

DFPADD

Floating Point Pipelined Adder Unit ver 2.50

OVERVIEW

The DFPADD uses the **pipelined** mathematics algorithm to compute sum of two arguments. The input numbers format is according to IEEE-754 standard. DFPADD supports single precision real number. Add operation was pipelined up to 5 levels. Input data are fed every clock cycle. The first result appears after 5 clock periods latency and next results are available **each clock** cycle. Full IEEE-754 precision and accuracy were included.

APPLICATION

- Math coprocessors
- DSP algorithms
- Embedded arithmetic coprocessor
- Data processing & control

KEY FEATURES

- Full IEEE-754 compliance
- Single precision real format support
- Simple interface
- No programming required
- 5 levels pipeline
- Full accuracy and precision
- Results available at every clock
- Overflow, underflow and invalid operation flags
- Fully configurable

All trademarks mentioned in this document are trademarks of their respective owners.

Fully synthesizable, static synchronous design with no internal tri-states

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - ♦ VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - NCSim automatic simulation macros
 - ◊ ModelSim automatic simulation macros
 - Tests with reference responses
- ♦ Technical documentation
 - Installation notes
 - HDL core specification
 - ◊ Datasheet
- Synthesis scripts
- Example application
- Technical support
 - ◊ IP Core implementation support
 - ♦ 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

<u>Single Design</u> license allows using IP Core in single FPGA bitstream and ASIC implemen-

http://www.DigitalCoreDesign.com http://www.dcd.pl tation. It also permits FPGA prototyping before ASIC production.

<u>Unlimited Designs</u> license allows using IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time of use limitations.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u>
 Source
 - ^{⊱om}Encrypted, or plain text EDIF called <u>Netlist</u>
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - Netlist to HDL Source
 - Single Design to Unlimited Designs

SYMBOL

PINS DESCRIPTION

PIN	TYPE	DESCRIPTION	
clk	Input	Global system clock	
rst	Input	Global system reset	
en	Input	Enable computing	
adatai[31:0]	Input	A data bus input	
bdatai[31:0]	Input	B data bus input	
datao[31:0]	Output	Data bus output	
ofo	Output	Overflow flag	
ufo	Output	Underflow flag	
ifo	Output	Invalid result flag	

BLOCK DIAGRAM

Arguments Checker - performs input data analyze against IEEE-754 number standard compliance. The appropriate numbers and information about the input data classes are given as the results to Main FP Pipelined Unit.

Main FP Pipelined Unit - performs floating point add function. Gives the complex information about the results and makes final flags settings.

Result Composer - performs result rounding function, data alignment to IEEE-754 standard, and the final flags setting.

PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route:

Device	Speed grade	Logic Cells	F _{max}
FLEX10KE	-1	1110	47 MHz
ACEX1K	-1	1110	47 MHz
APEX20K	-1	955	55 MHz
APEX20KE	-1	955	52 MHz
APEX20KC	-7	955	68 MHz
APEX-II	-7	955	88 MHz
MERCURY	-5	975	117 MHz
STRATIX	-5	845	107 MHz
CYCLONE	-6	845	104 MHz
STRATIX-II	-3	690	153 MHz
CYCLONE-II	-6	845	105 MHz

Core performance in ALTERA® devices

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php