Peripheral/Power Drivers

DH0028C/DH0028CN*hammer driver

general description

The DH0028C/DH0028CN is a high current hammer driver designed for utilization in a wide variety of printer applications. The device is capable of driving 6 amp pulsed loads at duty cycles up to 10% (1 ms ON/10 ms OFF). The input is DTL/TTL compatible and requires only a single voltage supply in the range of 10V to 45V.

*Previously called NH0028C/NH0028CN

features

- Low standby power: 45 mW at V_{CC} = 36V, 35 mW at V_{CC} = 28V.
- AND input with expander affords logic flexibility.
- Fast turn-on, typically 200 ns.

connection diagrams

Metal Can Package

Order Number DH0028CH See Package 13

Molded Dual-In-Line Package

typical application

improved ac noise immunity

5

^{**}Zener is used to control the dynamics of the hammer

absolute maximum ratings

Continuous Supply Voltage 45V Instantaneous Peak Supply Voltage (Pin 1 to Ground for 0.1 sec) 60V Input Voltage 5.5V **Expander Input Current** 5.0 mA Peak Otuput Current (1 ms ON/10 ms OFF) 6.5A Continuous Output Current DH0028C at 25°C 750 mA DH0028CN at 25°C 1000 mA Operating Temperature 0°C to 70°C Storage Temperature -65°C to +175°C 300°C

Lead Soldering Temperature (10 sec)

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
Logical "1" Input Voltage	V _{CC} = 10V to 45V	20			V
Logical "0" Input Voltage	V _{CC} = 10V to 45V			0.8	v
Logical "0" Input Current	V _{CC} = 45V, V _{IN} = 0 4V		0.8	10	mA
Logical "1" Input Current	V _{CC} = 45V, V _{IN} = 2 4V V _{CC} = 45V, V _{IN} = 5 5V		0.5	5.0 100 0	μΑ μΑ
Logical "1" Output Voltage	$V_{CC} = 45V, V_{IN} = 20V,$ $I_{OUT} = 16A$ $V_{CC} = 36V, V_{IN} = 20V,$	43 0	43 5		v
	I _{OUT} = 5A (Note 2)	33 5	34 0		٧
Logical "0" Output Voltage	V _{CC} = 45V, R _L = 1k, V _{IN} = 0 8V		020	100	v
OFF Power Supply Current	V _{CC} = 45V, V _{IN} = 0 0V		16	20	mA
Rise Time (10% to 90%)	V _{CC} = 45V, R _L = 39Ω V _{IN} = 5 0V peak, PRF = 1 kHz		02		μs
Fall Time (90% to 10%)	V _{CC} = 45V, R _L = 39Ω V _{IN} = 5 0V peak, PRF = 1 kHz	·	3 0		μς
T _{ON}	V _{CC} = 45V, R _L = 39\$} V _{IN} = 5 0V peak, PRF = 1 kHz		0 4		μs
T _{OFF}	V _{CC} = 45V, R _L = 39Ω V _{IN} = 5 0V peak, PRF = 1 kHz		70		μς

Note 1. These specifications apply for ambient temperatures from 0°C to 70°C unless otherwise specified All typical values are for 25°C ambient

Note 2. Measurement made at 1 ms ON and 10 ms OFF

Note 3: Power ratings for the DH0028C are based on a maximum junction temperature of 175°C and a thermal resistance of 210°C/W

Note 4: Power ratings for the DH0028CN are based on a maximum junction temperature of 175°C and a thermal resistance of 150°C/W

typical performance characteristics

