.