POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFD1Z0,1Z1 D82AL2,K2 0.5 AMPERES 100, 60 VOLTS RDS(ON) = 2.4 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. ### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ## maximum ratings (T_A = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFD1Z0/D82AL2 | IRFD1Z1/D82AK2 | UNITS | |---|-----------------------------------|----------------|----------------|---------------| | Drain-Source Voltage | V _{DSS} | 100 | 60 | Volts | | Drain-Gate Voltage, $R_{GS} = 1M\Omega$ | V _{DGR} | 100 | 60 | Volts | | Continuous Drain Current @ T _A = 25°C ⁽¹⁾
@ T _A = 100°C | I _D | 0.50
0.31 | 0.50
0.31 | A
A | | Pulsed Drain Current ⁽²⁾ | IDM | 4.0 | 4.0 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25°C
Derate Above 25°C | P _D | 1.2
9.6 | 1.2
9.6 | Watts
W/°C | | Operating and Storage Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | ### thermal characteristics | Thermal Resistance, Junction to Ambient | $R_{ heta JA}$ | 105 | 105 | °C/W | |---|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | TL | 300 | 300 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.5 in. minimum copper run area. (2) Repetitive Rating: Pulse width limited by max. junction temperature. # electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |--|----------------------------------|--------|-----------|-----|----------------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$ | IRFD1Z0/D82AL2
IRFD1Z1/D82AK2 | BVDSS | 100
60 | _ | _ | Volts | | Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25° C (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = | ;)
= 125°C) | IDSS | | | -2 50
1000 | μΑ | | Gate-Source Leakage Current (VGS = ±20V) | | IGSS | _ | _ | ±500 | nA | ## on characteristics* | Gate Threshold Voltage
(V _{DS} = V _{GS} , I _D = 250μA) | T _A = 25°C | V _{GS(TH)} | 2.0 | _ | 4.0 | Volts | |--|--|---------------------|-----|----------------------|---------------|-------| | Drain Source On-State Voltage
(V _{GS} = 10V) | I _D = 0.25A
I _D = 0.50A
I _D = 0.25A, T _A = 125°C | V _{DS(ON)} | _ | 0.55
1.10
0.90 | 0.6
—
— | Volts | | Static Drain-Source On-State Resis
(V _{GS} = 10V, I _D = 0.25A) | stance | R _{DS(ON)} | | 2.2 | 2.4 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 0.25A) | | 9fs | | 0.2 | _ | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | | 36 | 70 | pF | |------------------------------|-----------------------|------------------|---|----|----|----| | Output Capacitance | V _{DS} = 25V | Coss | | 20 | 30 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | _ | 7 | 10 | pF | # switching characteristics* | Turn-on Delay Time | V _{DS} = 30V | t _{d(on)} |
6 | _ | ns | |---------------------|--|---------------------|--------|---|----| | Rise Time | I _D = 0.25A, V _{GS} = 15V | t _r |
6 | _ | ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | t _{d(off)} |
12 | _ | ns | | Fall Time | R_{GS} (EQUIV.) = 10Ω) | t _f |
7 | | ns | # source-drain diode ratings and characteristics* | Continuous Source Current | Is | | | 0.5 | Α | |--|-----------------|---|-----|-----|-------| | Pulsed Source Current | I _{SM} | | | 4.0 | Α | | Diode Forward Voltage
(T _A = 25°C, V _{GS} = 0V, I _S = 0.5A) | V _{SD} | _ | 0.9 | 1.5 | Volts | | Reverse Recovery Time (I _S = 0.5A, dI _s /dt = 100A/ μ s, V _{DS} = 40V Max., T _A = 125°C) | t _{rr} | | 65 | | ns | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% **MAXIMUM SAFE OPERATING AREA** TYPICAL NORMALIZED $R_{DS(ON)}$ AND $V_{GS(TH)}VS$. TEMP.