w.DC.Current Transducer

Main Advantages

- High Accuracy over high bandwidth.
- Very low output noise and offset drift.
- Negligible insertion losses.
- High immunity to interference.
- Overload Capability.
- Excellent linearity.

Applications

- Precise and high stability inverters
- Energy measurements
- High Precision Power Supplies
 Feed back element in high performance gradient amplifiers for MRI
 Medical Equipment

Electrical Parameters

Primary Current	0 to 400 A DC	Ipn
Measuring Range ± 15Vcc	± 400 A DC	Ιp
Overload Condition	± 2000 A (100ms)	lov
Burden Resistor Range	1.8 Ohm Min	Rв
(IP =400A) Vcc = ± 15V		
Secondary Nominal Current	400 mA	ls
Conversion Ratio	1:1000	Ν
Supply Voltage (± 10 %)	± 12 to15 VDC	V_{cc}
Current Consumption	80 mA +ls	lcc
Vcc = ±15V		

Accuracy

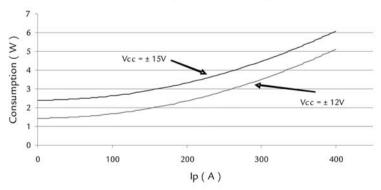
Accuracy at Ip T = 25 °C	< 0.1%	
Linear Error (Beetwen 100 to 400 A)	< 5 ppm	ϵ_{LFR}
Vcc = ±15V, Rb = 1.8 Ohm		
Linear Error (Beetwen 10A to 100A)	< 10 ppm	ϵ_{LMR}
Vcc = ±15V, Rb = 10 Ohm		
Linear Error (Beetwen 0.1 to 10A)	< 50 ppm	ϵ_{LLR}
Vcc = ±15V, Rb = 33 Ohm		
Offset Current	5uA Max	los
Offser Current Temperature Drift	< 5 ppm/°C	Klos
Time Response (10% to 90% of Ip)	<1us	Tr
di/dt Followed Accurately	> 100A/us	
Frequency Bandwidth (Ip = 10A DC)	DC to 100kHz (-3dB)	Fc

DC Current Transducer

Output Inputs Connector Information

Connector	DB-9 Standard Type (Female)	
Fault Operation Condition	lp > 120%	
(Led Power OFF)		
Maximum Switching Current	2A	
(pins 3 to 8 and pin 3 to 7)		
Maximum Switching Voltage	30 VDC/120 VAC	
(pins 3 to 8 and pin 3 to 7)		
Compensation Winding Maximum	30 Ohm	Rc
Resistance (T = 50°C)		
Lenght Two Wire Cable to R Burden	50 cm (Typical)	
(Connected between pin 1 and 6)		

General Data

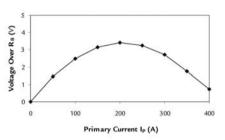

Operating Temperature	-20 to +70 °C	TA
Storage Temperature	-20 to +85 °C	Ts
Weight	400 g	
Primary Diameter Hole	25 mm	
Basic Insulation (Between Primary	3500 V AC 50Hz 1'	Vı
and Measurement Current)		

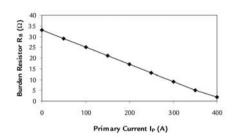
According To

- UNE EN 50178
- UNE EN 50155

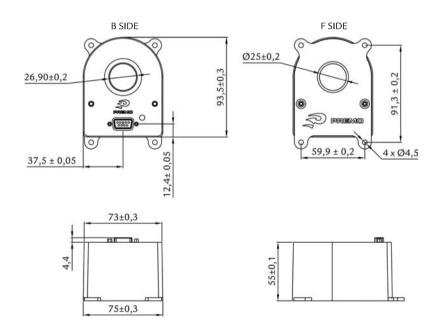
Power Consumption Characteristics

Total Consumption Vs Primary Current


Current Consumption for full range measurements and Burden resistor 1.8 Ohm.

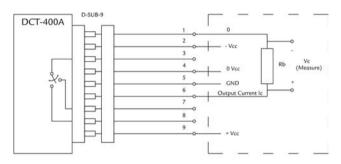

www.DataSheet4U.com

w.D.C. Chreent Transducer


Burden resistor and voltage range

The burden resistor can be changed in function of the primary current. Premo advice to use this graph in order to get the best measurements, in terms of accuracy and linearity for each current range expected in the primary side. The values of R burden and maximum voltage generated are showed below.

Dimensions



WDC Current Transducer

DCT-400A Installation

In the following picture we show as to connect the secondary side of current transducer.

External Connections

Between the pins 3 and 8 the DCT have a normally closed switch while the measure is correct. In the same manner, DCT provide a normally open switch while the measure is correct between pins 3 and 7.

D-SUB standard connector

The D-sub connection correspond to the next table.

9-POLE D-SUB

Pin 1 : Connected to 0V internally

Pin 2: - Vcc Supply

Pin 3: Input to normally closed/open Switch

Pin 4: 0V

Pin 5: Earth connexion (GND)

Pin 6 : Output Current + (Current Direction F to B)

Pin 7: Output to normally open switch (1A DC MÁX)

Pin 8 : Output to normally closed switch (1A DC MAX)

Pin 9: + Vcc Supply