DB140 数字温湿度传感器探头

数字信号输出 全标定,小尺寸 无需其他外部元件 卓越的长期稳定性 超低能耗,自动休眠

产品概述

DB140 数字温湿度传感器探头是数字温湿度传感器系列中电缆型的传感器。传感器把传感元件和信号处理集成起来,输出全标定的数字信号。DB140 采用世界先进的温湿度传感器为核心部件,确保产品具有极高的可靠性与卓越的长期稳定性。传感器内部包括一个电容性聚合体测湿敏感元件、一个用能隙材料制成的测温元件,并在同一芯片上,与 14 位的 A/D 转换器以及串行接口电路实现无缝连接。因此,该产品具有品质卓越、高防护等级、超快响应、抗于扰能力强、极高的性价比等优点。

每个传感器芯片都在极为精确的湿度腔室中进行标定,校准系数以程序形式储存在 OTP 内存中,在标定的过程中使用。传感器在检测信号的处理过程中要调用这些校准系数。两线制的串行接口与内部的电压调整,使外围系统集成变得快速而简单。微小的体积、极高的防护性能、极低的功耗,使 DB140 系列成为各类应用的首选。

材质

传感器外部不锈钢外壳,加强了探头的耐压、耐温、耐损能力。引线采用四芯导线。

应用领域

本产品可应用在工业现场测量、电信基站、电力控制柜、办公室、超市、档案室、生产车间、仓库、机房、工地等测量场合。

金属封装形式, 螺纹连接, 更适合于机箱、管道内安装使用。

外形尺寸

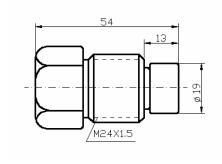


图 1 DB140

订货型号

DB140-				
		湿力	度精度	温度精度
	10	±4	1.5%RH	±0.5@25℃
	11	±3	3. 0%RH	±0.4@25℃
	15	± 2	2. 0%RH	±0.3@25℃
		电缆	长度	
		1	1米	
		Z	自选	

传感器性能说明

表 1: 相对湿度

参数	条件	Min.	Тур.	Max.	单位
分辨率		0.4	0.05	0.05	%RH
		8	12	12	Bit
精度	典型值		±4.5		%RH
DB140-10	最大值		见图 2	2	
精度	典型值		±3.0		%RH
DB140-11	最大值		见图 2	2	
精度	典型值		±2.0		%RH
DB140-15	最大值		见图 2	2	
重复性			±0.1		%RH
互换性		<u> </u>	「完全互	换	
迟滞			±1		%RH
非线性度	原始数据		±3		%RH
非线性度	线性化		<<1		%RH
响应时间	tau (63%)		8		S
量程范围	_	0		100	%RH
长期稳定性	典型值	_	< 0.5		%RH/yr

温度

参数	条件	Min.	Тур.	Max.	单位
分辨率		0.04	0.01	0.01	°C
刀が竿		12	14	14	Bit
精度	典型值		±0.5		$^{\circ}$ C
DB140-10	最大值		见图3	3	
精度	典型值		±0.4		$^{\circ}\!\mathbb{C}$
DB140-11	最大值		见图3	3	
精度	典型值		±0.3		$^{\circ}\!\mathbb{C}$
DB140-15	最大值		见图3	3	
重复性			±0.1		°C
互换性		Ī.	「完全互	换	
量程范围		-40		123.8	°C
里在沿山		-40		254.9	°F
响应时间	tau 63%	5		30	S
长期稳定性			< 0.04		°C/yr

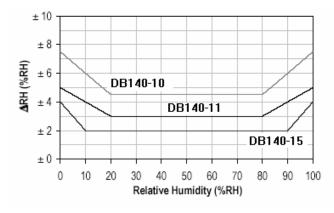


图 2 25℃时传感器的最大相对湿度误差

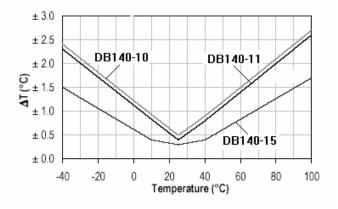


图 3 最大温度误差

电气特性

参数	条件	min	typ	max	单位
供电电压		2.4	3.3	5.5	V
功耗	休眠		2	5	μ W
	测量		3		mW
	平均		150		μ W
通讯	数字两组	线接口,	参见通讯	l,	
存储	10−50℃	0-125	℃峰值),	20-60%	RH

DB140 系列用户指南

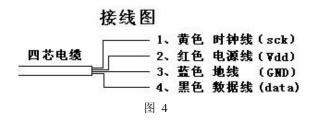
1、应用信息

1.1 工作条件

传感器在建议的工作条件下性能正常,即温度范围: -20~+80℃,湿度范围: 0~100%RH。超出建议的工作范围可能导致信号暂时性漂移(60 小时后漂移+3%RH)。当恢复到正常工作条件后,传感器会缓慢自恢复到校正状态。在非正常条件下的长时间使用,会加速产品的老化。

1.2 贮存条件与操作说明

湿度传感器不是普通的电子元器件,需要仔细防护,这一点用户必须重视。长期暴露在高浓度的化学蒸汽中将会致使传感器的读数产生漂移。因此建议将传感器存放于原包装内,并且符合以下条件:温度范围 10℃-50℃ (在有限时间内 0-80℃);湿度范围 20-60%RH。若传感器没有原包装,则需要存放在 PE-HD 材质的 ESD 袋中。在生产和运输过程中,要保证传感器远离高浓度的化学溶剂。要避免使用挥发性胶水、粘性胶带、不干胶贴纸,或具有挥发性的包装材料,如发泡塑料袋、泡沫塑料等。生产场合需要保持通风。


1.3 温度影响

气体的相对湿度,在很大程度上依赖于温度。因此在测量湿度时,应尽可能保证湿度传感器在同一温度下工作。在做测试时,应保证两个传感器在同样的温度下,然后比较湿度的读数。DB140的封装设计排除了从焊接点到传感器的热传递。如果测量频率过高则会导致自动加热效应,详细信息请参考3.3节。

1.4 光线

DB140 对光线不敏感,但长时间暴露在太阳光下或强烈的紫外线辐射中,会使外壳老化。

2、接口说明

2.1 电源引脚 (VDD, GND)

DB140 系列的供电电压为 2.4-5.5V, 建议供电电压为 3.3V。DB140 的串行接口,在传感器信号的读取及电源 损耗方面,都做了优化处理;传感器不能按照 I^2C 协议编址,但是,如果 I^2C 总线上没有挂接别的元件,传感器可以连接到 I^2C 总线上,但单片机必须按照传感器的协议工作。

2.2 串行时钟输入 (SCK)

SCK 用于微处理器与 DB140 之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小 SCK 频率。

2.3 串行数据 (DATA)

DATA 三态门用于数据的读取。DATA 在 SCK 时钟下降沿之后改变状态,并仅在 SCK 时钟上升沿有效。

2.4 电气特性

电气特性如能耗,低、高电平,输入、输出电压等,都取决于电源。表 2 详细解释了 DB140 的电气特性,若没有标明,则表示供电电压为 5V。若想与传感器获得最佳通讯效果,请设计时严格遵照表 3 与图 5 的条件。

参数	条件	min	typ	max	Units
供电 DC		2.4	3.3	5.5	V
	测量		0.55	1	mA
供电电流	平均	2	28		μΑ
	休眠		0.3	1.5	μΑ
低电平输出电压	I _{ol} <4mA	0		250	mV
高电平输出电压	Rp<25k Ω	90%		100%	VDD
低电平输入电压	下降沿	0%		20%	VDD
高电平输入电压	上升沿	80%		100%	VDD
焊盘上的输入电流				1	μΑ
输出电流	on			4	mA
制山电机	三态门 (off)		10	20	μΑ

表 2 DB140 DC 特性,Rp 代表上拉电阻, I_{ol} 表示低电平输出电流

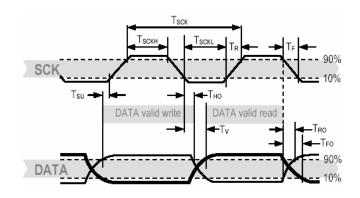


图 5

	参数	条件	Min.	Тур.	Max.	Units
E	SCK 频率	VDD > 4.5V	0	0.1	5	MHz
$\mathbf{F}_{\mathrm{SCK}}$	SCK <u></u>	VDD < 4.5V	0	0.1	1	MHz
T _{SCKx}	SCK 高/低时间		100			ns
T_R/T_F	SCK 升/降时间		1	200	*	ns
\mathbf{T}_{FO}	DATA 下降时	OL= 5 pF	3.5	10	20	ns
110	间	OL= 100 pF	30	40	200	ns
T _{RO}	DATA 上升时间		**	**	**	ns
$T_{\rm V}$	DATA 有效时间		200	250	***	ns
T	DATA 设定时		100	150	***	ns
\mathbf{T}_{SU}	间					
T_{HO}	DATA 保持时间		10	15	****	ns

^{*} $TR_max + TF_max = (FSCK)-1 - TSCKH - TSCKL$

表 3 DB140 I/O 信号特性

3、传感器通讯

3.1 启动传感器

首先,选择供电电压后将传感器通电,上电速率不能低于 1V/ms。通电后传感器需要 11ms 进入休眠状态,在此之前不允许对传感器发送任何命令。

3.2 发送命令

用一组"启动传输"时序,来表示数据传输的初始化。它包括: 当 SCK 时钟高电平时 DATA 翻转为低电平, 紧接着 SCK 变为低电平, 随后是在 SCK 时钟高电平时 DATA 翻转为高电平。

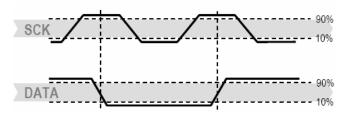


图 6 "启动传输"时序

后续命令包含三个地址位(目前只支持"000"),和五个命令位。DB140会以下述方式表示已正确地接收到指令:在第8个SCK时钟的下降沿之后,将DATA下拉为低电平(ACK位)。在第9个SCK时钟的下降沿之后,释放DATA(恢复高电平)。

^{**} TR0 is determined by the RP*Cbus time-constant at DATA line

^{***} TV_max and TSU_max depend on external pull-up resistor (RP) and total bus line capacitance (Cbus) at DATA line

^{****} TH0_max < TV - max (TR0, TF0)

命令	代码
预留	0000x
温度测量	00011
湿度测量	00101
读状态寄存器	00111
写状态寄存器	00110
预留	0101x-1110x
软复位 ,复位接口、清空状态寄存器,	11110
即清空为默认值,下一次命令前等待	
至少 11ms	

表 4 DB140 命令集

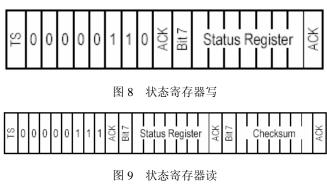
3.3 测量时序 (RH, T)

发布一组测量命令('00000101'表示相对湿度 RH,'00000011'表示温度 T)后,控制器要等待测量结束。这个过程需要大约 20/80/320ms,分别对应 8/12/14bit 测量。确切的时间随内部晶振速度,最多可能有-30%的变化。DB140 通过下拉 DATA 至低电平并进入空闲模式,表示测量的结束。控制器在再次触发 SCK 时钟前,必须等待这个"数据备妥"信号来读出数据。检测数据可以先被存储,这样控制器可以继续执行其它任务在需要时再读出数据。接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。uC 需要通过下拉 DATA 为低电平,以确认每个字节。所有的数据从 MSB 开始,右值有效(例如:对于 12bit 数据,从第 5 个 SCK 时钟起算作 MSB;而对于 8bit 数据,首字节则无意义)。用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持确认位 ack 高电平,来中止通讯。在测量和通讯结束后,DB140 自动转入休眠模式。

警告: 为保证自身温升低于 0.1℃, DB140 的激活时间不要超过 10%(例如,对应 12bit 精度测量,每秒最多进行 1次测量)。

3.4 通讯复位时序

如果与 DB140 通讯中断,下列信号时序可复位串口: 当 DATA 保持高电平时,触发 SCK 时钟 9 次或更多,参阅图 7。在下一次指令前,发送一个"传输启动"时序。这些时序只复位串口,状态寄存器内容仍然保留。


3.5 CRC-8 校验

数字信号的整个传输过程由 8bit 校验来确保。任何错误数据将被检测到并清除。用户可选择是否做 CRC 校验。详情可参阅应用说明"CRC-8 校验"。

3.6 状态寄存器

DB140 的某些高级功能可以通过给状态寄存器发送指令来实现,如选择测量分辨率,电量不足提醒或启动加热功能等。下面的章节概括介绍了这些功能。详情可参阅应用说明"状态寄存器"。

在读状态寄存器或写状态寄存器之后,8位状态寄存器的内容将被读出或写入,参阅表4。通讯请阅图8和图9,状态寄存器位请阅表5。

完整的通讯循环请参阅图 10,图 11

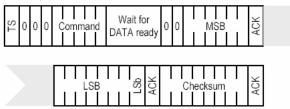


图 10 测量时序

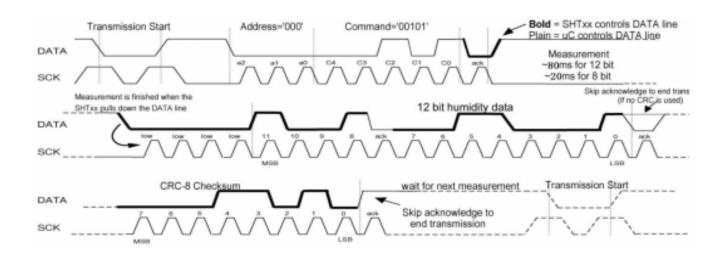


图 11 相对湿度测量时序示例,数值"0000'1001'0011'0001"=2353=75.79%RH(未包含温度补偿)。DATA 有效时间已标出,可参见 DATA 线。传感器控制加粗的 DATA 线,单片机控制单线的 DATA 线。

Bit	类型	说明	默	认值
7		预留	0	
6	R	电量不足 (低电压检测)	X	无默认值, 此
		'0'对应 Vdd > 2.47		位仅在测量
		'1'对应 Vdd < 2.47		结束后更新
5		预留	0	
4		预留	0	
3		仅供测试, 不使用	0	
2	R/W	加热	0	关
1	R/W	不从 OTP 加载	0	加载
0	R/W	'1'= 8bit RH / 12bit T 分辨率	0	12bit RH
		'0'=12bit RH / 14bit T 分辨率		14bit T

表 5 状态寄存器位

<u>测量分辨率</u>: 默认的测量分辨率分别为 14bit (温度)、12bit (湿度),也可分别降至 12bit 和 8bit。通常在高速或超低功耗的应用中采用该功能。

电量不足:"电量不足"功能可监测到 Vdd 电压低于 2.47V 的状态。精度为±0.05V。

加热原件: 芯片上集成了一个可通断的加热元件。接通后,在环境温度基础上可将 DB140 的温度提高大约 5-10 ℃。功耗约增加 8mA @ 5V 供电。

例如,加热元件可用于功能性分析:比较加热前后的温度和湿度值,温度上升的同时,湿度将会降低,露点不变。

注意:加热 DB140 后,读出的温度值并不是环境温度值,而是传感器在加热之后元件本身的温度值。所以,传感器不适合在启动加热元件的情况下连续使用。

4、输出转换为物理量

4.1 相对湿度

为了补偿湿度传感器的非线性以获取准确数据,请参阅图 12,建议使用如下公式修正读数:

RH_{linear}=c₁+c₂·SO_{RH}+c₃·SO_{RH}²(%RH)

١	SORH	C1	C2	C3
	12 bit	-2.0468	0.0367	-1.5955E-6
	8 bit	-2.0468	0.5872	-4.0845E-4

表 6 优化 V4 版 湿度转换系数

表 6 中的系数优化了 V4 版传感器的满量程精度。在早期版本中的系数 Cx*,优化了 V3 版的传感器,同样适用于 V4 传感器,请参阅表 7。

SORH	C1*	C2*	C3*
12 bit	-4.0000	0.0405	-2.8000E-6
8 bit	-4.0000	0.6480	-7.2000E-4

表 7 V3 版湿度转换系数,同样适用于 V4

简化的修正算法,可参阅应用说明"相对湿度与温度的非线性补偿"。对高于99%的那些测量值则表示空气已经完全饱和,必须被处理成显示值均为100%RH。请注意湿度传感器对电压基本上没有依赖性。

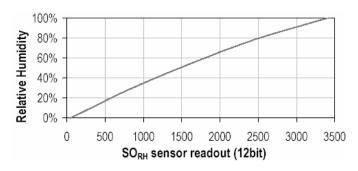


图 12 从 SO_{RH} 转化到相对湿度

4.2 相对湿度对于温度依赖性的补偿

由于实际温度与测试参考温度25℃ (~77℃)的显著不同, 湿度信号需要温度补偿。温度校正粗略对应于 0.12%RH/℃@50%RH, 温度补偿系数请参阅表8。

$$RH_{true} = (T_{\circ C} - 25) \bullet (t_1 + t_2 \bullet SO_{RH}) + RH_{linear}$$

SORH	t ₁	t ₂
12 bit	0.01	0.00008
8 bit	0.01	0.00128

表 8 温度补偿系数

4.3 温度

由能隙材料 PTAT (正比于绝对温度) 研发的温度传感器具有极好的线性。可用如下公式将数字输出转换为温度值,温度转换系数请阅表 9:

$$T = d_1 + d_2 \bullet SO_T$$

VDD	d ₁ (°C)	d ₁ (°F)
5V	-40.1	-40.2
4V	-39.8	-39.6
3.5V	-39.7	-39.5
3V	-39.6	-39.3
2.5V	-39.4	-38.9

SOT	d ₂ (°C)	d ₂ (°F)
14bit	0.01	0.018
12bit	0.04	0.072

表 9 温度转换系数

4.4 露点

DB140 不能直接测量露点,但可由温度和湿度值计算得出露点。由于湿度与温度经由同一块芯片测量,DB140 系列产品可以同时实现高质量的露点测量。可以使用多种公式进行露点 T_d 计算,但大多数都很复杂。 对于温度范围为-40-50°C,如下的近似计算可得出高精度的露点值,系数请参阅表 10:

$$T_{d}\left(RH,T\right) = T_{n} \cdot \frac{In\left(\frac{RH}{100\%}\right) + \frac{m \cdot T}{T_{n} + T}}{m - In\left(\frac{RH}{100\%}\right) - \frac{m \cdot T}{T_{n} + T}}$$

Temperature Range	Tn (°C)	m
Above water, 0 – 50°C	243.12	17.62
Above ice, -40 – 0°C	272.62	22.46

表 10 露点计算参数

关于露点计算的详细资料,请参看"露点计算"。

4.5 环境稳定性

若传感器可以在装配或设备中应用,那么应用环境需要和测试传感器相一致。在装置中传感器的响应时间会变长,所以在测量时要预留出足够的时间。具体信息请参考应用说明"认证指南"。

5、货号信息

所有 DB140 印有批次号。由产品的批次号可以追溯到产品的生产和测试日期。客户不能直接从批次号上查到相关信息,所有数据都存储于 DABECO。

ESD 静电释放的预防

由于元件的固有设计,导致其对静电的敏感性。为防止静电导入的伤害或者降低产品性能,在应用本产品时,请采取必要的防静电措施。

品质保证

DABECO对其产品的直接购买者提供为期12个月(1年)的质量保证。(自发货之日起计算)以DABECO出版的该产品的技术数据手册为准。

在保质期内,产品被证实有缺陷,DABECO将提供免费的维修或更换,如果用户满足下述条件:

该产品在发现缺陷14天内书面通知DABECO。

该产品缺陷有助于发现DABECO的设计、材料、工艺上的不足。

该产品应由购买者付费寄回到DABECO。

该产品应在保质期内。

DABECO只对那些应用在符合该产品技术条件的场合而产生缺陷的产品负责。

DABECO 对其产品应用在那些特殊的应用场合不做任何的保证、担保或是书面陈述。

同时DABECO对其产品应用到产品或是电路中的可靠性也不做任何承诺。

大连北方测控工程有限公司

地址: 大连市高新园区七贤岭学子街 2 号, 3-1-2

邮编: 116023

电话: +86 (0)411 39565015 传真: +86 (0)411 39759055 E-mail:lei@dabeco.com.cn Website: http://www.humidity.cn Website: http://www.dabeco.com

区域代理商: