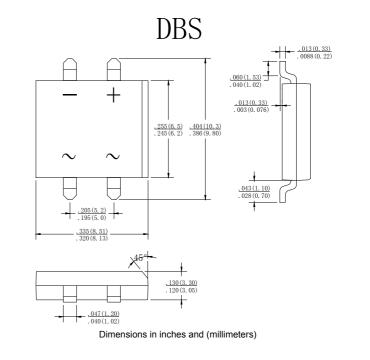


TIGER ELECTRONIC CO.,LTD

DF005S THRU DF10S

Single Phase 1.0 AMPS. Glass Passivated Bridge Rectifiers


Voltage Range 50 to 1000 Volts Current 1.0 Amperes

Features

- UL Recognized File # E-230084
- · Ideal for printed circuit board
- Reliable low cost construction technique results in inexpensive product
- High temperature soldering guaranteed: 260°C / 10 seconds / 0.375" (9.5mm) lead length at 5 lbs., (2.3 kg) tension

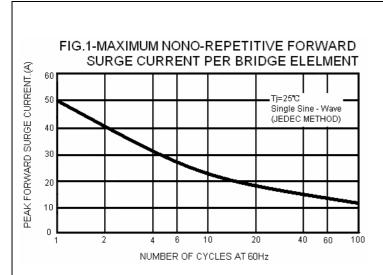
Mechanical Data

Case: Molded plasticLead: solder platedPolarity: As marked

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.


For capacitive load, derate current by 20%

	DF 005S	DF 01S	DF 02 S	DF 04 S	DF 06 S	DF 08 S	DF 10 S	UNITS
VRRM	50	100	200	400	600	800	1000	V
VRMS	35	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
I(AV)	1.0							А
I _{FSM}	50							А
V _F	1.1							V
I _R	10 500							μА
R θ JA R θ JL	40 15							°C/W
TJ	-55 to +150							$^{\circ}$ C
Тѕтс	-55 to +150							$^{\circ}$
	VRMS VDC I(AV) I _{FSM} V _F I _R R θ JA R θ JL TJ	005S VRRM 50 VRMS 35 VDC 50 I(AV) I _{FSM} V _F I _R R θ JA R θ JL TJ	005S 01S VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV) I _{FSM} V _F I _R R θ JA R θ JL T J	005S 01S 02S VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) I _{FSM} V _F I _R R θ JA R θ JL TJ	005S 01S 02S 04S VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 1.0 I _{FSM} 50 V _F 1.1 I _R 10 500 R θ JA R θ JL 15 TJ -55 to +150	O05S O1S O2S O4S O6S VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 VDC 50 100 200 400 600 I(AV) 1.0 I _{FSM} 50 V _F 1.1 I _R 10 500 R θ JA R θ JL 15 TJ -55 to +150	VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 1.0 I _{FSM} 50 V _F 1.1 I _R 10 500 R θ JA R θ JL 15 T _J -55 to +150	VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 1.0 I _{FSM} 50 V _F 1.1 I _R 10 500 R θ JA R θ JL 15 15 T _J -55 to +150

NOTE: Thermal Resistance from Junction to Ambient and from Junction to Lead Mounted on P.C.B.with 0. 47×0. 47" (12×12mm) Copper Pads.

RATING AND CHARACTERISTIC CURVES

DF005S THRU DF10S

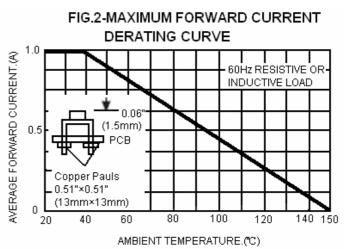
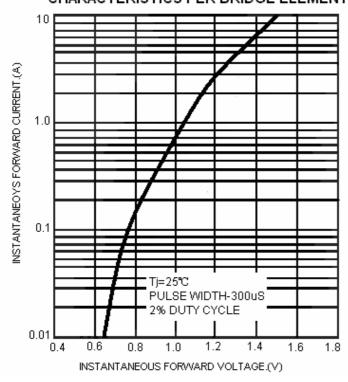
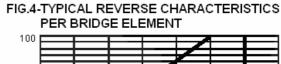
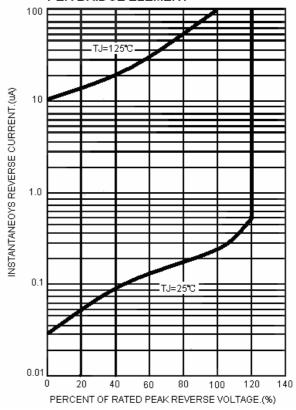





FIG.3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

