

# **DFPMUL**

# Floating Point Pipelined Multiplier Unit ver 2.70

# OVERVIEW

The DFPMUL uses the **pipelined** mathematics algorithm to multiply two arguments. The input numbers format is according to IEEE-754 standard. DFPMUL supports single precision real number. Multiply operation was pipelined up to 7 levels. Input data are fed every clock cycle. The first result appears after latency depending on pipeline level and next results are available **each clock** cycle. Full IEEE-754 precision and accuracy were included.

#### **APPLICATION**

- Math coprocessors
- DSP algorithms
- Embedded arithmetic coprocessor
- Data processing & control

# **KEY FEATURES**

- Full IEEE-754 compliance
- Single precision real format support
- Simple interface
- No programming required
- 7 levels pipeline
- Full accuracy and precision
- Overflow, underflow and invalid operation flags
- Results available at every clock
- Fully configurable

All trademarks mentioned in this document are trademarks of their respective owners.

Fully synthesizable, static synchronous design with no internal tri-states

#### DELIVERABLES

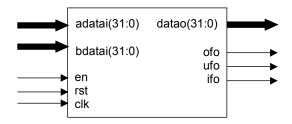
- Source code:
  - ♦ VHDL Source Code or/and
  - ♦ VERILOG Source Code or/and
  - ♦ ALTERA's Megafunction or/and
  - ♦ EDIF netlist
- VHDL & VERILOG test bench environment
  - Active-HDL automatic simulation macros
  - ♦ NCSim automatic simulation macros
  - ♦ ModelSim automatic simulation macros
  - Tests with reference responses
  - Technical documentation

    Installation notes
  - HDL core specification
  - ◊ Datasheet
- Synthesis scripts
- Example application
- Technical support
  - ◊ IP Core implementation support
  - ♦ 3 months maintenance
    - Delivery the IP Core updates, minor and major versions changes
    - Delivery the documentation updates
    - Phone & email support

# LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

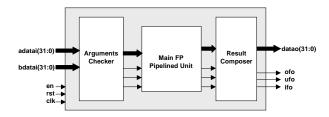
<u>Single Design</u> license allows using IP Core in single FPGA bitstream and ASIC implemen-


http://www.DigitalCoreDesign.com http://www.dcd.pl tation. It also permits FPGA prototyping before ASIC production.

<u>Unlimited Designs</u> license allows using IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time of use limitations.

- Single Design license for
  - VHDL, Verilog source code called <u>HDL</u> <u>Source</u>
- www.DataSheet4U.com Encrypted, or plain text EDIF called Netlist
  - Unlimited Designs license for
    - o HDL Source
    - Netlist
  - Upgrade from
    - Netlist to HDL Source
    - Single Design to Unlimited Designs


# SYMBOL



# PINS DESCRIPTION

| PIN          | TYPE   | DESCRIPTION         |  |
|--------------|--------|---------------------|--|
| clk          | Input  | Global system clock |  |
| rst          | Input  | Global system reset |  |
| en           | Input  | Enable computing    |  |
| adatai[31:0] | Input  | A data bus input    |  |
| bdatai[31:0] | Input  | B data bus input    |  |
| datao[31:0]  | Output | Data bus output     |  |
| ofo          | Output | Overflow flag       |  |
| ufo          | Output | Underflow flag      |  |
| ifo          | Output | Invalid result flag |  |

# **BLOCK DIAGRAM**



**Arguments Checker** - performs input data analyze against IEEE-754 number standard compliance. The appropriate numbers and information about the input data classes are given as the results to Main FP Pipelined Unit.

Main FP Pipelined Unit - performs floating point multiply function. Gives the complex information about the results and makes final flags settings.

**Result Composer** - performs result rounding function, data alignment to IEEE-754 standard, and the final flags setting.

# PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route:

| Device     | Speed grade | Logic Cells         | $F_{\text{max}}$ |
|------------|-------------|---------------------|------------------|
| FLEX10KE   | -1          | 1340                | 40 MHz           |
| ACEX1K     | -1          | 1340                | 40 MHz           |
| APEX20K    | -1          | 1210                | 50 MHz           |
| APEX20KE   | -1          | 1210                | 50 MHz           |
| APEX20KC   | -7          | 1210                | 51 MHz           |
| APEX-II    | -7          | 1210                | 67 MHz           |
| MERCURY    | -5          | 1290                | 77 MHz           |
| STRATIX    | -5          | 440+8M <sup>1</sup> | 93 MHz           |
| CYCLONE    | -6          | 1170                | 72 MHz           |
| STRATIX-II | -3          | 410+8M <sup>1</sup> | 134 MHz          |
| CYCLONE-II | -6          | 480+8M <sup>1</sup> | 117 MHz          |

<sup>1</sup>- 9-bit DSP block

Core performance in ALTERA® devices

# CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

# **Headquarters:**

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

#### **Distributors:**

Please check http://www.dcd.pl/apartn.php